
Fast Arithmetic Coding (FastAC)
Implementations

Amir Said

1 Introduction

This document describes our fast implementations of arithmetic coding, which achieve opti-
mal compression and higher throughput by better exploiting the great numerical capabilities
of the current processors. References [1, 2] contain descriptions of the particularities of the
coding methods used, and reference [3] presents the experiments and speed measurements
used for optimizing our code.

Objectives

During the development of our program we had the following objectives:

1. Its interface must be simple enough so that it can used by programmers without com-
pression expertise.

2. Its performance should represent the state-of-the-art of arithmetic coding in terms of
speed, compression efficiency, and features.

3. It must be versatile, portable, and reliable enough to be used in more advanced coding
projects.

4. The program should be clear and simple enough so that students in a first course on
coding can learn about arithmetic coding, and truly understand how it works.

While we can achieve all the practical objectives (1–3) with a single version, we believe
that for educational purposes it is better to provide more than one example, so we finally
decided to have four versions. They are all interchangeable, and each, from the simplest to
the most optimized, can provide some more insight in the arithmetic coding process.

The user only interested in using good arithmetic coding functions inside an application
can employ (and possibly modify) only the first, which provides the best combination of
efficiency and portability.

1

Document organization

This document is divided in the following parts. Section 2 presents the rationale for using
object-oriented programming in compression applications, and describes our C++ classes
implementing data-source models, and the arithmetic encoder and decoder. Next, in Sec-
tion 3, we provide more details on how to use our programs by using them on a simple
compression problem. The functions implementing an encoder and decoder are presented
and we comment on the programming choices, how the coding functions work, and how the
C++ classes are used. In Section 4 we explain the differences between the four arithmetic
coding implementations, and at the end, in Section 5, we explain the purpose of three pro-
grams that we use to demonstrate, on real compression applications, how to use and test
our implementations.

Program distribution

All the programs are in a single zip file called FastAC.zip, which contains 7 subdirectories.
Under the subdirectory AC Versions there are 4 subdirectories with each of the implementa-
tion files, which are all called arithmetic codec.h and arithmetic codec.cpp (see Section 4).
The documentation files, FastAC Readme.pdf (this file), and FastAC QA.pdf (common ques-
tions), are in the root directory.

The root directory also contains files that define a MS VC++ workspace (FastAC.dsw,
FastAC.ncb, and FastAC.opt) with 3 projects, called acfile, acwav, and test. Each project
subdirectory contains a different program as an example of how to use our code (see Sec-
tion 5). The desired implementation files (arithmetic codec.h and arithmetic codec.cpp)
should be copied to the root directory before compilation, and it is necessary to recompile
the whole project (“rebuild all”).

2 Interface of the Arithmetic Coding C++ Classes

Because there are innumerable types of data that need to be compressed, but only a few
coding methods, there are many advantages in separating the processes of source modeling
from entropy coding [1, 2]. While in practice it is not possible to completely separate the two,
with the current object-oriented programming (OOP) tools it is possible to write programs
that eliminate the need to understand the details of how the data-source models are actually
implementations and used for coding.

For example, for coding purposes the only information needed for modeling a data source
is its number of data symbols, and the probability of each symbol. Thus, for OOP purposes,
that is the only type of data abstraction needed. It is true that during the actual coding
process what is used is data that is computed from the probabilities, i.e., the optimal code-
words or coding functions, but we can use OOP to encapsulate that data and those functions
in a manner that is completely transparent to the user.

2

Model classes

We provide four C++ classes for modeling data sources, with definitions in the files called
arithmetic codec.h, and implementations in the files called arithmetic codec.cpp. Note
that there are four versions of these files, each corresponding to a different implementation
of arithmetic coding, and in a separate subdirectory. The differences between them are
explained in Section 4. We use the OOP data hiding principle in this document too. The
public class information in all the files is the same, and is shown and explained here. The
private data and functions—different for each file—are not shown because they do not affect
their use.

All the class definitions are shown in Figure 2. The first class, called Static Bit Model, is
meant for sources with only two symbols (0 and 1). The only information needed for modeling
is the probability of the symbol s = 0, which is defined using the function set probability 0.
The second class, called Static Data Model can be used for sources with a number of symbols
between 2 and 211 symbols or between 2 and 214 symbols, depending on the precision of the
implementation. The function set distribution completely defines the source by setting
the number of data symbols and their probabilities. If this function receives a pointer to
probabilities equal to zero it assumes that all symbols are equally probable. If the data
source has M symbols, they must be integers in the range [0,M − 1].

Even though these models are called static, the symbol probabilities of these classes
can be changed any time while coding, as long as the decoder uses the same sequence of
probabilities. Their main limitation is that they only use the probabilities provided by
the user. In most situations we do not know a priori the probabilities and we have to use
estimates. Since the coding process can be quite complex, we want to avoid using two passes,
one only for gathering statistics, and another for coding.

The solution is provided by adaptive models, which simultaneously code and update
probability estimates. Figure 2 shows the definition of class Adaptive Bit Model for binary
sources. It starts assuming that both symbols are equally probable, and updates the proba-
bility estimates as the symbols are coded. Its only public function is reset, which restarts the
estimation process. The last class, Adaptive Data Model, is for sources with a larger number
of symbols. Before it is used for coding it needs to know the number of data symbols, which
is defined using the function set alphabet. It also starts assuming that all symbols have
equal probability, and has a function called reset to restart the estimation process.

We have two types of classes because there are special optimizations that work only for
binary models. In consequence, coding with binary models is typically 50% faster than using
the general model with the number of symbols set to two.

Encoder and decoder (codec) class

For simplicity we use a single class, called Arithmetic Codec, to encapsulate both the encoder
and the decoder functions. Its definition is shown in Figure 2. We use a framework in which
all compressed data is saved to and fetched from a memory buffer, and only periodically
written to or read from a file. Thus, before we can start encoding and decoding, it is
necessary to define the memory location where we want the compressed data to be stored.

3

class Static Bit Model
{
public:

Static Bit Model(void);
void set probability 0(double); // set probability of symbol 0

};

class Static Data Model
{
public:

Static Data Model(void);
~Static Data Model(void);
void set distribution(unsigned number of symbols,

const double probability[] = 0); // 0 means uniform
unsigned model symbols(void) { return data symbols; }

};

class Adaptive Bit Model
{
public:

Adaptive Bit Model(void);
void reset(void); // restart estimation process

};

class Adaptive Data Model
{
public:

Adaptive Data Model(void);
~Adaptive Data Model(void);
Adaptive Data Model(unsigned number of symbols);
void set alphabet(unsigned number of symbols);
void reset(void); // restart estimation process
unsigned model symbols(void) { return data symbols; }

};

Figure 1: Definition of classes for supporting static and adaptive data-source models.

4

class Arithmetic Codec
{
public:

Arithmetic Codec(void);
~Arithmetic Codec(void);
Arithmetic Codec(unsigned max code bytes,

unsigned char * user buffer = 0); // 0 = assign new

unsigned char * buffer(void) return code buffer;

void set buffer(unsigned max code bytes,
unsigned char * user buffer = 0); // 0 = assign new

void start encoder(void);
void start decoder(void);
void read from file(FILE * code file); // read code data, start decoder

unsigned stop encoder(void); // returns number of bytes used
unsigned write to file(FILE * code file); // stop encoder, write code data
void stop decoder(void);

void put bit(unsigned bit);
unsigned get bit(void);

void put bits(unsigned data, unsigned number of bits);
unsigned get bits(unsigned number of bits);

void encode(unsigned bit,
Static Bit Model &);

unsigned decode(Static Bit Model &);

void encode(unsigned data,
Static Data Model &);

unsigned decode(Static Data Model &);

void encode(unsigned bit,
Adaptive Bit Model &);

unsigned decode(Adaptive Bit Model &);

void encode(unsigned data,
Adaptive Data Model &);

unsigned decode(Adaptive Data Model &);
};

Figure 2: Definition of the class for arithmetic encoding and decoding.

5

We must use a constructor or the function set buffer to define an amount of memory
equal to max code bytes in which the compressed data can be written or read. The function
buffer returns a pointer to the first byte in this buffer. Note that we said define, not allocate.
This depends on the parameter user buffer. If it is zero then the class Arithmetic Codec will
allocate the indicated amount of memory, and later its destructor will free it. Otherwise,
it will use the user buffer pointer as the first position of the compressed data memory,
assuming that the user is responsible for its allocation and for freeing it.

Before encoding data it is necessary call the function start encoder to initialize and set
the codec to an encoder mode. Next, data is coded using the version of the function encode

corresponding to its data model. It is also possible to write an integer number of bits to
the compressed stream using the functions put bit or put bits. If the data source has M
symbols, the data must be unsigned integers in the range [0,M−1]. Similarly, the data with
b bits should be in the range [0, 2b − 1].

Before the compressed data can be copied from its memory buffer it is necessary to call
the function stop encoder, which saves the final bytes required for correct decoding, and
returns the total number of bytes used. Alternatively, the function write to file can be
used to simultaneously stop the encoder and save the compressed data to a file. This function
also writes a small header so that the decoder knows how many bytes it needs to read.

The decoding process is quite similar. Before it starts all the compressed data must
to be copied to the memory buffer, and the function start decoder must be called. If the
compressed data had been saved to a file using the function write to file, then the function
read from file must be used to read the data and start the decoder. The compressed data
is retrieved using the corresponding decode, get bit, or get bits functions. When decoding
is done, the function stop decoder must be called to restore the codec to a default mode, so
that it can be restarted to encode or decode.

3 Coding Example

Let us consider the problem of compressing the data used for line plots.1 Each plot is
defined by an array of structures of the type Plot Segment, shown in the top of Figure 3.
The first component, line color, indicates the index of the color of the line, which is a
number between 0 and 7. The meaning of the second and third component depends on
the first. If line color = 0 then it contains the absolute (x,y) coordinate to where the
plotter pen should move (“move to” instruction). If line color > 0 then it contains the
(x,y) displacement from the current location, using a pen with the indicated color (“line to”
instruction). We assume that x and y are in the interval [−215, 215 − 1].

For designing a new compression method we should consider that, even though in theory
we can use a large number of adaptive models to form complex high-order models for any
type of data, in practice it is better to consider if we can exploit the particularities of typical
data. This happens because adaptive methods need time to get good estimates, which is
not a problem if the number of models is reasonably small, but becomes a problem when we
have, for example, many thousands of models.

1Surely obsolete, but it makes an interesting example.

6

For our plot-segment compression problem we can exploit the following facts:

• Consecutive line segments normally have the same color.

• New colors are expected after a “move to.”

• Curves are plotted with many short segments.

One way to make use of the fact that something does not change very frequently is to
first use binary information to indicate when changes occur, and only then code the new
information. Figure 3 show an example of a coding function that uses this technique to code
an array of structures of the type Plot Segment.

Following the sequence of instructions in Figure 3, we see that we start defining one
variable of the type Arithmetic Codec. We assume that it will compress to a memory buffer
that is provided from outside the function Encode Plot, and use the proper constructor to set
this buffer. Next we define four adaptive models. The first, color change model, is binary,
and is used for coding color change information. The second, color model, is for coding the
actual color information, and thus we use the constructor informing that its number of data
symbols is equal to 8. The third model, short line model, is binary, and is used to indicate
when displacements are small. The fourth model is for coding short lines.

After the call to the function start encoder we have the loop for coding all the plot
segments. The information coded depends on the previous and current colors. If in the
previous segment we had line color = 0 then we code the color information immediately,
otherwise we first code the change information, and, only if there is color change we code
the new color.

Next, we need to code the position or displacement (x,y). Since their range is quite
large, we do not try to entropy code them all the time. If (x,y) represents absolute position
(line color = 0), or a large displacement, then we just save x and y as 16-bit nonnegative
numbers. If the displacement magnitude is smaller than 128 then we first code the infor-
mation that the segment is short, followed by x and y, which are converted to nonnegative
number and coded using step model.

Figure 3 shows the function Decode Plot to decompress the data created by Encode Plot.
Note that it is very similar to the encoder, since it must reproduce all the sequences of
decisions taken by the encoder. Thus, even though we have four types of information that
can be coded, we have correct decoding because the sequence of models used by the decoder
is identical to encoder’s sequence.

4 Arithmetic Coding Versions

As explained in the introduction, for educational purposes we have written four different
fully functioning implementations of arithmetic coding. In this section we present the main
features of each implementation. For practical use we recommend Version 1, which is 100%
portable and quite efficient. For those that want to learn how arithmetic coding works,

7

struct Plot Segment
{

int line color, x, y;
};

int Encode Plot(int plot points,
Plot Segment seg[],
int buffer size,
unsigned char * compressed data)

{
Arithmetic Codec ace(buffer size, compressed data);
Adaptive Bit Model color change model;
Adaptive Data Model color model(8);
Adaptive Bit Model short line model;
Adaptive Data Model step model(257);

ace.start encoder();
int short line, last color, current color = 1;

for (int p = 0; p < plot points; p++) {

last color = current color;
current color = seg[p].line color;

if (last color != 0)
ace.encode(last color != current color, color change model);

if ((last color == 0) || (last color != current color))
ace.encode(current color, color model);

if (current color == 0)
short line = 0;

else {
short line = (abs(seg[p].x) <= 128) && (abs(seg[p].y) <= 128);
ace.encode(short line, short line model);

}

if (short line) {
ace.encode(seg[p].x + 128, step model);
ace.encode(seg[p].y + 128, step model);

}
else {

ace.put bits(seg[p].x + 32768, 16);
ace.put bits(seg[p].y + 32768, 16);

}
}
return ace.stop encoder(); // return number of bytes used for compression

}

Figure 3: Definition of structure Plot Segment for storing plot graphic data, and implemen-
tation of function Encode Plot.

8

void Decode Plot(int plot points,
int data bytes,
unsigned char * compressed data,
Plot Segment seg[])

{
Arithmetic Codec acd(data bytes, compressed data);
Adaptive Bit Model color change model;
Adaptive Data Model color model(8);
Adaptive Bit Model short line model;
Adaptive Data Model step model(257);

acd.start decoder();
int short line, current color = 1;

for (int p = 0; p < plot points; p++) {

if (current color == 0)
current color = acd.decode(color model);

else
if (acd.decode(color change model))

current color = acd.decode(color model);

seg[p].line color = current color;

if (current color == 0)
short line = 0;

else {
short line = acd.decode(short line model);

if (short line) {
seg[p].x = int(acd.decode(step model)) - 128;
seg[p].y = int(acd.decode(step model)) - 128;

}
else {

seg[p].x = int(acd.get bits(16)) - 32768;
seg[p].y = int(acd.get bits(16)) - 32768;

}
}
acd.stop decoder();

}

Figure 4: Implementation of function Decode Plot.

9

inspect the code details, and possibly change the programs, we suggest following the inverse
version order, i.e., start from Version 4, followed by 3, 2, and 1.

Version 1: 32-bit variables, 32-bit products

This version, which is in the directory int 32 32, is the most portable and usually the
fastest, integrating all the main acceleration techniques. It is a good example of how an
implementation can be both efficient and simple. It has some significant differences compared
to the straightforward floating-point version, but it should not be difficult to understand how
it works.

It uses 32-bit arithmetic all the time, which is exploited to have compression very near
the optimal. Before multiplications it discards the least-significant bits to avoid overflow.
Thus, the total number of bits of precision assigned to the interval length and probability
must not exceed 32. In the current version the precision depends on the model. For binary
models we have 19 bits for the length and 13 bits for probabilities, while for the other models,
we have 17 bits for the length and 15 bits for probabilities.

This version saves full bytes during renormalization, and has two forms of decoding. The
first, used when the number of symbols is large, is based on fast table look-up and needs
divisions (which can be slow on some processors). The second form replaces the division
with several multiplications, and is used when the number of symbols is small.

Version 2: 32-bit variables, 32-bit products, sorted symbols

The version in directory int 32 32 sorted is very similar to the previous versions, but it sorts
the symbols according to probability to optimize some operations. If the source distribution is
highly skewed, then this can be the fastest version, using only multiplications (no divisions).
In other cases it is better to use the version with table look-up decoding. The static binary
model in this version is also different: we provide an implementation that shows that for
binary coders it is relatively easy to approximate multiplications with bit shifts (the speed
improvement, however, is not very significant).

Version 3: 32-bit variables, 64-bit products

Many 32-bit processors (e.g., Pentium) compute the full 64 bits of a multiplication of two
32-bit integers. The problem is that the compilers do not give access to the register with
the most significant bits. The version in directory int 32 64 shows how to use a few lines
of assembler code to multiply and extract those bits, and also for a 64-bit division used by
table look-up decoding. It can be a bit slower, but mostly because the compilers don’t know
how to use assembler and optimize at the same time. On the other hand, it has a precision
that guarantees virtually optimal compression even in extreme cases.

10

Version 4: floating-point arithmetic

This version, in directory floating-point, was created because we believe floating-point
numbers provide a more intuitive way of understanding arithmetic coding. Students can
follow the program’s execution, and can see all the values in a scale that shows the true value
of probabilities. The implementation is straightforward, without much effort to optimize
speed (but it is not significantly worse than the others).

The implementation uses 48 bits of double precision floating-point numbers, and renor-
malization occurs when at least 16 bits are ready. Two extra tricks had to be used: a small
offset is added to the code value while decoding (to deal with the hard-to-predict behavior
of the least significant bits beyond the first 48), and some extra “leakage” for each coded
symbol (to compensate for possible rounding and other factors).

5 Arithmetic Coding Demo Programs

The three programs with applications are in the files called acfile.cpp, acwav.cpp, and
test.cpp, in the subdirectories with the same name. Here is their description.

acfile.cpp

This is an example of how to use arithmetic coding to compress any file (text, executables,
etc.) using a relatively small number of adaptive models. Probably the most important
lesson to be learned from this program is that our code is very easy to use, and enables
writing a reasonably good compression program with small effort.

The program’s usage for compressing and decompressing a file is, respectively

acfile -c file name compressed data file
acfile -d compressed data file new file

acwav.cpp

This is a slightly more complex example. It is for lossless compression of audio files. The
audio file format supported is “wav”, which is supported by all CD “ripping” programs. It
uses some signal processing to improve compression (the reversible S+P transform), but the
coding process is very similar to the first case, except that here we decompose each transform
sample in a “bits+data” representation (same as VLI in JPEG & MPEG standards). The
former is coded with contexts and adaptive models, while the bits of the latter are save
directly.

The program’s usage is similar. For compression and decompression use

acwav -c wav file compressed wav file
acwav -d compressed wav file new wav file

11

test.cpp

This program is not really an application. It has functions to test and benchmark the speed
of our arithmetic coding implementations (it is similar to the program used in [3]). Given
a number of data symbols, it defines several values of source entropy, and for each value it
generates millions of pseudo-random source samples. The times to encode and decode this
data are measured, and it finally compares the decoded with the original to make sure the
code is correct.

The usage is

test number of symbols
test number of symbols number of simulation cycles

The first uses a default number of cycles equal to 10.

In this directory we also have the files test support.h and test support.cpp, which con-
tain some functions required for the simulations, like the pseudo-random number generator.

References

[1] Amir Said, “Arithmetic Coding,” in Lossless Compression Handbook, (K. Sayood, Ed.), Aca-
demic Press, San Diego, CA, 2003.

[2] Amir Said, Introduction to Arithmetic Coding Theory and Practice, Hewlett-Packard Laborato-
ries Report, HPL–2004–76, Palo Alto, CA, April 2004 (http://www.hpl.hp.com/techreports/).

[3] Amir Said, Comparative Analysis of Arithmetic Coding Computational Complexity,
Hewlett-Packard Laboratories Report, HPL–2004–75, Palo Alto, CA, April 2004
(http://www.hpl.hp.com/techreports/).

12

