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Abstract

In some classification tasks, all patterns in a field, such
as digits in a ZIP-code image, originate from the same, but
unknown, source (writer/print style). The class-conditional
feature distributions depend on the source of the patterns.
Several sources may share the same distribution, or style.
The style-conditional distributions are estimated from the
training set. The optimal field-classifier computes the class-
conditional field-feature-probabilities as the sum of class-
and-style-conditional field-feature-probabilities, weighted
by the prior probabilities of the styles. We compare the deci-
sion regions and error rates of style-weighted classification
with both conventional singlet and top-style classification
in a minimal family of examples, and discuss some related
practical considerations.

1. Introduction

In many pattern recognition tasks, patterns appear in
groups (fields) that have common traits owing to a com-
mon source or origin. For example, one can safely as-
sume that in a single directory assistance call (field), every
speech segment (pattern) is from the same speaker (source).
Speech features depend on the gender of the speaker, and
are more consistent within a gender than across genders.
This induces underlying styles in fields of patterns. Fea-
ture measurements on different patterns of a field may not
be statistically independent, but related through the under-
lying style. Style conscious classification exploits this phe-
nomenon when the identity of the source is unknown [6].

The source, though unknown, provides some context in
a field. We call this style context. This is different from
linguistic context because we model the dependence of the
feature measurements on patterns in a field, rather than the
interdependence of their class-labels. Our method is also
different from adaptive classification [1] because the style
parameters are estimated in advance.

Styles arise in print (fonts) [7], script (writers), speech
(speakers), vegetation (soil types or other locally uniform

growing conditions), micrographs (dye concentrations and
microscope characteristics).

It has been known for long in the pattern recognition
community that using source or style specific classifiers can
improve classification performance [4]. However, style or
source recognition has traditionally been a separate step iso-
lated from sample classification, often using a different set
of features as in Optical Font Recognition [8]. We seek to
find styles in the distribution of the pattern features, i.e., the
ones actually used for classifying patterns.

We illustrate some aspects of optimal style-conscious
classification with a simple example with two classes, and
two styles. We will use univariate, unit-variance Gaussians
feature distributions conditioned on each class-style pair.
The means of the conditional feature probabilities are either
known, or estimated from training samples. Two scenarios
will be considered for estimating the four means: training
samples with class and style labels, and training samples
with only class labels.

This simple framework gives rise to a surprisingly rich
structure. We shall adhere to this framework throughout
this paper, though it readily extends to more classes, styles,
and more complex class-and-style conditional distributions,
such as mixtures.

2. Formal problem statement

Our goal is to classify fields of two patterns. Each field
is generated according to one of two styles, and thus has
a (true) style-label, �����������
	 . Each pattern in the field also
has a (true) class-label �
� ����������	 , where ��� ����� is an index
to the position of the pattern in the field. The ordered pair of
two class-labels is referred to as the field-label ����� � �
��� ��������
	����������
	 . A single feature is measured on each pattern
in a field, yielding a field feature �� !� �  "�#� . Neither the field-
label nor the style-label is known for a test-field.

For each style and class, the pattern feature measurement
is assumed to have a Gaussian distribution.

$ �� ��% � � ��� �&�(')�+*!,"-+. / �10 � where �2� �����
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The four means * � . � , *�� . � , *!� . � , *!� . � , are either given, or
can be estimated from the training samples. Same holds for
prior class probabilities

��� �
��� , � � ����� , � � � ����� , and style-
probabilities

��� � � , � � ����� . For the sake of simplicity we as-
sume that the prior class-probabilities do not depend on the
position in the field (

��� � � � � � � ��� � � � � � ), and also that
there is no linguistic context (

��� ��� � � � � ��� � ��� � � � ��� � � � ).
Neither assumption is a requirement for style-conscious
classification.

A field classifier examines the field-pattern, and assigns
to it a field-label ������ � �	�� � . The classification is correct if
� �� � � � and � �� � � � , and erroneous otherwise. The
conventional “singlet” classifier assigns field labels by con-
sidering each pattern-feature in the field independently of
the other. For Bayesian classification, the class with the
highest a posteriori probability is assigned to a pattern.

� �� � argmax,�

����. ��� ��� �����/���� . � $ �� � % � ��� � ��� � � (1)

The summation indicates that class-conditional distribu-
tions of the features are mixtures induced by the styles.
Since  � and  � are classified independently, the following
is an equivalent, albeit computationally inefficient, method
of field-label assignment.

�+� �� � � �� � � argmax� ,���. ,���� � ��� � ��� �/���� . � $ �� �� % � � ��� � ��� � ��� �� ��� �
��� �/���� . � $ �+ � % �
� ��� � ��� � ��� (2)

The argument which is maximized above expands to��� � � � ��� � ��� �!""# $ �� � % � � �#� � ��� � � � �%$ $ �+ � % � � �#� � ��� � � � �& $ �� � % � � �#� � ��� � � � �%$ $ �+ � % � � ��� � ��� � � � �& $ �� � % � � ��� � ��� � � � �%$ $ �+ � % � � �#� � ��� � � � �& $ �� � % � � ��� � ��� � � � �%$ $ �+ � % � � ��� � ��� � � � �
'�(()

where $ �+ �� % � � � � � is a short-cut for $ �� !� % � � ��� � � � .
The optimal style-conscious classifier differs in that it

does not allow intermixing of styles within a field.

�+� �� � � �� � � argmax� ,���. ,���� ��� � � � ��� �
�*� ��/+����. � $ �+ �� % � � ��� � $ �� � % � � ��� � ��� � � (3)

The maximization argument in this case expands to��� � � � ��� �
��� �, $ �+ � % � � �#� � $ �� � % � � �#� ��$ ��� � � � �& $ �+ � % � � ��� � $ �� � % � � ��� ��$ ��� � � � ��-

The argmax in (3) is taken over all possible field-labels
��� � � �
�#� , the number of which grows polynomially with the
number of classes, and exponentially with field length. The
classification can be sped up by selecting the most proba-
ble style instead of weighting the styles. Once the style is
specified, each pattern can be classified individually. The
resulting formula is sub-optimal but works for fields that
carry dependable style traits.

��� �� � � �� �&� argmax� ,.��. ,/��� ��� � � � ��� � � � �0�132/���� . � $ �� � % � � ��� � $ �� � % � � ��� � ��� � � (4)

The maximization over � replaces the summation in (3).
The computation can now be made more efficient by chang-
ing the order in which the maximizations are performed.

� � � argmax/+����. � ��� � � � , 0�132,.� ��� � � � $ �� � % � � ��� � - �, 0�142, � ��� � �*� $ �� "� % �
� ��� � -
� �� � argmax,�-

��� � � � $ �� �1% � � ��� � � for ��� ����� (5)

Bazzi et al. [2] present results on using a sub-optimal
classifier in the presence of styles. Their classifier is in
essence a singlet classifier, but the weights in the style-
induced mixture distributions are manipulated to counter
the bias against less probable styles in long fields.

3. Example

Let us consider the following example.

* ��. � �6587 * � . � �95 �
* � . � � * � . � &;: � � * � . � � * � . � &;: �<7

Within each class, the style-specific distributions are sepa-
rated by a distance of 2. The inter-class distance,

:
, is 4. All

distributions are unit-variance Gaussians ( 0 � � ), and the
class and style probabilities are equal.��� � � � � ��� ��� � � � � �"�>=@?BA for � � �������� � � � ��� ��� � � � �"�>=@?BA

Figure 1 shows the four decision regions for each of the
three classifiers in the  !� -  � plane. In each region, the as-
signed field-label is shown in parentheses, and the means
of the bi-variate field-label-conditional field-feature distri-
butions are plotted as an asterisk and a cross for the styles
1 and 2 respectively. The field error rate for the conven-
tional singlet classifier is �*C ? DFE , that of the style conscious
classifier is � =@?BAGE (Table 1,

: � C ). The error rate of the
top-style classifier is � =%? DFE .
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Figure 1. Decision regions for (a) style-conscious, (b) top-style, and (c) singlet classifiers.

Table 1. Performance of singlet and style-
conscious classifier with supervised and un-
supervised parameter estimates.:

Percentage field error
Supervised Unsupervised

40 training 400 training
fields fields

Style Sngl Style Sngl Style Sngl
0 74.7 74.7 75.0 75.3 74.5 74.8
1 57.2 60.3 61.6 62.6 57.3 60.7
2 38.5 45.1 39.8 47.9 38.8 44.8
3 22.3 28.7 23.6 32.8 22.4 28.7
4 10.5 14.8 11.0 18.2 10.6 14.7
5 3.9 6.0 4.2 6.6 3.9 6.0
6 1.1 1.9 1.4 4.2 1.1 2.0

The bivariate mixture-Gaussians make it difficult to
compute the error rate for almost any decision boundary.
We estimate error rates by generating 4000 random field-
feature samples according to the known distribution, and
then classifying them with the appropriate classifier.

We vary the inter-class distance,
:
, while the intra-class

style-separation is fixed at 2. The reduction in field error
rate achieved by the optimal and top-style classifiers over
the singlet classifier (absolute gain), is plotted in Figure 2
as a function of

:
. “Relative gain” refers to the reduction,

computed as a percentage of the singlet field-error. The ab-
solute gain is highest when different classes from different
styles have similar distributions (e.g.

: � � and conse-
quently * ��. � � * � . � ), because the conventional classifier
cannot distinguish between these, while the style-conscious
classifier can profit from information derived from the other
pattern in the field. Of course, confusions within the same
style cannot be resolved.
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Figure 2. Improvement in classification per-
formance provided by modeling styles as a
function of shift � .

4. Training the style-conscious classifier

If the training sample is labeled with respect to style as
well as class, then we can partition the training patterns by
label and style and estimate the four means independently.

However, training data is seldom labeled by style. When
only the class labels are given, then we must estimate the
means of multi-modal mixtures. Unsupervised estimation
is desirable further because

� Despite the presence of different styles, our ultimate
goal is to classify patterns by class-labels, not styles.

� Obvious sources of style may not have a strong effect
on patterns. Thus even though fonts may constitute
different styles in printed characters, recognition may
be affected more by the styles induced by quality of
printing and scanning.

� It may not be obvious how human-perceived styles are



reflected in the feature distributions.

� While it is easy enough to understand the meaning of
style in two documents with different type-faces, or
hand-written by different writers, it is more difficult
to assign five styles to one hundred type-faces or to a
thousand writers. The number of styles that we can
specify is limited by the number of training samples
available, and by the computational complexity of the
classification.

Thus hidden styles gives us the flexibility of defining
styles in the most useful way, provided that we can find such
styles automatically from training data. We have applied
the EM algorithm [3, 5] to this end. Table 1 compares the
classification performances with style-supervised and style-
unsupervised estimates of parameters in our example with
Gaussian mixtures.

5. Generalizations

We have hitherto confined our discussion to a simple
case of our generalized framework for style conscious clas-
sification. The methods presented readily extend to:

Longer field lengths. Style-conscious classification ben-
efits in situations when a class in some style is prone to be
confused with other classes in other styles, because other
patterns in the field furnish information on the underlying
style. Fields formed entirely of such error-prone classes
of a style are hard to classify. With increased field-length,
probability of such fields reduces and the gain over singlet
classification increases exponentially.

More styles. The modeling of additional styles helps
only if they really exist.

Multidimensional features. Our EM algorithm estimates
the means and variances from field samples, but so far we
have not attempted to estimate covariance terms. Estimat-
ing full class-and-style-conditional covariance matrices for
multidimensional features would require a large training set
where all styles are populous.

Linguistic context. The use of linguistic context such as
bigram or trigram class-probabilities is compatible with the
use of styles.

Laboratory experiments on a six-font, ten-class,
machine-printed digit recognition problem have shown
style-conscious classifiers to be more accurate than singlet
classifiers. A singlet classifier model, with six Gaussians
per digit-class, yielded digit error rates of 19.8%. When
the font-labels of test samples are known, and font-specific
classifiers are used for classification, the error rate drops to
14.2%. When a six-style, one-Gaussian-per-class-per-style
classifier is used for style-conscious classification of fields
of length 4 and unlabeled style, the error rate is 14.9% [6].

6. Conclusions

Modeling styles can reduce the error rate on fields of
patterns from the same source, provided that (1) styles are
present in the data, and (2) some class of one style can be
distinguished from the same class in another style.

Additional research is needed to find effective methods
of determining the presence of styles, and the number of
distinct styles, in a given collection of data. Other open
problems include the application of styles to unsegmented
patterns (perhaps in combination with HMMs), and the es-
timation of style parameters from training patterns without
class labels.
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