CONDITIONAL ENTROPY-CONSTRAINED
TREE-STRUCTURED VECTOR QUANTIZATION WITH
APPLICATIONS TO SOURCES WITH MEMORY"*

Ligang Lu and William A. Pearlman!

Abstract

An algorithm is derived for designing tree-structured vector quantizers to
encode sources with memory. The algorithm minimizes the average distortion
subject to a conditional entropy constraint and the tree structure restriction.
This technique called conditional entropy constrained tree-structured vector
quantization (CECTSVQ) can more efficiently exploit the source memory.
This work is an extension of the recent work by Balakrishnan, Pearlman,
and Lu[6] for the variable rate tree-structured vector quantization. The tree
is grown by applying a rate-constrained iterative splitting process to achieve
the maximum attainable ratio of the decrease in the average distortion over
the increase in the conditional entropy of the output of the quantizer. The
iterative splitting process and thus the design algorithm are shown to con-
verge. A fast algorithm is also developed to dramatically reduce the compu-

tational cost while maintaining virtually the same performance as the ideal

!This material is based on work supported by the National Science Foundation under Grant No. NCR-

9004758. The government has certain rights in this material.
2Ligang Lu is with IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, lul@us.ibm.com

and William A. Pearlman is with the Electrical, Computer and System Engineering Department, Rensselaer

Polytechnic Institute, Troy, NY 12180-3590, pearlman®@ecse.rpi.edu.

algorithm. Experiments on sampled speech and synthetic sources have shown
that, at rates under 1 bit/sample and under the square error distortion mea-
sure, more than 2dB gain in the signal-to-quantization noise ratio (SQNR)
can be achieved over the full-search entropy-constrained vector quantization
(ECVQ)[4] and the entropy-constrained tree-structured vector quantization
(ECTSVQ)[6, 17] on the speech source; about 1dB improvement over ECVQ
and 1.2 dB over ECTSVQ on the synthetic sources can be achieved. Fur-
thermore, in the entire tested rate range, CECTSVQ can be expected to
have performance very close to that of the conditional entropy-constrained

full-search vector quantization (CECVQ)[2].

Index Terms — Source coding, vector quantization, rate-distortion theory,
tree-structured vector quantization, variable rate coding, entropy coding,

conditional entropy coding.

I Introduction

Consider the compression of a discrete-time stationary ergodic random vector source with
memory using vector quantization(VQ). The codeword index sequence of the quantizer output
will contain inter-codeword correlation since there is memory between the contiguous source
vectors. On the other hand, information theory[1] has shown that side information may reduce
average uncertainty, or in another words, conditioning can possibly decrease the entropy, that
1s

H(X|Y) < H(X) (1)
with equality if and only if X and Y are independent, where X and Y are random variables
of the output of the source and H(X) and H(X|Y) are the entropy of X and the condi-
tional entropy of X given Y, respectively. Therefore a vector quantizer which appropriately
exploits this inter-codeword correlation could be expected to have a performance gain over

ones that do not. Recently Chou and Lookabaugh[2] proposed such an algorithm to uti-

lize the inter-codeword memory in designing unstructured, i.e., full-search vector quantizers.
Their algorithm, called conditional entropy constrained vector quantization(CECVQ), is an
extension of the full-search entropy constrained vector quantization(ECVQ) algorithm[4]. In
the full-search CECVQ design algorithm, the average distortion is minimized subject to the
constraint of the first-order conditional entropy of the codewords instead of their first-order
unconditional entropy as in the full-search ECVQ algorithm. Each output of the quantizer is
then losslessly encoded by an entropy coder matched to the conditional probability distribu-
tion of that output. Recently Garrido and Pearlman developed a pairwise nearest neighbor
merging algorithm to provide an alternative for the design of full-search CECVQJ[3]. It has

been shown|2, 3] that CECVQ can achieve significant rate-distortion performance gain over

VQ and ECVQ.

Tree-structured vector quantization(TSVQ), first proposed by Buzo, et al.[10], is a form
of VQ with significantly lower computational complexity. The codebook of a tree-structured
vector quantizer is organized as a tree, usually a binary tree, to facilitate the codebook search.
When mapping a source vector onto an output codevector, the operation starts at the root
node of the tree and determines which child of it minimizes the adopted distortion measure.
The operation repeats from that child node until a leaf node is reached. Therefore the search
complexity is reduced to O(log M) from O(M) for an unstructured codebook of size M.
Obviously, the performance of TSVQ is in general inferior to that of unstructured VQ of the
same rate since a source vector may not be mapped onto the optimum codevector because of

the imposed structure.

The tree-structured vector quantizers in [10] were designed one level at a time using the
splitting method of the generalized Lloyd algorithm(GLA)[9]. The grown tree is a balanced
tree that implements a fixed rate code. More recent efforts in TSVQ have been devoted
to designing variable rate tree-structured vector quantizers to improve the coding efficiency.
Makhoul, Roucos, and Gish[11] and Lindsay[12] grow the tree one node at a time by splitting
the leaf node with the highest distortion. However, this splitting approach guarantees neither

the greatest distortion decrease nor the best rate-distortion trade-off.

A better approach of growing variable rate tree-structured vector quantizers has been pro-
posed by Riskin and Gray[13]. This approach differs from the previous one in that, instead
of splitting the leaf node having the largest distortion, it grows the tree by splitting the leaf
node which has the largest ratio of the decrease in distortion over the increase in rate. But
the splitting in their approach is not rate-constrained, consequently the largest attainable
ratio is not actually achieved in the splitting. Another approach for designing variable rate
tree-structured vector quantizers was proposed by Chou, Lookabaugh, and Gray[7]. They first
grow a balanced fixed rate tree-structured vector quantizer as in [10], then optimally prune the
tree using the generalized Breiman, Friedman, Olshen, and Stone (BFOS) algorithm[14]. This
technique is called the pruned TSVQ (PTSVQ). However, the generalized BFOS tree pruning
algorithm can only produce a best subtree, which corresponds to a tree-structured codebook,
from the given initial tree. Therefore, it 1s important to investigate better tree growing algo-
rithms in the design of tree-structured vector quantizers. Recently, Balakrishnan, Pearlman,
and Lu developed an algorithm for designing variable rate memoryless tree-structured vector
quantizers[6]. The tree is grown by an iterative rate-constrained splitting process to achieve
the maximum attainable ratio of the decrease in distortion over the increase in rate in each
growing step. The variable rate TSVQ has been shown capable of good performance in many

applications[6, 7, 8, 15, 16].

In this paper, we generalize the algorithm in [6] to design tree-structured vector quantizers
which have memory. This technique, called conditional entropy-constrained tree-structured
vector quantization (CECTSVQ), can more efliciently exploit the source memory. We shall
first formulate the problem of designing the conditional entropy constrained tree-structured
vector quantizers. Then we develop an ideal design algorithm and based on that derive a fast
algorithm. We shall also show the convergence of the iterative splitting algorithm. Finally, we
compare the performance of CECTSVQ against CECVQ, ECVQ, and the entropy-constrained
TSVQ (ECTSVQ)[6, 17] based on results with synthetic and speech sources.

IT The Preliminaries

Let the K-dimensional vector source {Xg, X7, X», ...} be a strictly stationary ergodic discrete-
time random process. The random vector X can be viewed as a point in the K-dimensional
Euclidean space R¥ and is statistically described by a probability density function fx(X).
Consider encoding X using a tree-structured vector quantizer T/. Without losing generality,
we concentrate in this paper on the binary tree case for simplicity. The development can
be easily extended to an M-ary tree. Let TV have L’ leaf nodes and hence L’ — 1 interior
nodes. Associated with each leaf node there is a reproduction codevector and with each
interior node an auxiliary codevector. Denote the leaf node set of TV as L7 = {1,2,...,L7}.
Let ;7,1 =1,2,..., L7, be the reproduction codevector associated with the leaf node . The
encoding of the source vectors X using 7 is a sequence of refining quantization operations.
Starting from the root node, X is repeatedly assigned to a child node of the current node
that minimizes the distortion until X reaches a leaf node. Each assignment is a refinement
of the previous one. The source vector X is represented by the codevector associated with
the leaf node. This encoding process reflects the successive refining property of TSVQ and its
difference from the unstructured VQ. To facilitate the illustration of the conditional encoding,

we define a state variable

ST (X, Xp—1, Xp—2,...) (2)

to represent the node in the jth layer of the tree, to which the source vector X, is coded. For
convenience, we use S?(X}) as a short notation to represent the state variable in (2). Using
the state variable the prior probability Plj that a source vector X} is mapped onto a node [

and represented by Y}j can be expressed by
PP =P{S(X:)=1}, k=0,1,2,.... (3)

Let Pil be the joint probability that two contiguous source vectors X;_; and X are mapped

to the codevectors Y;i and Y}j in order. szl can be defined as

Pl = P{S(Xio1) = m, S(X) = I} (4)

Denote P’ the conditional probability of a source vector X to be represented by Y;j, given

lim

that its predecessor was mapped to Y2, for [,m = 1,2,..., L?. Then, from Bayes’s Theorem

of probability theory, ,
J P,
P” = .

(5)

Let d(X,Y) be the distortion measure resulting from reproducing X as Y, where d(.) is a
non-negative function defined on the source vector alphabet and the reproduction alphabet.
Starting from the root node, the encoding of X using 77 is to successively map X to one of
its child nodes according to the nearest neighbor rule until X is mapped onto a leaf node and
represent X by the reproduction codevector Y;’. Let i be a non-leaf node of 77 and 7; and 1,

be the child nodes of :. The mapping is defined by the nearest neighbor rule: assign X to ¢y if
X, Y) + Nirj, < (XY)+ Airl sk #m, (6)

where k,m = 1,2; and rfl and rfé are the rates to encode X as Y;{ and Y;%, respectively. The
parameter)\; is a Lagrange multiplier associated with ¢, which controls the relative importance
of the rate and distortion. The conditional distortion of encoding all source vectors by ¥;” is

the conditional expectation of d(X,Y;”),
D} = B{I(X,Y)|87(X) = 1}. ()
The overall average distortion of encoding the source X by 7V can be then evaluated as
D’ = E{Di'}y = > F'D{ = 3 E{d(X,Y,")|$(X) = 1}. (8)
leld leld
If the rate of encoding a source vector by a codevector Y}j is defined to be the self-entropy
—log, Plj, the average rate per vector of encoding the source by T can be measured by the
first-order entropy of the quantizer output
R =H’=-> P/log, P . (9)
leld
To exploit the inter-codeword correlation we define the rate of encoding a source vector Xj

by Y;’, given its predecessor X;_; was encoded by Y., to be the conditional self-entropy

—log, Pl‘|7m. Then the average rate per vector for encoding those source vectors whose prede-

cessors were encoded by Y7 is
J J J J
leld
The overall average coding rate per vector is the first-order conditional entropy of the quantizer

output
R'=H’= % PlH,=- 3 > PJlog, P, (11)

meld melJ lel’

In the rest of this paper we also refer R’ as the conditional entropy of the tree T'7.
Vector quantizers designed by minimizing the functional
J=D+ AR (12)

with the self-entropy as the definition of rate in the nearest neighbor rule (6) are called entropy-
constrained vector quantizers. Likewise, if the rate is defined as the first-order conditional
self-entropy, the designed quantizers are called the conditional entropy-constrained vector
quantizers. Our objective is then to design a tree-structured vector quantizer which mini-
mizes the overall average distortion subject to the overall average rate constraint and the tree
structure restriction. Since the tree-structured quantizers have the property that an optimal
quantizer of higher rate embeds optimal quantizers of smaller rates[6], it is reasonable to de-
sign a higher rate tree-structured quantizer by growing and extending successively lower rate
tree-structured quantizers. Consider obtaining a tree T/*! of higher rate from 7'/ by splitting
a leaf node 2 of T/. This splitting should result in a tree T/*! from T/ with the best trade
off between the overall average distortion decrease and the average rate, i.e., the conditional
entropy increase. We can apply a non-memoryless nearest neighbor rule in the splitting to
achieve our objective. That is, when we split a leaf node ¢ of T into ¢; and ¢, to obtain a
new tree 77*!, we examine each source vector X, that has been mapped onto 7. Suppose that
X}’s predecessor X;_; was coded by a reproduction codevector Y;’; if I # 1, [is now also a
node in the layer J + 1 with the codevector ¥;”™ and otherwise, if I = 4, X;_; would have

been re-assigned to either Y;f"’l or Y;;]"'l, so, in this case, [now refers to either 7; or 7. We

assign Xy to Y;‘l]"'l or Y;;]"'l using a non-memoryless biased distortion measure, i.e., assign X
o Y/t if
d(X, YY) — M log, PIHY < d(Xi, Y] TH) — M log, P (13)

|l

PJ""/},m = 1,2, is the probability that Xj is mapped onto 2,, given that X;_; was

where
mapped onto [and ¢ in A/ is an iteration index. Since the trees grown by splitting the leaf
nodes will have discrete distortions and rates, the slope of the line joining points (D7, R’) and

(D7*1) R*1) in the distortion-rate plane is

J J+1 J
t+1 RI+1 _ RJ AR’

where AD7 and AR’ are the decrease in the distortion and the increase in the rate resulting

from the Jth splitting, respectively:

AD? = D7 - D7 = B{d(X,Y7)|S(X) = i} - B{d(X,YP)[S7H(X) = ir)

—E{d(X,Y;]*)[STH(X) = i}, (15)
and
LJ-I-l LJ-I-l LJ LJ
AR?=R™ — R =—3" 3" Pit'log, Pift + 3 > Poylog, Py, (16)
m=1 [=1 m=1[=1

Obviously, the best tree T7*! resulting from the splitting of a leaf node is the one that
maximizes AJ ;. Hence our objective can be fulfilled by finding a leaf node in 77 which
maximizes)‘tJ-I—l and split that node according to (13). To do this, one needs to first find
the maximum)/,,,, attainable from the splitting a leaf node I, for VI € L7, then choose

the leaf node 7 to split that achieves)/ > M pnaes for VI € L7. However, the maximum

,mar —

attainable A/

l,maz
)\J

l,maz

for each leaf node is , in general, not known. To find)/ we can start with

l,maz)

= 0 and iteratively split [and update)/ __ until it stops increasing. In the following,

l,maz

we develop such an algorithm for design of conditional entropy-constrained tree-structured

vector quantizers.

IIT The CECTSVQ Design Algorithm

In this section, we present the algorithm for designing the conditional entropy constrained
tree-structured vector quantizers. The algorithm grows a tree-structure vector quantizer by
splitting a leaf node at a time. The resulting tree-structured vector quantizer minimizes
the overall average distortion constrained by the conditional entropy and the tree structure
restriction. Before we start to describe the algorithm, let us formally define our conditional

entropy-constrained tree-structured vector quantizer.

Definition: A K-dimensional first-order conditional entropy-constrained tree-structured
vector quantizer T, with a leaf node set L7 = {1,2,...,L7} and associated reproduction
codevectors Y/, Y/, ... ,YLJJ, is a mapping of an input vector X € R¥ to a reproduction
codevector ¥;7,1 = 1,2,..., L7 determined by the sequential refining quantization operation
described earlier using the nearest neighbor rule defined in (6) with the rate defined as the
conditional self-entropy rfk = —log, Pi/l, where 75, and [are the nodes at the same level 7 and
[is the node through which the preceding vector Xj_1 was encoded. The rate rfk is the code
length for encoding X from the root to the node i; at the jth level given that Sj(Xk_l) =
We shall assume throughout the rest of the paper that the distortion measure is mean-squared

error, 1.e.,

dX,Y)=p(|X -Y|) =X Y] (17)

III.1 An Ideal Design Algorithm

Given a training vector set and a target rate, we grow the tree by splitting a leaf node at a
time. The initial tree has only one node, i.e., the root node . One way to initialize the tree
1s to choose the centroid of the training source as the root node. In the Jth growing step,
to split a leaf node [into two child nodes, the codevector of [is first perturbed by a small

number into two points as the initial codevectors of the two child nodes. Then an iterative

J

i maz Tesulting

rate-constrained splitting technique is used to obtain the maximum attainable A

J

Pmae = 0 and minimizes
b

from the splitting of {. The iterative splitting process starts with A
(12) using the CECVQ algorithm in splitting. After the CECVQ algorithm converges, the

decrease in the distortion and the increase in the rate due to the splitting with Ai],ma:r =0

J

imaz 18 then updated to their ratio as in

are computed using (15) and (16), respectively. A
(14). The iterative splitting process uses CECVQ algorithm to resplit the leaf node with the
new Ai],ma:r and the two codevectors obtained by CECVQ algorithm in the last iteration as the

initial codevectors to minimize (12). The iteration process of Ai],ma:r 1s repeated until it stops

J

l,maz

is the maximum achievable \/ __ from splitting the leaf node

increasing. The value of A } ma

[currently being examined. After each leaf node has been examined, the design algorithm
chooses to split the leaf node ¢ which achieves)\;{mam >)\i{mam, Vi e L7. Thus each growing step
guarantees to achieve the best trade-off between the decrease in distortion and the increase

in rate. We summarize the conditional entropy-constrained tree-structured vector quantizer

design algorithm as follows.

Algorithm

e Step 1 (initialization)
Given a target rate Rigpger and a training source X, obtain T° which has only the root
node with the centroid of X as its associated codevector. Set J=0; R® = 0; D° = o2,

where o2 is the variance of X.

e Step 2 (Find the maximum achievable A for each leaf node)
For each leaf node I of T7, 1 € L7, use the iterative rate-constrained splitting process to

find the maximum attainable)/ __ from splitting /.

l,maz

e Step 2.1
Set initial A/, = 0; perturb the codevector of j into two codevectors as the initial

l,maz

codevectors of j’s child nodes.

o Step 2.2
Use CECVQ algorithm to minimize (12) with the nearest neighbor rule (13).

10

e Step 2.3
Calculate AD’ and AR’ resulting from the current splitting using (15) and (16).

If ﬁgj >)\i{mam, set Ai],ma:r = ﬁgj and go to Step 2.2. Otherwise the maximum
achievable Ai],mam for splitting [is found.

e Step 3 (Growing T to obtain 77+1)

Find the leaf node ¢ which can achieve the best rate-distortion trade-off by the following

¢ = argmaxA;.
JjeL’

Split ¢ to obtain the new tree T7/*1.

e Step 4 (Updating)
Calculate AR’ and AD’ using (15) and (16), respectively.

R™ = R+ AR,
D't = D7 - ADY.

Re-estimate the new conditional probabilities and update the conditional probability

table.

e Step 5 (Stopping criterion)
If R7*! < Rigrget, set J = J + 1 and go to Step 2. Otherwise, store the conditional

probability table, codevectors for all nodes, and A’s of all interior nodes, then stop.

II1.2 A Fast Design Algorithm

The major computational cost of the above ideal design algorithm is in Step 2, especially when
the size of the tree is getting large. After each growing step, the iterative splitting process
has to be applied to each leaf node to re-evaluate the maximum achievable A of splitting that
leaf. This will slow down the design process of the codebooks of CECTSVQ. For example, to

design a tree having L leaf nodes, it requires %L(L — 1) iterative splittings for calculating the

11

maximum attainable A. This may cause difficulty for designing large codebooks of CECTSVQ
with limited computing capability. However, the design process of large codebooks can be

made much faster by making a minor approximation in the above ideal algorithm.

Let A/

i maz denote the maximum achievable A from splitting [. After splitting a leaf node 2

J

i maz from splitting another leaf node {

into two children ¢; and 25, the maximum achievable A
into l; and l; may or may not be changed. Clearly, if there is no training vector mapped on

[whose predecessor is mapped on ¢, i.e, the conditional probability P; = 0, the splitting of
J

7 into 71 and 25 will have no effect to the value of A; ..,

since the iterative splitting process
assigns the training vectors mapped on [to [y or Iy according to the nearest neighbor rule (13)

and there will be also no training vector mapped on [with its predecessor mapped on 2; or

J

lymaz*

29. If P; > 0, then the splitting of may change the value of A Before the splitting of
7, Ai],ma:r is obtained by iteratively assigning the training vectors mapped on [to I; or [using
the nearest neighbor rule (13). Particularly, those training vectors X with S(Xj) = [whose

predecessors Xj_1 have the state S(Xz_1) = ¢ are assigned to [y if
d(Xk7 El) - >‘l 1Og2 Pll|i < d(Xk7 Yiz) - >‘l 1Og2 Plz|i; (18)

or to [by the similar criterion. Note that in splitting [, I;, 5, and ¢ are at the leaf node level. If
¢ had been split into ¢; and 7, the predecessors’ state would have become either S(Xj_1) = ¢1

or S(Xk-1) = 12 and the splitting of [would have been according to

d(Xk7 El) - >‘l 1Og2 Pll < d(Xk7 Yiz) - >‘l 1Og2 Pl2|im; (19)

|2

where m = 1,2. Note that in this splitting, {1, 5,21, and 25 are at the leaf node level. However,

the conditional probabilities have the following relations:

P, P, P, Py
P = ap, 4liop. o Zab Tab 9
0| P, I1]eg + P, l1]22 P, P, (0)
P; P; P, P
P, = =P 2P, = —2 4 22, 21
I2| P, I2]ey + P, I2|22 P, P, ()

When the number of leaf nodes is large, the codevector co-occurrence matrix is sparse and

most of the co-occurrence frequencies are small. Therefore we can make the following approx-

12

1mations

logy Pi ~ logy Piyji, +loga - (22)
P,

logy P,;; & logy Py, + log, FQ (23)

or

P,

logy Pyji =~ logy Py +logy 7 (24)
P,

10g2 Pl2|i ~ 10g2 Pl2|i2 + 10g2 P . (25)

Since adding a limited term to both sides in (19) will not affect the assignment, the approx-

and P, J

imations mean if P, [maz
b

m = 1,2, are small, A will only have very little change

mlL mil2s

after the splitting of :. From the above analysis we can see that the maximum achievable \’s
of splitting other leaf nodes will, in most cases, not or approximately not change after has
been split. Therefore we can assume that after each growing step the maximum achievable \’s
of splitting the other leaf nodes will approximately remain unchanged and modify the Step
2 of the ideal algorithm accordingly. Instead of evaluating the maximum achievable A for
each leaf node in Step 2, we only need to find the maximum achievable A’s for the two new
leaf nodes after each growing step. This modification of the ideal algorithm can dramatically
reduce the time of designing large CECTSVQ codebooks. The required number of iterative
splittings for finding the maximum achievable A’s in designing a codebook having L leaf nodes
is now reduced to 2(L —1). Table 1 gives some comparisons of the ideal algorithm and the fast
algorithm. We also can anticipate that the performance of the fast algorithm will be close to

the ideal algorithm. This anticipation is indeed true as confirmed by the experimental results.

ITI1.3 Encoding and Decoding

To encode an input source vector Xj, using the designed conditional entropy-constrained tree-

structured vector quantizer TV, we need the path map of Xj_; which is a sequence of indexes

13

leaf number of iterative splits
numbers | ideal algorithm [fast algorithm

128 8128 254
256 32640 510
512 130816 1022
1024 523776 2046

Table 1: Comparison of number of iterative splits for ideal and fast algorithms.

of nodes to which Xj_1 is mapped. As we have described in the previous section, the encoding
of X} using T is a sequential refining quantization operation. We start at the root node and
look up the node in the first level from the path map of X;_1. Then we find the two conditional
probabilities in the conditional probability table and use the A stored at the root node to decide
the child node to which X} should be mapped according to (13). This quantization operation
is successively repeated at the next level until X} is mapped on a leaf node. The path map is
entropy coded by an entropy encoder matched to the conditional probability distribution of
that leaf node and transmitted to the decoder. Since the quantization operation has memory,
the encoding depends on the initial state. The first input source vector can be coded by the

biased nearest neighbor rule with a memoryless entropy code.

The decoding process is the same as that of the conventional TSVQ. The received codeword
is first decoded back to the path map by the entropy decoder. The path map is then used to
find the leaf node that X} is mapped on and the reproduction codevector at that leaf node

reconstructs Xg.

Obviously, this design algorithm works only if the iterative splitting process converges.

The next section is devoted to that question.

14

IV On The Convergence Of The Algorithm

In this section we study the convergence problem of CECTSVQ algorithm. We shall analyze
the sufficient conditions for the CECTSVQ design algorithm to converge. Since a splitting
which does not result in an increase in rate has no meaning to our purpose, we consider only
the splittings which result in an increase in rate. To proceed further, we first introduce the

following lemma.

Lemma: Let S be a bounded and closed set on the real line and D(R) a real-valued

function with R € S. If R; is a solution to

%lélsl{D(R) + MR} (26)
and Ry is a solution to
I]I%leiISl{D(R) + AR}, (27)

then, for any function D(R), we have
(A2 — A1)(R1 — R2) > 0. (28)
Proof: Since R; and R, are the solution to Eqn.’s (26) and (27), respectively, it follows that

D(R1) + MR < D(Rz)+ MR,
D(Ry) + MRy < D(R:)+ \:Ri.

Rewrite the above inequalities as

D(Ry) — D(Ry) < M(Ry— Ry),
D(Ry) — D(R)) < M(Ry — Ry).

Thus the lemma is proved if we add both sides of the above two inequalities to get

0 < (Ri—Ry)(Aa— M)

A corollary of this lemma immediately follows.

15

Corollary: The solution R is monotonically nonincreasing with A.

Proof: Suppose that Ay > A; > 0in (28), we get
Ri—Ry>0

which proves the corollary.

Suppose that we have grown a tree-structured quantizer T/ which has the average distor-
tion D’ and average rate R’, corresponding to a point (D7, R7) on the curve of the operational
distortion-rate function Dn(R) in the distortion-rate plane as shown in Figure 1. We grow
the tree to obtain a new tree of higher rate by splitting a leaf node which achieves the best
trade-off between the increase in rate and the decrease in distortion. To find that leaf node,
the CECTSVQ design algorithm tests each leaf node I € L7 by first splitting it with A = 0 and
minimizing the Lagrangian in (12). Then the rate of the tree will increase and the distortion
will decrease, respectively. Denote the resulting tree as T' which has the average distortion
D' and the average rate R'. corresponding to the point (D/, R/) in Figure 1. Then we update

A using

_D'-D
" R - R’

and split the leaf node and minimize (12) again with the new). Now the resulting tree T

A =tana >0 (29)

must correspond to a point on the distortion-rate plane below or on the line joining (D’, R/)
and (D', R"). To see this, assume that T" has the average distortion D" and R". Since D"

and R" minimize (12) after A is updated to tan o, we must have
D"’ + tan aR’ < D + tan ozR/; (30)

and since tan o > 0, by the lemma and the corollary, R* > R". When R > R", we have

1 !

D -D
R/ _ R//

When R = R", then D" < D' and tan 8 < 0. Therefore the point (D", R") must lie below or

= tan . (31)

tana >

on the line joining (D7, R’) and (D', R'); this means that

DJ D//

ﬂ Z tan a. (32)

tany =

16

So if we update A with the new ratio in each iteration, it will be monotonically nondecreasing
in the iterative splitting process for every leaf node. For finite training set case, since the
number of the training vectors mapped onto a leaf node [is finite, there exist only finite ways
to split [. Because we consider only those meaningful splittings which result in an increase in
the rate (see Appendix), the smallest increase in rate results from a single vector split and
we can show that A is also upper bounded in the iterative splitting process for every leaf node.
Let B; be the finite set of all splittings which increase the rate and ARZmin be the smallest

increase in rate from the splitting in By, i.e.,
AR] .. = min AR]. (33)
!
Clearly, the largest decrease in distortion resulting from splitting [is upper bounded by Dy,

ADl‘{mam = max AD] < D{. (34)
i

J

l,maz

Consequently, it follows that A is also upper bounded in the iterative splitting process for

the leaf node I,

AD‘] DJ
)\J < l,maz 1 35
lymazx — ARi{mzn — ARi{mzn ()

For the infinite training set case, we show in the Appendix that the maximum A in the iterative
splitting process must be achieved for a AR greater than zero. Since AD is upper bounded
by Dy, Ai],ma:r is also upper bounded. Since for each leaf node I, Ai],ma:r is monotonically
nondecreasing and bounded, the iterative splitting process at [will converge when Ai],ma:r
stops increasing and hence the algorithm also converges. For the purpose to grow a tree
with increasing rate, we exclude the splittings which do not increase rate. In the Appendix
we provide a proof that splitting off a single vector, in the case of either a finite or infinite

training set, results in a finite A, so can not always occur.

V Experimental Results

We have studied the rate-distortion performances of CECTSVQ on synthetic and real sources.

The distortion measure used in the tests is the mean-squared error and the vector dimension

17

is 4. The first synthetic source tested is a first-order Gauss-Markov source AR(1) generated
by
X(n)=aX(n—1)+ W(n), (36)

where a is the correlation coefficient, and W(n) is an i.i.d. Gaussian random sequence with

zero mean and variance 0'2.

For the source to be stationary, a should satisfy |a| < 1. The
correlation coefficient a is typically chosen as 0.9 to model highly correlated sources such as

image and speech data. The autocorrelation sequence of this source is [19]

Rxx() a'nl. (37)

1 —a?

We used the samples of a zero mean and unit variance AR(1) source with a = 0.9 to
generate 200,000 vectors as the training source and another 60,000 vectors as the test source.
CECTSVQ codebooks were designed using the training source and tested using the test source.
For comparison, CECVQ, ECVQ, and ECTSVQ codebooks were also designed and tested
using the same training and test sources. The codebook size for CECVQ and ECVQ was 256
codevectors. The marginal and conditional probability distributions were estimated from the
codevector occurrence and co-occurrence frequencies. The average squared error distortion
is presented in terms of the signal-to-quantization-ratio(SQNR) measured in dB, defined as
SQNR =10 loglo() As a theoretical bound on the achievable rate-distortion performance,

the rate-distortion function of AR(1) Gaussian source can be computed by[18]

= —/ max|0 Zog2 (I)X);()]dw, (38)
1 =
Dy = g/_ﬂ min[f, ®xx(w)|dw. (39)

Where ®x x(w) is the discrete-time source power spectral density (psd)

1 —a?
Pxx(w Z Rxx(n)e ™ = : (40)

1 —2acosw + a?

The nonzero portion of the R(D) (or D(R)) curve is generated as the parameter 8 traverses
the interval 0 < 8 < ess sup Px x(w) with ess sup denotes the essential supremum of a function.

The results of the testing for all four systems at various rates are plotted in Figure 2. Also

18

shown in Figure 2 is the SQNR curve derived from (38) and (39). It can be concluded that
on this AR(1) source and in the tested rate range , CECTSVQ performed consistently very
close to CECVQ and significantly outperformed ECVQ and ECTSVQ. For example, at 0.6
bits/sample, CECTSVQ achieved 1dB gain over ECVQ and about 1.3dB over ECTSVQ.

The second source we tested is another widely used standard synthetic source, an AR(2)

Gaussian source, given by
X(n)=arX(n—1)+ aX(n —2)+ W(n), (41)

where a’s are the regression coefficients and W(n) again is an i.i.d Gaussian random sequence
with zero mean and variance o%, and a; = 1.515 and a; = —0.752. This source is commonly

used to model long-term statistical behavior of speech sources. The autocorrelation sequence

of AR(2) is given by[19, pp. 123-132]

B N (3 S I SN B
Rua(n) = 03{(1 #2)#1 5 1(1 f1) B (42)
(k1 — p2)(1 + pap2)

2

where g1 and po are the roots of the quadratic f(z) = 2° — a1z — a2 and the source variance

(1 —az)o?
(1 —|— (1,2)(1 —|— a1 — (1,2)(1 — a1 — (1,2)'

(43)

ok =

For stationarity it is required that |p1] < 1 and |pa| < 1. Since it is a Gaussian source, the
rate-distortion function is also expressed by Eqns (38) and (39)[18] with the discrete-time

source power spectral density (psd) given by

Q)Xx(w) = k_ij: Rxx(k)e_jkw
_ ok pd)(A - p3) M B2 ()

(m1 — p2)(1 + pap) "1 — 2prcosw + pd 1 —2ppcosw +
Again output samples were drawn from an AR(2) Gaussian source with zero mean and unit
variance to obtain 200,000 training vectors and 60,000 test vectors as the training source and
test source. Similarly various codebooks of CECTSVQ, CECVQ, ECVQ, and ECTSVQ were
designed using the training source and their performances were evaluated using the test source.

The results are plotted in Figure 3. The rate-distortion curve is also computed as a theoretical

19

reference of the achievable performance. On this source, CECTSVQ also performed closely,

within 0.8dB, to CECVQ, and significantly, more than 1dB, better than ECVQ and ECTSVQ.

The last source we used to test CECTSVQ is a speech source recorded from several male
and female speakers. The speech was lowpass filtered and digitized into 16-bit linear PCM
at 8 KHz. We divided the speech source into a training source of 200,000 vectors and a test
source of 60,000 vectors. Both the training source and test source were then normalized to zero
mean and unit variance. Once again CECTSVQ, CECVQ, ECVQ, and ECTSVQ codebooks
were designed from the training source and their performances were evaluated using the test
source. The trees designed by ECTSVQ were pruned using the generalized BFOS pruning
algorithm to obtain the optimal codebooks. Because speech sources are usually nonstationary
and the codevector co-occurrence matrix is very sparse when the codebook size is large, the
estimation of the conditional probability distribution from the co-occurrence matrix is usually
not good. A "leave-one-out” technique was used in [2] to estimate the conditional probability
distribution when the co-occurrence matrix is sparse. In our test, we used a simplified method

of [2] to estimate the conditional probability distribution by the mixture

Pijm = BPym + (1 — B)B;; (45)
Py = BPri + (1 — B)Pn P (46)

where Py, Py, and Pn; are the estimates of marginal, conditional, and joint probabilities
from the codevector occurrence and co-occurrence, respectively; and 3 is chosen as 0.8. The
performances are shown in Figure 4. The codebooks of CECTSVQ were generated using the
approximate but fast design algorithm. Once again, the results have shown that CECTSVQ
performed very close to CECVQ and could gain more than 2 dB over ECVQ and ECTSVQ.

In order to see if CECTSVQ can perform better than ordinary ECTSVQ followed by a
matching conditional entropy coding, we compare the performances of the two systems in
Figure 5, Figure 6, and Figure 7. The results, as expected, show that the gain of CECTSVQ
over ordinary ECTSVQ followed by matching conditional entropy coding is relatively small

20

for the synthetic sources, but significant for the speech source, where it reaches as much as

3.0 dB at some rates.

Finally to compare the performances of the two CECTSVQ design algorithms, we also
compared the codebooks designed by the approximate algorithm and the ideal algorithm.
The results are plotted in Figure 8. The results show that the two algorithm performed
virtually the same. However the approximate design algorithm is much faster than the ideal

design algorithm.

VI Conclusions

We have introduced an algorithm to design the tree-structured vector quantizers subject to
the first-order conditional entropy constraint. The algorithm grows the tree by splitting a
leaf node at a time. The leaf node selected to be split has the largest attainable Lagrange
multiplier determined by an iterative rate-constrained splitting process. Therefore each split
results in the best trade-off between the decrease in the distortion and increase in the rate.
We have also derived a fast algorithm based on the ideal algorithm to achieve tremendous
savings in computation in the design process with negligible performance loss. We have shown
that the performance of the quantizers designed by the CECTSVQ algorithm on synthetic and
speech sources is significantly better than that of ECVQ and ECTSVQ, and is very close to
that of CECVQ. We have also shown that CECTSVQ can offer significant gain over ordinary

ECTSVQ followed by matching conditional entropy coding in real data compression.

The performance of CECTSVQ is achieved at the cost of the additional storage require-
ment. To utilize a codebook designed by CECTSVQ, one needs also to store the logarithm
table of the conditional probabilities and M’s for all nodes. The amount of storage needed for

the conditional entropy codes of a tree with N nodes is
1
22—|—32—|—...—|—N2:6N(N—|—1)(2N—|—1)—1. (47)
When the size of the tree is large, this storage requirement may become a practical limita-

21

tion. This limitation will prevent using CECTSVQ in applications of high rates and large
vector sizes. Also CECTSVQ can not be applied for progressive transmission applications
since the conditional entropy codes for successive levels are not embedded in general. In our
experiments, the trees grown have leaf nodes between 512 to 1024. The greatest advantage of
CECTSVQ is that it has much lower encoding computational complexity than the full search
CECVQ), thus the quantization operation is much faster. With the cost of memory rapidly
dropping, CECTSVQ will become more and more attractive. However the trees designed by
the CECTSVQ algorithm are not guaranteed to be optimal, since it is a one step look-ahead
greedy algorithm. The generalized BFOS algorithm could be applied to prune a tree grown
by CECTSVQ to obtain the best subtree for a given rate or distortion.

VII Acknowledgement

The authors wish to thank an anonymous reviewer whose very insightful comments and con-

structive suggestions were invaluable toward significantly improving the paper.

22

Appendix
Upper Bound on)\

We show that the CECTSVQ design algorithm will not always split off a single vector and
that A is upper bounded and is maximized for AR > 0 for both finite and infinite training set
cases. To do so we show that A, the ratio of decrease in distortion to increase in rate, does
not go to infinity in single vector split cases. For the sake of simplicity but without losing

generality, let us consider the example of splitting the root node A into two nodes B and C.

Let us assume first that there is a finite training sequence {Xo, X1,..., Xy} with 1 + N
vectors, and that the iterative splitting process ends up with a single vector split, say the kth

vector Xy, 1s mapped to C and the rest vectors to B. Then we have the following cases.
1) If X is in the middle of the sequence, ie., k>0 and k < N

Because the first vector is only used to provide an initial condition, it is excluded in the

probability estimation.

N -2 1
Ppp = ——, Poyp=-——, Pgo=1, and Pgc=0;
'B/B N 1 C/1B = 31 B/c =1, and Pg;oc = 0;
N -1 1
Pp = —= Pp=—
B N YT N
N -2 1
Pss = PgPgp= 2, Ppo=PsPyp— —
BB BL'B/B N’ BC BLC/B N,
1

Pop = PgPgic = N Poe = 0.

The conditional entropy H° of the root node A, i.e., the initial tree, is 0. The increase in

the average rate, i.e., in the conditional entropy resulting from the single vector split is

AR = H'— H°=H'

= _PBB 10g2 PB/B — PBC 10g2 PC/B — PCC 10g2 PC/C

_ %{10&(]\7 1)~ loga(N — 2)} + y; loga(N —2) > 0. (48)

Where we have taken Pg¢ logy Po/¢ = PoFPejclogy Pojc = 0 in accordance with L’Hospital's

23

Rule lim,_,g zlog z = 0 and the treatment in the implementation.

2) Xj is at the end of the sequence, i.e., k= N

In this case,

N -1 1
Pgp = N Pgjc =0, Pop= N and Pgic = 0;
N -1 1
B N) (& N;
N —1)? N -1
Pgp = %, Ppe = Nz Pep = Poe = 0.

Then,

AR = H'= —Pgglog, Pg/s — Ppclog, Pc/s

N 1) N-1

3) If X} is the first vector, k = 0, AR = 0. But in this case, as mentioned earlier in the paper,

we treat such a split as invalid because it does not increase the rate in the conditional case.

The decrease in average distortion for the applicable cases above is AD = | X3 — Xcentroid|* /N,
for mean square error distortion and X entroia the centroid of the training set. So for the finite
training set of size N + 1, the ratio A = AD/AR is finite in the case of a single vector split,
since the increase in the average rate and the decrease in the distortion are both finite and
non-zero. In fact, for large N, AD decreases at the rate of O(1/N) while AR decreases at
the rate of O(log, N/N), hence A = O(1/log, N). Formally, in the limit of an infinite training
set, where Xcentroid 18 not changed by a single vector split, we obtain through application of
L’Hospital's Rule,

AD

A, = i, AR = %0

Therefore, the non-negative function AD(AR) can not be concave at the origin and the

maximum A must be achieved for a AR greater than zero.

24

References

1]

2]

3]

[4]

[5]

[10]

R. E. Blahut, Principles and Practice of Information Theory, Addison-Wesley Publishing
Company, 1987.

P. A. Chou and T. Lookabaugh, “Conditional Entropy Constrained Vector Quantization,”
Proc. ICASSP, pp. 197-200, April, 1991.

Diego P. de Garrido and W. A. Pearlman,“Conditional Entropy Constrained Vector Quan-
tization: High Rate Theory and Design Algorithms,” IEEE Trans. on Information The-
ory, Vol. 41, No. 4, pp. 901-916, July 1995.

P. A. Chou, T. Lookabaugh, and R. M. Gray, “Entropy-Constrained Vector Quantiza-
tion,” IEEE Trans. on ASSP, Vol. 37, No.1, pp.31-42, Jan. 1989.

A. Gersho and R. M. Gray, Vector Quantization and Stgnal Compression, klumar Acad-
emic Press, MA, 1991.

M. Balakrishnan, W. A. Pearlman, and L. Lu, “Variable Rate Tree Structured Vector
Quantizers,” IEEE Trans. on Information Theory, Vol. 41, No. 4, pp. 917-930, July 1995.

P. A. Chou, T. Lookabaugh, and R. M. Gray, “Optimal pruning with application to tree-
structured source coding and modeling,” IEEE Trans. on Information Theory, Vol. 35,
pp. 299-315, 1989.

B. Mahesh and W. A. Pearlman, “Multi-Rate structured vector quantization of image
pyramids”, Journal of Visual Commu. and Image Representation, Vol. 2, pp. 103-113,
June 1991.

Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design”, IEEE
Trans. on Communications, Vol. COM-28, pp. 84-95, Jan. 1980.

A. Buzo, A. H. Gray, Jr., R. M. Gray, and J. D. Markel, “Speech coding based upon
vector quantization,” IEEE Trans. on Information Theory, Vol. 28, No. 5, pp.562-574,
Oct. 1982.

25

[11] J. Makhoul, S. Roucos, and H. Gish, “Vector quantization in speech coding, ” Proc.
IEEE, Vol. 73, pp. 1551-1588, 1985.

[12] R. Lindsay, unpublished work at Unisys, presented at the NASA Data Compression Work-
shop, Snowbird, UT, 1988.

[13] E. A. Riskin and R. M. Gray, “A greedy tree growing algorithm for the design of variable
rate quantizers,” IEEFE Trans. on Sitgnal Processing, Vol. 73, pp. 1551-1558, 1991.

[14] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification and Regression
trees. The Wadsworth Statistics/Probability Series”, Wadsworth, Belmont, CA, 1984.

[15] L. Lu and W. A. Pearlman, “Adaptive Joint Rate Allocation and Quantization in Sub-
band Signal Coding,” Proc. IEEE Int. Conf. on Image Processing, Vol. III, pp. 412-415,
Washington D.C.; Oct. 22-25, 1995.

[16] L. Lu and W. A. Pearlman, “Multi-rate video coding using pruned tree-structured vector

quantization,” Proc. ICASSP-93, Vol. V, pp. 253-256, April, 1993.

[17] L. Lu, Advances in Tree-Structured Vector Quantizations and Adaptive Video Coding,
PhD Thesis, Rensselaer Polytechnic Institute, August 1995.

[18] T. Berger, Rate Distortion Theory: A Mathematical Basis for Data Compression, NJ:
Prentice-Hall, Englewood Cliffs, 1971.

[19] M. R. Priestley, Spectral Analysis and Time Series, CA: Academic Press, San Diego,
1989.

26

Figure 1: Figure for the proof of the convergence of CECTSVQ.

27

SQNR (dB)

14

121

10

2]
T

(2]
T
1

ar solid=AR(1) D(R)

solid-x=cond entropy-coded: CECVQ
dashed-*=cond entropy-coded CECTSVQ
solid-o=entropy-coded ECVQ .
dashed-+=entropy-coded ECTSVQ

| | |
0 0.2 0.4 0.6 0.8 1 1.2
Average Rate in Bits/Sample.

Figure 2: Performance of CECTSVQ on AR(1) source.

28

SQNR (dB)

16

14 .

12 A

.

101 .
8 - -
61 4
4 i

solid=AR(2) D(R)
solid-x=cond entropy-coded: CECVQ
dashed-o=cond entropy-coded CECTSVQ]
solid-*=entropy-coded ECVQ
dashed-+=entropy-coded ECTSVQ
| | |

|
0 0.2 0.4 0.6 0.8 1 1.2
Average Rate in Bits/Sample.

Figure 3: Performance of CECTSVQ on AR(2) source.

29

CECTSVQ Simulation Results on Speech Source

15
10
o
Z
@
z
o
]
5 -
solid-+=cond entropy-coded CECVQ
solid-o=cond entropy-coded CECTSVQ
solid-*=entropy-coded ECVQ
solid-x=entropy-coded pruned ECTSVQ

| | |
0.2 0.4 0.6 0.8
Average Rate in Bits/Sample.

Figure 4: Performance of CECTSVQ on

30

1.2

speech source.

14
12 b
10r- 1
m 8 N
KA
x
&
0 6 1
4r solid=AR(1) D(R)]
solid-x=conditional entropy-coded CECVQ
solid-*=conditional entropy-coded CECTSVQ
solid-o=conditional entropy-coded ECTSVQ 4
solid-+=entropy-coded ECTSVQ
|

| | |
0 0.2 0.4 0.6 0.8 1 1.2
Average Rate in Bits/Sample.

Figure 5: Comparison of CECTSVQ and ECTSVQ followed by conditional entropy coding on
AR(1) source.

31

16
141 4
12 b
10 b
o
KA
x 8t E
z
o
]
61 J
4 J
solid=AR(2) D(R)
solid-x=conditional entropy-coded CECVQ
solid-* =conditional entropy-coded CECTSVQ h
solid-o=conditional entropy-coded ECTSVQ
solid-+=entropy-coded ECTSVQ
| | | |

02 0.4 0.6 08 1 12
Average Rate in Bits/Sample.

Figure 6: Comparison of CECTSVQ and ECTSVQ followed by conditional entropy coding on
AR(2) source.

32

15
10f b
o
KA
x
z
og
]
5 - -
solid-o=conditional entropy-coded CECVQ
solid-* =conditional entropy-coded CECTSVQ
solid-+=conditional entropy-coded ECTSVQ
solid-x=entropy-coded ECTSVQ
;; | | | |
0 0.2 0.4 0.6 0.8 1 12

Average Rate in Bits/Sample.

Figure 7: Comparison of CECTSVQ and ECTSVQ followed by conditional entropy coding on

speech source.

33

SQNR (dB)

14 T

2]
T

solid-+=ideal algorithm on speech
dash-o=fast algorithm on speech
solid-o=ideal algorithm on AR(1)
dash-*=fast algorithm on AR(1)
solid-*=ideal algorithm on AR(2)
dash-x=fast algorithm on AR(2)

2 I I I
0 0.2 0.4 0.6 0.8 1
Average Rate in Bits/Sample.

Figure 8: Performance of the CECTSVQ fast design algorithm.

34

1.2

