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Abstract

An algorithm is derived for designing tree�structured vector quantizers to

encode sources with memory� The algorithm minimizes the average distortion

subject to a conditional entropy constraint and the tree structure restriction�

This technique called conditional entropy constrained tree�structured vector

quantization �CECTSVQ� can more e�ciently exploit the source memory�

This work is an extension of the recent work by Balakrishnan� Pearlman�

and Lu�	
 for the variable rate tree�structured vector quantization� The tree

is grown by applying a rate�constrained iterative splitting process to achieve

the maximum attainable ratio of the decrease in the average distortion over

the increase in the conditional entropy of the output of the quantizer� The

iterative splitting process and thus the design algorithm are shown to con�

verge� A fast algorithm is also developed to dramatically reduce the compu�

tational cost while maintaining virtually the same performance as the ideal
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algorithm� Experiments on sampled speech and synthetic sources have shown

that� at rates under � bit�sample and under the square error distortion mea�

sure� more than 
dB gain in the signal�to�quantization noise ratio �SQNR�

can be achieved over the full�search entropy�constrained vector quantization

�ECVQ���
 and the entropy�constrained tree�structured vector quantization

�ECTSVQ��	� ��
 on the speech source� about �dB improvement over ECVQ

and ��
 dB over ECTSVQ on the synthetic sources can be achieved� Fur�

thermore� in the entire tested rate range� CECTSVQ can be expected to

have performance very close to that of the conditional entropy�constrained

full�search vector quantization �CECVQ��

�

Index Terms � Source coding� vector quantization� rate�distortion theory�

tree�structured vector quantization� variable rate coding� entropy coding�

conditional entropy coding�

I Introduction

Consider the compression of a discrete�time stationary ergodic random vector source with

memory using vector quantization�VQ�� The codeword index sequence of the quantizer output

will contain inter�codeword correlation since there is memory between the contiguous source

vectors� On the other hand� information theory��� has shown that side information may reduce

average uncertainty� or in another words� conditioning can possibly decrease the entropy� that

is

H�XjY � � H�X� ���

with equality if and only if X and Y are independent� where X and Y are random variables

of the output of the source and H�X� and H�XjY � are the entropy of X and the condi�

tional entropy of X given Y � respectively� Therefore a vector quantizer which appropriately

exploits this inter�codeword correlation could be expected to have a performance gain over

ones that do not� Recently Chou and Lookabaugh�	� proposed such an algorithm to uti�

	



lize the inter�codeword memory in designing unstructured� i�e�� full�search vector quantizers�

Their algorithm� called conditional entropy constrained vector quantization�CECVQ�� is an

extension of the full�search entropy constrained vector quantization�ECVQ� algorithm�
�� In

the full�search CECVQ design algorithm� the average distortion is minimized subject to the

constraint of the �rst�order conditional entropy of the codewords instead of their �rst�order

unconditional entropy as in the full�search ECVQ algorithm� Each output of the quantizer is

then losslessly encoded by an entropy coder matched to the conditional probability distribu�

tion of that output� Recently Garrido and Pearlman developed a pairwise nearest neighbor

merging algorithm to provide an alternative for the design of full�search CECVQ���� It has

been shown�	� �� that CECVQ can achieve signi�cant rate�distortion performance gain over

VQ and ECVQ�

Tree�structured vector quantization�TSVQ�� �rst proposed by Buzo� et al���
�� is a form

of VQ with signi�cantly lower computational complexity� The codebook of a tree�structured

vector quantizer is organized as a tree� usually a binary tree� to facilitate the codebook search�

When mapping a source vector onto an output codevector� the operation starts at the root

node of the tree and determines which child of it minimizes the adopted distortion measure�

The operation repeats from that child node until a leaf node is reached� Therefore the search

complexity is reduced to O�logM� from O�M� for an unstructured codebook of size M �

Obviously� the performance of TSVQ is in general inferior to that of unstructured VQ of the

same rate since a source vector may not be mapped onto the optimum codevector because of

the imposed structure�

The tree�structured vector quantizers in ��
� were designed one level at a time using the

splitting method of the generalized Lloyd algorithm�GLA����� The grown tree is a balanced

tree that implements a �xed rate code� More recent e�orts in TSVQ have been devoted

to designing variable rate tree�structured vector quantizers to improve the coding e�ciency�

Makhoul� Roucos� and Gish���� and Lindsay��	� grow the tree one node at a time by splitting

the leaf node with the highest distortion� However� this splitting approach guarantees neither

the greatest distortion decrease nor the best rate�distortion trade�o��
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A better approach of growing variable rate tree�structured vector quantizers has been pro�

posed by Riskin and Gray����� This approach di�ers from the previous one in that� instead

of splitting the leaf node having the largest distortion� it grows the tree by splitting the leaf

node which has the largest ratio of the decrease in distortion over the increase in rate� But

the splitting in their approach is not rate�constrained� consequently the largest attainable

ratio is not actually achieved in the splitting� Another approach for designing variable rate

tree�structured vector quantizers was proposed by Chou� Lookabaugh� and Gray���� They �rst

grow a balanced �xed rate tree�structured vector quantizer as in ��
�� then optimally prune the

tree using the generalized Breiman� Friedman� Olshen� and Stone �BFOS� algorithm��
�� This

technique is called the pruned TSVQ �PTSVQ�� However� the generalized BFOS tree pruning

algorithm can only produce a best subtree� which corresponds to a tree�structured codebook�

from the given initial tree� Therefore� it is important to investigate better tree growing algo�

rithms in the design of tree�structured vector quantizers� Recently� Balakrishnan� Pearlman�

and Lu developed an algorithm for designing variable rate memoryless tree�structured vector

quantizers���� The tree is grown by an iterative rate�constrained splitting process to achieve

the maximum attainable ratio of the decrease in distortion over the increase in rate in each

growing step� The variable rate TSVQ has been shown capable of good performance in many

applications��� �� �� ��� ����

In this paper� we generalize the algorithm in ��� to design tree�structured vector quantizers

which have memory� This technique� called conditional entropy�constrained tree�structured

vector quantization �CECTSVQ�� can more e�ciently exploit the source memory� We shall

�rst formulate the problem of designing the conditional entropy constrained tree�structured

vector quantizers� Then we develop an ideal design algorithm and based on that derive a fast

algorithm� We shall also show the convergence of the iterative splitting algorithm� Finally� we

compare the performance of CECTSVQ against CECVQ� ECVQ� and the entropy�constrained

TSVQ �ECTSVQ���� ��� based on results with synthetic and speech sources�






II The Preliminaries

Let the K�dimensional vector source fX��X��X�� � � �g be a strictly stationary ergodic discrete�

time random process� The random vector X can be viewed as a point in the K�dimensional

Euclidean space RK and is statistically described by a probability density function fX�X��

Consider encoding X using a tree�structured vector quantizer T J � Without losing generality�

we concentrate in this paper on the binary tree case for simplicity� The development can

be easily extended to an M�ary tree� Let T J have LJ leaf nodes and hence LJ � � interior

nodes� Associated with each leaf node there is a reproduction codevector and with each

interior node an auxiliary codevector� Denote the leaf node set of T J as �LJ � f�� 	� � � � � LJg�

Let Y J
l � l � �� 	� � � � � LJ � be the reproduction codevector associated with the leaf node l� The

encoding of the source vectors X using T J is a sequence of re�ning quantization operations�

Starting from the root node� X is repeatedly assigned to a child node of the current node

that minimizes the distortion until X reaches a leaf node� Each assignment is a re�nement

of the previous one� The source vector X is represented by the codevector associated with

the leaf node� This encoding process re�ects the successive re�ning property of TSVQ and its

di�erence from the unstructured VQ� To facilitate the illustration of the conditional encoding�

we de�ne a state variable

Sj�Xk�Xk���Xk��� � � �� �	�

to represent the node in the jth layer of the tree� to which the source vector Xk is coded� For

convenience� we use Sj�Xk� as a short notation to represent the state variable in �	�� Using

the state variable the prior probability P j
l that a source vector Xk is mapped onto a node l

and represented by Y j
l can be expressed by

P j
l � PfSj�Xk� � lg� k � 
� �� 	� � � � � ���

Let P j
ml be the joint probability that two contiguous source vectors Xk�� and Xk are mapped

to the codevectors Y j
m and Y j

l in order� P j
ml can be de�ned as

P j
ml � PfSj�Xk��� � m�Sj�Xk� � lg �
�
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Denote P j
ljm the conditional probability of a source vector X to be represented by Y j

l � given

that its predecessor was mapped to Y j
m� for l�m � �� 	� � � � � Lj� Then� from Bayes�s Theorem

of probability theory�

P j
ljm �

P j
ml

P j
m

� ���

Let d�X�Y � be the distortion measure resulting from reproducing X as Y � where d��� is a

non�negative function de�ned on the source vector alphabet and the reproduction alphabet�

Starting from the root node� the encoding of X using T j is to successively map X to one of

its child nodes according to the nearest neighbor rule until X is mapped onto a leaf node and

represent X by the reproduction codevector Y J
l � Let i be a non�leaf node of T J and i� and i�

be the child nodes of i� The mapping is de�ned by the nearest neighbor rule� assign X to ik if

d�X�Y j
ik
� � �ir

j
ik
� d�X�Y j

im� � �ir
j
im� k �� m� ���

where k�m � �� 	� and rji� and rji� are the rates to encode X as Y j
i� and Y j

i�� respectively� The

parameter �i is a Lagrange multiplier associated with i� which controls the relative importance

of the rate and distortion� The conditional distortion of encoding all source vectors by Y J
l is

the conditional expectation of d�X�Y J
l ��

DJ
l � Efd�X�Y J

l �jSJ�X� � lg� ���

The overall average distortion of encoding the source X by T J can be then evaluated as

DJ � EfDJ
l g �

X
l��LJ

P J
l D

J
l �

X
l��LJ

Efd�X�Y J
l �jSJ�X� � lg� ���

If the rate of encoding a source vector by a codevector Y j
l is de�ned to be the self�entropy

� log� P
j
l � the average rate per vector of encoding the source by T J can be measured by the

�rst�order entropy of the quantizer output

RJ � HJ � �
X
l��LJ

P J
l log� P

J
l � ���

To exploit the inter�codeword correlation we de�ne the rate of encoding a source vector Xk

by Y J
l � given its predecessor Xk�� was encoded by Y J

m� to be the conditional self�entropy
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� log� P
J
ljm� Then the average rate per vector for encoding those source vectors whose prede�

cessors were encoded by Y J
m is

RJ
m � HJ

m � �
X
l��LJ

P J
ljm log� P

J
ljm� ��
�

The overall average coding rate per vector is the �rst�order conditional entropy of the quantizer

output

RJ � HJ �
X
m��LJ

P J
mH

J
m � �

X
m��LJ

X
l��LJ

P J
ml log� P

J
ljm� ����

In the rest of this paper we also refer RJ as the conditional entropy of the tree T J �

Vector quantizers designed by minimizing the functional

J � D � �R ��	�

with the self�entropy as the de�nition of rate in the nearest neighbor rule ��� are called entropy�

constrained vector quantizers� Likewise� if the rate is de�ned as the �rst�order conditional

self�entropy� the designed quantizers are called the conditional entropy�constrained vector

quantizers� Our objective is then to design a tree�structured vector quantizer which mini�

mizes the overall average distortion subject to the overall average rate constraint and the tree

structure restriction� Since the tree�structured quantizers have the property that an optimal

quantizer of higher rate embeds optimal quantizers of smaller rates���� it is reasonable to de�

sign a higher rate tree�structured quantizer by growing and extending successively lower rate

tree�structured quantizers� Consider obtaining a tree T J�� of higher rate from T J by splitting

a leaf node i of T J � This splitting should result in a tree T J�� from T J with the best trade

o� between the overall average distortion decrease and the average rate� i�e�� the conditional

entropy increase� We can apply a non�memoryless nearest neighbor rule in the splitting to

achieve our objective� That is� when we split a leaf node i of T J into i� and i� to obtain a

new tree T J��� we examine each source vector Xk that has been mapped onto i� Suppose that

Xk�s predecessor Xk�� was coded by a reproduction codevector Y J
l � if l �� i� l is now also a

node in the layer J � � with the codevector Y J��
l and otherwise� if l � i� Xk�� would have

been re�assigned to either Y J��
i�

or Y J��
i�

� so� in this case� l now refers to either i� or i�� We

�



assign Xk to Y J��
i�

or Y J��
i�

using a non�memoryless biased distortion measure� i�e�� assign Xk

to Y J��
i� if

d�Xk � Y
J��
i�

�� �Jt log� P
J��
i�jl

� d�Xk � Y
J��
i�

�� �Jt log� P
J��
i�jl

� ����

where P J��
im�l �m � �� 	� is the probability that Xk is mapped onto im given that Xk�� was

mapped onto l and t in �Jt is an iteration index� Since the trees grown by splitting the leaf

nodes will have discrete distortions and rates� the slope of the line joining points �DJ � RJ � and

�DJ��� RJ��� in the distortion�rate plane is

�Jt�� �
DJ �DJ��

RJ�� �RJ
�

�DJ

�RJ
� ��
�

where �DJ and �RJ are the decrease in the distortion and the increase in the rate resulting

from the Jth splitting� respectively�

�DJ � DJ �DJ�� � Efd�X�Y J
i �jSJ�X� � ig � Efd�X�Y J��

i�
�jSJ���X� � i�g

�Efd�X�Y J��
i�

�jSJ���X� � i�g� ����

and

�RJ � RJ�� �RJ � �
LJ��X
m��

LJ��X
l��

P J��
ml log� P

J��
ljm �

LJX
m��

LJX
l��

P J
ml log� P

J
ljm� ����

Obviously� the best tree T J�� resulting from the splitting of a leaf node is the one that

maximizes �Jt��� Hence our objective can be ful�lled by �nding a leaf node in T J which

maximizes �Jt�� and split that node according to ����� To do this� one needs to �rst �nd

the maximum �Jl�max attainable from the splitting a leaf node l� for �l � �LJ � then choose

the leaf node i to split that achieves �Ji�max � �Jl�max� for �l � �LJ � However� the maximum

attainable �Jl�max for each leaf node is � in general� not known� To �nd �Jl�max� we can start with

�Jl�max � 
 and iteratively split l and update �Jl�max until it stops increasing� In the following�

we develop such an algorithm for design of conditional entropy�constrained tree�structured

vector quantizers�
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III The CECTSVQ Design Algorithm

In this section� we present the algorithm for designing the conditional entropy constrained

tree�structured vector quantizers� The algorithm grows a tree�structure vector quantizer by

splitting a leaf node at a time� The resulting tree�structured vector quantizer minimizes

the overall average distortion constrained by the conditional entropy and the tree structure

restriction� Before we start to describe the algorithm� let us formally de�ne our conditional

entropy�constrained tree�structured vector quantizer�

De�nition� A K�dimensional �rst�order conditional entropy�constrained tree�structured

vector quantizer T J � with a leaf node set �LJ � f�� 	� � � � � LJg and associated reproduction

codevectors Y J
� � Y

J
� � � � � � Y

J
LJ � is a mapping of an input vector X � RK to a reproduction

codevector Y J
l � l � �� 	� � � � � LJ determined by the sequential re�ning quantization operation

described earlier using the nearest neighbor rule de�ned in ��� with the rate de�ned as the

conditional self�entropy rjik � � log� P
j
ik�l

� where rk and l are the nodes at the same level j and

l is the node through which the preceding vector Xk�� was encoded� The rate rjik is the code

length for encoding Xk from the root to the node ik at the jth level given that Sj�Xk��� � l�

We shall assume throughout the rest of the paper that the distortion measure is mean�squared

error� i�e��

d�X�Y � � ��kX � Y k� � kX � Y k�� ����

III�� An Ideal Design Algorithm

Given a training vector set and a target rate� we grow the tree by splitting a leaf node at a

time� The initial tree has only one node� i�e�� the root node t� One way to initialize the tree

is to choose the centroid of the training source as the root node� In the Jth growing step�

to split a leaf node l into two child nodes� the codevector of l is �rst perturbed by a small

number into two points as the initial codevectors of the two child nodes� Then an iterative

rate�constrained splitting technique is used to obtain the maximum attainable �Jl�max resulting

�



from the splitting of l� The iterative splitting process starts with �Jl�max � 
 and minimizes

��	� using the CECVQ algorithm in splitting� After the CECVQ algorithm converges� the

decrease in the distortion and the increase in the rate due to the splitting with �Jl�max � 


are computed using ���� and ����� respectively� �Jl�max is then updated to their ratio as in

��
�� The iterative splitting process uses CECVQ algorithm to resplit the leaf node with the

new �Jl�max and the two codevectors obtained by CECVQ algorithm in the last iteration as the

initial codevectors to minimize ��	�� The iteration process of �Jl�max is repeated until it stops

increasing� The value of �Jl�max is the maximum achievable �Jl�max from splitting the leaf node

l currently being examined� After each leaf node has been examined� the design algorithm

chooses to split the leaf node i which achieves �Ji�max � �Jl�max��l � �LJ � Thus each growing step

guarantees to achieve the best trade�o� between the decrease in distortion and the increase

in rate� We summarize the conditional entropy�constrained tree�structured vector quantizer

design algorithm as follows�

Algorithm

� Step � �initialization�

Given a target rate Rtarget and a training source X� obtain T � which has only the root

node with the centroid of X as its associated codevector� Set J�
� R� � 
� D� � ���

where �� is the variance of X�

� Step � �Find the maximum achievable � for each leaf node �

For each leaf node l of T J � l � �LJ � use the iterative rate�constrained splitting process to

�nd the maximum attainable �Jl�max from splitting l�

� Step ���

Set initial �Jl�max � 
� perturb the codevector of j into two codevectors as the initial

codevectors of j�s child nodes�

� Step ���

Use CECVQ algorithm to minimize ��	� with the nearest neighbor rule �����
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� Step ���

Calculate �DJ and �RJ resulting from the current splitting using ���� and �����

If �DJ

�RJ
� �Jl�max� set �

J
l�max � �DJ

�RJ
and go to Step ���� Otherwise the maximum

achievable �Jl�max for splitting l is found�

� Step � �Growing T J to obtain T J���

Find the leaf node i which can achieve the best rate�distortion trade�o� by the following

i � arg max
j��LJ

�j�

Split i to obtain the new tree T J���

� Step � � Updating�

Calculate �RJ and �DJ using ���� and ����� respectively�

RJ�� � RJ ��RJ �

DJ�� � DJ ��DJ �

Re�estimate the new conditional probabilities and update the conditional probability

table�

� Step � �Stopping criterion�

If RJ�� � Rtarget� set J � J � � and go to Step 	� Otherwise� store the conditional

probability table� codevectors for all nodes� and ��s of all interior nodes� then stop�

III�� A Fast Design Algorithm

The major computational cost of the above ideal design algorithm is in Step 	� especially when

the size of the tree is getting large� After each growing step� the iterative splitting process

has to be applied to each leaf node to re�evaluate the maximum achievable � of splitting that

leaf� This will slow down the design process of the codebooks of CECTSVQ� For example� to

design a tree having L leaf nodes� it requires �

�
L�L� �� iterative splittings for calculating the

��



maximum attainable �� This may cause di�culty for designing large codebooks of CECTSVQ

with limited computing capability� However� the design process of large codebooks can be

made much faster by making a minor approximation in the above ideal algorithm�

Let �Jl�max denote the maximum achievable � from splitting l� After splitting a leaf node i

into two children i� and i�� the maximum achievable �Jl�max from splitting another leaf node l

into l� and l� may or may not be changed� Clearly� if there is no training vector mapped on

l whose predecessor is mapped on i� i�e� the conditional probability Plji � 
� the splitting of

i into i� and i� will have no e�ect to the value of �Jl�max� since the iterative splitting process

assigns the training vectors mapped on l to l� or l� according to the nearest neighbor rule ����

and there will be also no training vector mapped on l with its predecessor mapped on i� or

i�� If Plji � 
� then the splitting of i may change the value of �Jl�max� Before the splitting of

i� �Jl�max is obtained by iteratively assigning the training vectors mapped on l to l� or l� using

the nearest neighbor rule ����� Particularly� those training vectors Xk with S�Xk� � l whose

predecessors Xk�� have the state S�Xk��� � i are assigned to l� if

d�Xk� Yl��� �l log� Pl�ji � d�Xk � Yl��� �l log� Pl�ji� ����

or to l� by the similar criterion� Note that in splitting l� l�� l�� and i are at the leaf node level� If

i had been split into i� and i�� the predecessors� state would have become either S�Xk��� � i�

or S�Xk��� � i� and the splitting of l would have been according to

d�Xk� Yl��� �l log� Pl�jim � d�Xk � Yl��� �l log� Pl�jim � ����

where m � �� 	� Note that in this splitting� l�� l�� i�� and i� are at the leaf node level� However�

the conditional probabilities have the following relations�

Pl�ji �
Pi�
Pi
Pl�ji� �

Pi�
Pi

Pl�ji� �
Pi�l�
Pi

�
Pi�l�
Pi

� �	
�

Pl�ji �
Pi�
Pi
Pl�ji� �

Pi�
Pi

Pl�ji� �
Pi�l�
Pi

�
Pi�l�
Pi

� �	��

When the number of leaf nodes is large� the codevector co�occurrence matrix is sparse and

most of the co�occurrence frequencies are small� Therefore we can make the following approx�

�	



imations

log� Pl�ji 	 log� Pl�ji� � log�
Pi�
Pi

� �		�

log� Pl�ji 	 log� Pl�ji� � log�
Pi�
Pi

� �	��

or

log� Pl�ji 	 log� Pl�ji� � log�
Pi�
Pi

� �	
�

log� Pl�ji 	 log� Pl�ji� � log�
Pi�
Pi
� �	��

Since adding a limited term to both sides in ���� will not a�ect the assignment� the approx�

imations mean if Piml� and Piml��m � �� 	� are small� �Jl�max will only have very little change

after the splitting of i� From the above analysis we can see that the maximum achievable ��s

of splitting other leaf nodes will� in most cases� not or approximately not change after i has

been split� Therefore we can assume that after each growing step the maximum achievable ��s

of splitting the other leaf nodes will approximately remain unchanged and modify the Step

	 of the ideal algorithm accordingly� Instead of evaluating the maximum achievable � for

each leaf node in Step 	� we only need to �nd the maximum achievable ��s for the two new

leaf nodes after each growing step� This modi�cation of the ideal algorithm can dramatically

reduce the time of designing large CECTSVQ codebooks� The required number of iterative

splittings for �nding the maximum achievable ��s in designing a codebook having L leaf nodes

is now reduced to 	�L���� Table � gives some comparisons of the ideal algorithm and the fast

algorithm� We also can anticipate that the performance of the fast algorithm will be close to

the ideal algorithm� This anticipation is indeed true as con�rmed by the experimental results�

III�� Encoding and Decoding

To encode an input source vector Xk using the designed conditional entropy�constrained tree�

structured vector quantizer T J � we need the path map of Xk�� which is a sequence of indexes

��



leaf number of iterative splits
numbers ideal algorithm fast algorithm

�	� ��	� 	�

	�� �	�

 ��

��	 ��
��� �
		
�
	
 �	���� 	

�

Table �� Comparison of number of iterative splits for ideal and fast algorithms�

of nodes to which Xk�� is mapped� As we have described in the previous section� the encoding

of Xk using T J is a sequential re�ning quantization operation� We start at the root node and

look up the node in the �rst level from the path map ofXk��� Then we �nd the two conditional

probabilities in the conditional probability table and use the � stored at the root node to decide

the child node to which Xk should be mapped according to ����� This quantization operation

is successively repeated at the next level until Xk is mapped on a leaf node� The path map is

entropy coded by an entropy encoder matched to the conditional probability distribution of

that leaf node and transmitted to the decoder� Since the quantization operation has memory�

the encoding depends on the initial state� The �rst input source vector can be coded by the

biased nearest neighbor rule with a memoryless entropy code�

The decoding process is the same as that of the conventional TSVQ� The received codeword

is �rst decoded back to the path map by the entropy decoder� The path map is then used to

�nd the leaf node that Xk is mapped on and the reproduction codevector at that leaf node

reconstructs Xk�

Obviously� this design algorithm works only if the iterative splitting process converges�

The next section is devoted to that question�
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IV On The Convergence Of The Algorithm

In this section we study the convergence problem of CECTSVQ algorithm� We shall analyze

the su�cient conditions for the CECTSVQ design algorithm to converge� Since a splitting

which does not result in an increase in rate has no meaning to our purpose� we consider only

the splittings which result in an increase in rate� To proceed further� we �rst introduce the

following lemma�

Lemma� Let S be a bounded and closed set on the real line and D�R� a real�valued

function with R � S� If R� is a solution to

min
R�S

fD�R� � ��Rg �	��

and R� is a solution to

min
R�S

fD�R� � ��Rg� �	��

then� for any function D�R�� we have

��� � ����R� �R�� � 
� �	��

Proof� Since R� and R� are the solution to Eqn��s �	�� and �	��� respectively� it follows that

D�R�� � ��R� � D�R�� � ��R��

D�R�� � ��R� � D�R�� � ��R��

Rewrite the above inequalities as

D�R�� � D�R�� � ���R� �R���

D�R�� � D�R�� � ���R� �R���

Thus the lemma is proved if we add both sides of the above two inequalities to get


 � �R� �R����� � ����

A corollary of this lemma immediately follows�

��



Corollary� The solution R is monotonically nonincreasing with ��

Proof� Suppose that �� � �� � 
 in �	��� we get

R� �R� � 


which proves the corollary�

Suppose that we have grown a tree�structured quantizer T J which has the average distor�

tionDJ and average rate RJ � corresponding to a point �DJ � RJ � on the curve of the operational

distortion�rate function �Dn�R� in the distortion�rate plane as shown in Figure �� We grow

the tree to obtain a new tree of higher rate by splitting a leaf node which achieves the best

trade�o� between the increase in rate and the decrease in distortion� To �nd that leaf node�

the CECTSVQ design algorithm tests each leaf node l � �LJ by �rst splitting it with � � 
 and

minimizing the Lagrangian in ��	�� Then the rate of the tree will increase and the distortion

will decrease� respectively� Denote the resulting tree as T
�

which has the average distortion

D
�

and the average rate R
�

� corresponding to the point �D
�

� R
�

� in Figure �� Then we update

� using

� �
DJ �D

�

R� �RJ
� tan	 � 
 �	��

and split the leaf node and minimize ��	� again with the new �� Now the resulting tree T
��

must correspond to a point on the distortion�rate plane below or on the line joining �DJ � RJ �

and �D
�

� R
�

�� To see this� assume that T
��

has the average distortion D
��

and R
��

� Since D
��

and R
��

minimize ��	� after � is updated to tan	� we must have

D
��

� tan	R
��

� D
�

� tan	R
�

� ��
�

and since tan	 � 
� by the lemma and the corollary� R
�

� R
��

� When R
�

� R
��

� we have

tan	 �
D

��

�D
�

R� �R��
� tan 
� ����

When R
�

� R
��

� then D
��

� D
�

and tan
 � 
� Therefore the point �D
��

� R
��

� must lie below or

on the line joining �DJ � RJ � and �D
�

� R
�

�� this means that

tan � �
DJ �D

��

R�� �RJ
� tan	� ��	�

��



So if we update � with the new ratio in each iteration� it will be monotonically nondecreasing

in the iterative splitting process for every leaf node� For �nite training set case� since the

number of the training vectors mapped onto a leaf node l is �nite� there exist only �nite ways

to split l� Because we consider only those meaningful splittings which result in an increase in

the rate � see Appendix �� the smallest increase in rate results from a single vector split and

we can show that � is also upper bounded in the iterative splitting process for every leaf node�

Let Bl be the �nite set of all splittings which increase the rate and �RJ
l�min be the smallest

increase in rate from the splitting in Bl� i�e��

�RJ
l�min � min

Bl
�RJ

l � ����

Clearly� the largest decrease in distortion resulting from splitting l is upper bounded by DJ
l �

�DJ
l�max � max

Bl
�DJ

l � DJ
l � ��
�

Consequently� it follows that �Jl�max is also upper bounded in the iterative splitting process for

the leaf node l�

�Jl�max �
�DJ

l�max

�RJ
l�min

�
DJ
l

�RJ
l�min

� ����

For the in�nite training set case� we show in the Appendix that the maximum� in the iterative

splitting process must be achieved for a �R greater than zero� Since �D is upper bounded

by DJ
l � �

J
l�max is also upper bounded� Since for each leaf node l� �Jl�max is monotonically

nondecreasing and bounded� the iterative splitting process at l will converge when �Jl�max

stops increasing and hence the algorithm also converges� For the purpose to grow a tree

with increasing rate� we exclude the splittings which do not increase rate� In the Appendix

we provide a proof that splitting o� a single vector� in the case of either a �nite or in�nite

training set� results in a �nite �� so can not always occur�

V Experimental Results

We have studied the rate�distortion performances of CECTSVQ on synthetic and real sources�

The distortion measure used in the tests is the mean�squared error and the vector dimension

��



is 
� The �rst synthetic source tested is a �rst�order Gauss�Markov source AR��� generated

by

X�n� � aX�n� �� �W �n�� ����

where a is the correlation coe�cient� and W �n� is an i�i�d� Gaussian random sequence with

zero mean and variance ��� For the source to be stationary� a should satisfy jaj � �� The

correlation coe�cient a is typically chosen as 
�� to model highly correlated sources such as

image and speech data� The autocorrelation sequence of this source is ����

RXX�n� �
��

� � a�
ajnj� ����

We used the samples of a zero mean and unit variance AR��� source with a � 
�� to

generate 	

�


 vectors as the training source and another �
�


 vectors as the test source�

CECTSVQ codebooks were designed using the training source and tested using the test source�

For comparison� CECVQ� ECVQ� and ECTSVQ codebooks were also designed and tested

using the same training and test sources� The codebook size for CECVQ and ECVQ was 	��

codevectors� The marginal and conditional probability distributions were estimated from the

codevector occurrence and co�occurrence frequencies� The average squared error distortion

is presented in terms of the signal�to�quantization�ratio�SQNR� measured in dB� de�ned as

SQNR � �
 log���
��
X

D
�� As a theoretical bound on the achievable rate�distortion performance�

the rate�distortion function of AR��� Gaussian source can be computed by����

R� �
�

	�

Z �

��
max�
�

�

	
log�

�XX�
�

�
�d
� ����

D� �
�

	�

Z �

��
min����XX�
��d
� ����

Where �XX�
� is the discrete�time source power spectral density �psd�

�XX�
� �
�X

n���

RXX�n�e
�jn� �

� � a�

�� 	a cos
 � a�
� �

�

The nonzero portion of the R�D� � or D�R�� curve is generated as the parameter � traverses

the interval 
 � � � ess sup �XX�
� with ess sup denotes the essential supremum of a function�

The results of the testing for all four systems at various rates are plotted in Figure 	� Also

��



shown in Figure 	 is the SQNR curve derived from ���� and ����� It can be concluded that

on this AR��� source and in the tested rate range � CECTSVQ performed consistently very

close to CECVQ and signi�cantly outperformed ECVQ and ECTSVQ� For example� at 
��

bits�sample� CECTSVQ achieved �dB gain over ECVQ and about ���dB over ECTSVQ�

The second source we tested is another widely used standard synthetic source� an AR�	�

Gaussian source� given by

X�n� � a�X�n � �� � a�X�n � 	� �W �n�� �
��

where a�s are the regression coe�cients and W �n� again is an i�i�d Gaussian random sequence

with zero mean and variance ��� and a� � ����� and a� � �
���	� This source is commonly

used to model long�term statistical behavior of speech sources� The autocorrelation sequence

of AR�	� is given by���� pp� �	����	�

Rxx�n� � ��X
�� � �����

jnj��
� � �� � �����

jnj��
�

��� � �	��� � �����
� �
	�

where �� and �� are the roots of the quadratic f�z� � z� � a�z � a� and the source variance

��X �
��� a����

�� � a���� � a� � a���� � a� � a��
� �
��

For stationarity it is required that j��j � � and j��j � �� Since it is a Gaussian source� the

rate�distortion function is also expressed by Eqns ���� and �������� with the discrete�time

source power spectral density �psd� given by

�XX�
� �
�X

k���

RXX�k�e
�jk�

�
��X�� � ������� ����

��� � ����� � �����
f

��
�� 	�� cos
 � ���

�
��

� � 	�� cos
 � ���
g� �

�

Again output samples were drawn from an AR�	� Gaussian source with zero mean and unit

variance to obtain 	

�


 training vectors and �
�


 test vectors as the training source and

test source� Similarly various codebooks of CECTSVQ� CECVQ� ECVQ� and ECTSVQ were

designed using the training source and their performances were evaluated using the test source�

The results are plotted in Figure �� The rate�distortion curve is also computed as a theoretical

��



reference of the achievable performance� On this source� CECTSVQ also performed closely�

within 
��dB� to CECVQ� and signi�cantly� more than �dB� better than ECVQ and ECTSVQ�

The last source we used to test CECTSVQ is a speech source recorded from several male

and female speakers� The speech was lowpass �ltered and digitized into ���bit linear PCM

at � KHz� We divided the speech source into a training source of 	

�


 vectors and a test

source of �
�


 vectors� Both the training source and test source were then normalized to zero

mean and unit variance� Once again CECTSVQ� CECVQ� ECVQ� and ECTSVQ codebooks

were designed from the training source and their performances were evaluated using the test

source� The trees designed by ECTSVQ were pruned using the generalized BFOS pruning

algorithm to obtain the optimal codebooks� Because speech sources are usually nonstationary

and the codevector co�occurrence matrix is very sparse when the codebook size is large� the

estimation of the conditional probability distribution from the co�occurrence matrix is usually

not good� A  leave�one�out technique was used in �	� to estimate the conditional probability

distribution when the co�occurrence matrix is sparse� In our test� we used a simpli�ed method

of �	� to estimate the conditional probability distribution by the mixture

�Pljm � 
Pljm � ��� 
�Pl� �
��

or

�Pml � 
Pml � ��� 
�PmPl� �
��

where Pl� Pljm� and Pml are the estimates of marginal� conditional� and joint probabilities

from the codevector occurrence and co�occurrence� respectively� and 
 is chosen as 
��� The

performances are shown in Figure 
� The codebooks of CECTSVQ were generated using the

approximate but fast design algorithm� Once again� the results have shown that CECTSVQ

performed very close to CECVQ and could gain more than 	 dB over ECVQ and ECTSVQ�

In order to see if CECTSVQ can perform better than ordinary ECTSVQ followed by a

matching conditional entropy coding� we compare the performances of the two systems in

Figure �� Figure �� and Figure �� The results� as expected� show that the gain of CECTSVQ

over ordinary ECTSVQ followed by matching conditional entropy coding is relatively small

	




for the synthetic sources� but signi�cant for the speech source� where it reaches as much as

��
 dB at some rates�

Finally to compare the performances of the two CECTSVQ design algorithms� we also

compared the codebooks designed by the approximate algorithm and the ideal algorithm�

The results are plotted in Figure �� The results show that the two algorithm performed

virtually the same� However the approximate design algorithm is much faster than the ideal

design algorithm�

VI Conclusions

We have introduced an algorithm to design the tree�structured vector quantizers subject to

the �rst�order conditional entropy constraint� The algorithm grows the tree by splitting a

leaf node at a time� The leaf node selected to be split has the largest attainable Lagrange

multiplier determined by an iterative rate�constrained splitting process� Therefore each split

results in the best trade�o� between the decrease in the distortion and increase in the rate�

We have also derived a fast algorithm based on the ideal algorithm to achieve tremendous

savings in computation in the design process with negligible performance loss� We have shown

that the performance of the quantizers designed by the CECTSVQ algorithm on synthetic and

speech sources is signi�cantly better than that of ECVQ and ECTSVQ� and is very close to

that of CECVQ� We have also shown that CECTSVQ can o�er signi�cant gain over ordinary

ECTSVQ followed by matching conditional entropy coding in real data compression�

The performance of CECTSVQ is achieved at the cost of the additional storage require�

ment� To utilize a codebook designed by CECTSVQ� one needs also to store the logarithm

table of the conditional probabilities and ��s for all nodes� The amount of storage needed for

the conditional entropy codes of a tree with N nodes is

	� � �� � � � ��N� �
�

�
N�N � ���	N � �� � �� �
��

When the size of the tree is large� this storage requirement may become a practical limita�

	�



tion� This limitation will prevent using CECTSVQ in applications of high rates and large

vector sizes� Also CECTSVQ can not be applied for progressive transmission applications

since the conditional entropy codes for successive levels are not embedded in general� In our

experiments� the trees grown have leaf nodes between ��	 to �
	
� The greatest advantage of

CECTSVQ is that it has much lower encoding computational complexity than the full search

CECVQ� thus the quantization operation is much faster� With the cost of memory rapidly

dropping� CECTSVQ will become more and more attractive� However the trees designed by

the CECTSVQ algorithm are not guaranteed to be optimal� since it is a one step look�ahead

greedy algorithm� The generalized BFOS algorithm could be applied to prune a tree grown

by CECTSVQ to obtain the best subtree for a given rate or distortion�
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Appendix

Upper Bound on �

We show that the CECTSVQ design algorithm will not always split o� a single vector and

that � is upper bounded and is maximized for �R � 
 for both �nite and in�nite training set

cases� To do so we show that �� the ratio of decrease in distortion to increase in rate� does

not go to in�nity in single vector split cases� For the sake of simplicity but without losing

generality� let us consider the example of splitting the root node A into two nodes B and C�

Let us assume �rst that there is a �nite training sequence fX��X�� � � � �XNg with � � N

vectors� and that the iterative splitting process ends up with a single vector split� say the kth

vector Xk is mapped to C and the rest vectors to B� Then we have the following cases�

�� If Xk is in the middle of the sequence� i�e�� k � 
 and k � N

Because the �rst vector is only used to provide an initial condition� it is excluded in the

probability estimation�

PB�B �
N � 	

N � �
� PC�B �

�

N � �
� PB�C � �� and PC�C � 
�

PB �
N � �

N
� PC �

�

N
�

PBB � PBPB�B �
N � 	

N
� PBC � PBPC�B �

�

N
�

PCB � PCPB�C �
�

N
� PCC � 
�

The conditional entropy H� of the root node A� i�e�� the initial tree� is 
� The increase in

the average rate� i�e�� in the conditional entropy resulting from the single vector split is

�R � H� �H� � H�

� �PBB log� PB�B � PBC log� PC�B � PCC log� PC�C

�
N � 	

N
flog��N � �� � log��N � 	�g�

�

N
log��N � 	� � 
� �
��

Where we have taken PCC log� PC�C � PCPC�C log� PC�C � 
 in accordance with L�Hospital�s

	�



Rule limx�� x log x � 
 and the treatment in the implementation�

	� Xk is at the end of the sequence� i�e�� k � N

In this case�

PB�B �
N � �

N
� PB�C � 
� PC�B �

�

N
� and PC�C � 
�

PB �
N � �

N
� PC �

�

N
�

PBB �
�N � ���

N�
� PBC �

N � �

N�
� PCB � PCC � 
�

Then�

�R � H� � �PBB log� PB�B � PBC log� PC�B

�
�N � ���

N�
flog�N � log��N � ��g�

N � �

N�
log�N � 
� �
��

�� If Xk is the �rst vector� k � 
� �R � 
� But in this case� as mentioned earlier in the paper�

we treat such a split as invalid because it does not increase the rate in the conditional case�

The decrease in average distortion for the applicable cases above is �D � jXk�Xcentroidj��N �

for mean square error distortion and Xcentroid the centroid of the training set� So for the �nite

training set of size N � �� the ratio � � �D��R is �nite in the case of a single vector split�

since the increase in the average rate and the decrease in the distortion are both �nite and

non�zero� In fact� for large N � �D decreases at the rate of O���N� while �R decreases at

the rate of O�log�N�N�� hence � � O��� log�N�� Formally� in the limit of an in�nite training

set� where Xcentroid is not changed by a single vector split� we obtain through application of

L�Hospital�s Rule�

lim
N��

� � lim
N��

�D

�R
� 
� ��
�

Therefore� the non�negative function �D��R� can not be concave at the origin and the

maximum � must be achieved for a �R greater than zero�
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