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Abstract

In the proposed computer assisted visual interactive recog-
nition (CAVIAR) methodology, a parameterized geometrical
model serves as the human-computer communication chan-
nel. The iterative CAVIAR process is modelled as a finite
state machine. A flower recognition system is implemented
based on the proposed methodology. Evaluation on 30 sub-
jects shows that 1) the accuracy of the CAVIAR system is
90% compared to 50% for the machine alone; 2) its recog-
nition time is 10.7 seconds compared to 26.4 seconds for
the human alone; 3) it can be initialized with as few as one
training sample per class and still achieve high accuracy;
4) it demonstrates a self-learning ability.

1. Introduction
The goal of visual pattern recognition during the past fifty
years has been the development of automated systems that
rival or even surpass human accuracy, at higher speed and
lower cost. Human interaction is considered, if at all, only
to deal with ”rejects” in the final step. However, there are
pronounced differences between human and machine cog-
nitive abilities. Humans apply to recognition a rich set of
contextual constraints and superior noise filtering abilities
to excel in gestalt tasks, like object-background separation.
Computers can store thousands of images and associations
between them, never forget a name or a label, and compute
geometric moments and probability distributions. These
differences suggest that a system that combines human and
machine abilities can, in some situations, outperform both.

As early as 1992, a workshop organized by US National
Science Foundation in Redwood, California, stated that
“computer vision researchers should identify features re-
quired forinteractive image understanding, rather than their
discipline’s current emphasis on automatic techniques” [4].
A more recent panel discussion at the 27th AIPR Workshop
also emphasized “... the needs for Computer-Assisted Im-
agery Recognition Technology” [6]. In the pattern recog-
nition and computer vision community, more and more re-
searchers realize that fully automated model-based vision

will not be feasible for a long time [5].

We study the role of interaction in a narrow domain,
where higher accuracy is required than is currently achiev-
able by automated systems, but where there is enough time
for limited human interaction. In the broad domain of
content-based image retrieval,relevance feedbackhas been
found effective [8]. Interaction is, however, necessarily lim-
ited to selection of acceptable and not-acceptable responses,
because there is no effective way to interact with arbitrary
images. Interaction with the image was demonstrated in
recent work in the narrow domains of face and sign recog-
nition, which are comparable to flower recognition. How-
ever, it was confined to preprocessing, i.e., establishing the
pupil-to-pupil baseline [9] or text bounding box [3][10]. We
have not found any previous work advocating image-based
interaction through a domain-specific model, which is the
principal contribution of this paper.

In CAVIAR, the user may interact with the image any-
time that he or she considers the computer’s response un-
satisfactory. The interaction extracts some features directly,
and improves the accuracy of other extracted features in-
directly, by improving the fit of the computer-proposed
model. Fitting the model requires only gestalt perception,
rather than familiarity with the distinguishing features of the
classes. The computer makes subsequent use of the param-
eters of the improved model to improve not only its own sta-
tistical model-fitting process, but also its internal classifier.
Classifier adaptation is based on unsupervised decision-
directed approximation [2][7][1], and therefore benefits by
human confirmation of the final identification. The auto-
mated parts of the system gradually improve, and decrease
the need for human intervention. As an important byprod-
uct, the human’s judgment of when interaction is beneficial
also improves. Our experiments demonstrate both phenom-
ena.

The key to efficient interaction is the display of the au-
tomatically fitted model that allows the human to retain the
initiative throughout the classification process. We believe
that such interaction must be based on a visible model, be-
cause (1) a high-dimensional feature space is incompre-

1

Doc User
Submitted to IEEE Conference on Computer Vision and Pattern Recognition, 2004

georgen
Note
Rejected :(
Included here only for the sake of the formal presentation of CAVIAR



hensible to the human, and (2) the human is not familiar
with the properties of the various classes, and therefore
cannot judge the adequacy of the current decision bound-
aries. Therefore he or she cannot interact efficiently with
the feature-based classifier itself. We note, moreover, that
human judgment of the adequacy of the machine-proposed
prototypes, compared visually to the unknown object, is far
superior to any classifier-generated confidence measure. In
contrast to classification, deciding whether two pictures are
likely to represent the same class does not require familiar-
ity with all the classes.

We propose a formal model for interactive visual recog-
nition, apply it to wild-flower recognition, and evaluate it
on “naive” subjects.

2. Formal description
CAVIAR is a methodology for interactively recognizing ob-
jects. A collection of objects under consideration of a par-
ticular CAVIAR system is called anobject familyO. A
generic object is denoted aso, o ∈ O. Each object has
a categorylabel l. The collection of all possible labels is
called label spaceL. An image of an object is called a
picture p. The collection of all possible pictures is called
picture spaceP . The goal of a particular CAVIAR task is
to recognize an object by algorithmic and human analysis
of a picture of that object.

2.1 Parameterized geometrical model

For each application, aparameterizedCAVIAR model1 of
the entire object family is created to facilitate the communi-
cation between human and computer. The communication
(interaction) helps the machine to extract discriminating at-
tributes for classification.

A complete CAVIAR model characterizes theshapeof
the components of the objects and thegeometrical rela-
tions among components. It is completely defined by a
set of model parameters. The collection of all the possi-
ble values of the model parameters constitutes themodel
spaceΘ. Particular objects are described bymodel in-
stancesθ. The model plays a central role in the communica-
tion between humans and computers, and should therefore
beunderstandableandadjustableby the user, and provide
enough information to the machine for evaluating discrimi-
nating attributes.

A CAVIAR model characterizes only geometrical infor-
mation about the object, so it can also be considered as a
parametric partitionof the picture. The pixels of the pic-
ture are partitioned into mutually exclusive components of

1It can be useful to define multiple models for an object family. How-
ever, these models can always be unified, in principle, into a single model
with more parameters. For simplicity, a single model is used in this formal
description.

the object and of the background. A set of scalar-valued
discriminating attributes (called afeature vectorx, x ∈ X)
is extracted based on the partition.

2.2 Model building

Visible model instances(typically idealized contours of the
objects) are presented to the user. The user can adjust them
through a graphic user interface, where the model instance
is superimposed on the unknown picture. Each adjustment
is called amodel manipulation, ΥMM .

Model parameters can also be adjusted algorithmically,
via model estimation, ΥME . Model estimation utilizes
statistics accumulated from a set of labelled pictures (a
training set s), each of which is associated with both a
model instance and a feature vector that describes the ob-
ject in the picture. The training set should include at least
one picture under each label. A particular element of the
training set is denoted assi = {pi, li,θi,xi}.

Model estimation accepts all the model parameters that
have been adjusted by model manipulation, then estimates
all the remaining parameters.2 (In other words, the human
has the final say.) The combination of model manipula-
tion and model estimation is calledmodel building, ΥMB .
Model building is a transformation from picture space and
model space to model space:

ΥMB : (P,Θ) → Θ.

A single step of model building for a particular picture,
based on the current model instanceθn, is written as

ΥMB : (P,θn, s) → θn+1.

A model building step consists of model manipulation
ΥMM followed by model estimationΥME . Model manip-
ulation, where one model parameterθn

i is adjusted toθn+1
i ,

is written as:3

ΥMM : (θn) → θn′

where
θn = {θn

1 , θn
2 , · · · , θn

i , · · · , θn
k},

and
θn′

= {θn
1 , θn

2 , · · · , θn+1
i , · · · , θn

k}.

Model estimation can be written as

ΥME : (p, θn′
, s) → θn+1,

2In some special cases, model manipulation or model estimation is
NULL. For example, in the initial step, a model instance can be calcu-
lated by the model estimation without any user intervention. On the other
hand, model estimation is trivial if all the model parameters have already
been manipulated.

3Depending on the GUI, the user can adjust one or several parameters
simultaneously. Here, only one parameterθn

i is adjusted toθn+1
i .
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where

θn+1 = {θn+1
1 , θn+1

2 , · · · , θn+1
i , · · · , θn+1

k }.

A new set of parameters (i.e., a new CAVIAR model
instance) is estimated with the parameterθn+1

i left un-
changed. Several model building steps may be necessary
to build a model instance that describes the discriminating
aspects of the object.

2.3 Feature extraction

Feature extractionin CAVIAR, denoted asΥFE , is the al-
gorithmic process of extracting a feature vector based on the
model instance obtained by model building. It is a transfor-
mation from picture space and model space to feature space,

ΥFE : (P,Θ) → X.

Feature extraction from a specific picturep, based on a
model instanceθ, is written as

ΥFE : (p, θ) → x.

2.4 Indexing

IndexingΥCI is the algorithmic process of computing the
similarity ri of the unknown feature vector to the training
sample associated with labelli. It is therefore a transforma-
tion from feature spaceX to index spaceR of index vectors
r with elementsri:

ΥCI : X → R.

In order to indicate that indexing utilizes the information
accumulated from a particular training set, it is written as:

ΥCI : (x, s) → r.

The results of indexing are presented to the uservisuallyon
the CAVIAR GUI. This display is calledvisible index.

A commonly used visible index, which we callvisible
rank order, is a sequence of pictures ordered according to
their similarities to the unknown picture. The user can com-
pare the unknown picture to the visible rank order bybrows-
ing it.

2.5 The CAVIAR finite state machine

A 3-tuple qo,p = {θ,x, r} is called aninteractive visual
recognition state. Interactive visual recognitionis a se-
quence of states{q0

o,p, q
1
o,p, · · · qn

o,p}. To start a recognition
task, an initial state is created automatically:

q0
o,p = {θ0,x0, r0}

Figure 1: Several examples in our flower database.

where
ΥME : (p, s) → θ0,

ΥFE : (p, θ0) → x0,

ΥCI : (x0, s) → r0.

Model manipulation leads to a state transition:

{θn,xn, rn} −→ {θn+1,xn+1, rn+1}

where
ΥMB : (p, θn, s) → θn+1,

ΥFE : (p, θn+1) → xn+1,

ΥCI : (xn+1, s) → rn+1.

2.6 Identification

Identificationassigns a label to the object based on the index
vector. It is a transformation from the index space to label
space,

ΥI : R → L, andΥI : r → l.

Identification can be performed algorithmically, but in
CAVIAR concluding a pattern recognition task requires that
the user identify the object by selecting one candidate from
the visible index.

3. CAVIAR flower recognition system
Following the methodology proposed in Section 2, we de-
veloped an experimental flower recognition system to:
1) demonstrate the methodology with a concrete example;
and 2) verify the hypothesis that it can, in some situations,
outperform human-alone and computer-alone.
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Figure 2: An example of the rose curve.

We collected a database of 987 flowers with a digital
camera. The flower recognition system discussed here was
developed on a subset of 216 flowers from 29 classes and
evaluated on a subset of 102 classes with 6 samples per
class.

All pictures are 320 by 240 pixels. The pictures were
taken under highly variable illumination. The majority of
the flowers are yellow, white, red, or blue. The background
is the real scene, which can be very complicated. We do not
assume that the flower is isolated from other flowers of the
same or other species, because they often overlap in photos
of flowerbeds (Figure 1).

3.1 Rose curve model

Therhodonea (rose curve)was defined by the Italian math-
ematician Guido Grandi between 1723 and 1728. We use a
slightly modified rose curve to model the flowers:

ρ =
ro + ri

2
+

ro − ri

2
cos(nθ +nϕ) = a+ bcos(nθ +nϕ)

(1)
A particular rose curve model instance (Figure 2) is com-

pletely determined by 6 parameters: the center (x0, y0), the
outer radiusro, the inner radiusri, the number of petalsn,
and the initial phaseϕ.

θ = {x0, y0, ro, ri, n, ϕ}.

This model assumes that the flowers have circular symmetry
and are composed of petals. The petals taper towards their
tips. We restrict the possible number of petalsn to the range
[3, 8], and use a circle (n = 0) for the rest.

3.2 Model building

Figure 3 shows the Graphic User Interface. The blue curve
superimposed on the unknown picture is the visible rose
curve model instance. The dots on the curve are the inner
and outer radius control points. The rays from the center of

Figure 3: The GUI of the CAVIAR system for flowers. The
rose curve is superimposed on the unknown picture. The
visible rank order is computed and the top three candidates
are displayed.

the rose curve to the outer radius control points indicate the
number of petals and the outer radius.

The user can compare the real flower boundary and the
visible rose curve and, if necessary, adjust the rose curve by
dragging the center point and the inner and outer radius con-
trol points. The number of petals can be changed with the
ComboBox. When the user adjusts a parameter, the com-
puter always accepts the adjustment. The remaining param-
eters are re-estimated as follows.

From the prior RGB color histogram generated from
training samples, we compute the likelihood of each pixel
being a foreground (flower) pixel and transform the color
picture into a likelihood map,P (x, y).

The center(x0, y0) is the centroid (mean) of the likeli-
hood map:

x0 =
∫ ∫

xP (x, y)dxdy∫ ∫
P (x, y)dxdy

, y0 =
∫ ∫

yP (x, y)dxdy∫ ∫
P (x, y)dxdy

(2)

To estimaten, we introduce a Fourier-like transform
from the 2D binary image space to the discrete 1D K-space:

φ(k) =
∫ ∫

P (x, y)ejkθdxdy, k ∈ Z+,

then,

n = argmax
k

(|φ(k)|) = argmax
k

(|
∫ ∫

P (x, y)ejkθdxdy|)
(3)
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To estimatero, ri, andϕ, we define onP (x, y) the fol-
lowing integrals, which are similar to geometric moments.

E0(P (x, y)) =
∫ ∫

P (x, y)dxdy

ECOS(P (x, y)) =
∫ ∫

P (x, y) cos nθdxdy

ESIN (P (x, y)) =
∫ ∫

P (x, y) sinnθdxdy

For an ideal rose curve silhouetteB0(x, y),

E0(B0(x, y)) = a2π +
b2

2
π

ECOS(B0(x, y)) = abπ cos nϕ

ESIN (B0(x, y)) = abπ sinnϕ

E0(P (x, y)), ECOS(P (x, y)), andESIN (P (x, y)) can
be computed for anyP (x, y). We force them to be equal to
the corresponding integrals of the ideal rose curve silhou-
ette. Thus,

E0(P (x, y)) = a2π +
b2

2
π

ECOS(P (x, y)) = abπ cos nϕ

ESIN (P (x, y)) = abπ sinnϕ

Solving fora, b, andϕ:

a =

√
E0

2π
+

√
E2

0 − 2(E2
COS + E2

SIN )
2π

(4)

b =

√
E0

π
−

√
E2

0 − 2(E2
COS + E2

SIN )
π

(5)

ϕ =
1
n

arctan(
ESIN

ECOS
) (6)

Figure 4 shows four model building steps on a difficult
example (the picture is out of focus).

3.3 Feature extraction

From the rose curve model, eight features are derived for
classification. The two global shape features are the petal
numbern and the ratioη = ro/ri. The color values of
the pixels within the rose curve are converted from RGB to
HSI. Then the histograms of hue and saturation are gener-
ated. The six color featuresh1, h2, h3, s1, s2, s3 are the first
three moments of the hue and saturation histograms. This
process is automated: our earlier experiments suggest that,
once the model instance is refined, human intervention is of
very limited value in feature extraction.

(a) (b)

(c) (d)

Figure 4: The rose curve is superimposed on the unknown
picture. The top 3 candidates are displayed. After three in-
teractive model building steps, the correct candidate appears
in the first place. (a) initial automatic result, (b) after adjust-
ing the rose curve center, (c) after adjusting petal number,
(d) after adjusting inner circle radius.

3.4 Indexing

The standard deviation of the probability distribution of
each feature extracted from the training samples is com-
puted offline for normalization. The normalized distance of
the unknown to each training sample is computed. Each el-
ement of the index vector is the distance from the unknown
sample to the closest sample of the corresponding class.

Our CAVIAR flower recognition system displays the vis-
ible rank order based on the index vector. The user can
browse all species by clicking on the “⇒” or “⇐” buttons,
or browse all examples of the same class by clicking on the
“Previous” or “Next” button (Figure 3).

3.5 Interactive flower recognition

The initial interactive visual recognition state is created au-
tomatically. The core algorithm [11], takes the following
three steps: 1) the coarse flower region is found with a cir-
cle model; 2) strong segmentation by aseeded watershed
algorithm based on training set statistics4; 3) the initial rose

4We subsequently discovered, however, that weak segmentation by fit-
ting a rose curve directly yields almost as good initial rank ordering as our
elaborate and accurate strong segmentation algorithm.
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curve is fitted to the resulting boundary. The top candidates
are then predicted and displayed to the user.

The computer’s initial prediction (or after interactive
model building) does not always agree with the human’s.
The visible model instance and the visible rank order
provide the information necessary for the user to decide
whether to move to a new state by model manipulation, to
browse, or to identify the flower by clicking on one of the
visible candidates.

Figure 4 shows a difficult example. The automatically
estimated rose curve is poor due to the blurring of photo.
After each of three model manipulations (center, petal num-
ber, and inner circle radius), the computer re-estimates the
remaining un-adjusted parameters, and predicts new top
candidates. Finally, the computer displays the correct can-
didate.

4. Evaluation
A subset of the flower database, 102 classes with 6 samples
of each, was used for evaluation. The detailed experimental
protocol, data collection, and analysis are described in [12].
Here we present only the results and a brief discussion.

Thirty subjects participated in 5 experiments, 6 subjects
for each. In Experiment I, there is no computer assistant, the
order of the candidate flowers is fixed, and the subject can
only browse the candidate pictures to identify the unknown
sample. Experiments II to V are all interactive experiments,
but based on different training samples. All training sam-
ples of Experiment II are correctly labelled. Experiment III
uses only one training sample for each class. The training
set of Experiment IV includes all of the training samples
and the interactively recognized unknown samples of Ex-
periment III. Some of the interactively recognized samples
are not correctly-labelled, so we call thempseudo-training
samples. The training set of Experiment V includes the
training samples of Experiment III and the pseudo-training
samples generated by Experiments III and IV. Every sub-
ject labels 102 pictures (one per class) excluded from the
training set for that experiment.

4.1 CAVIAR compared to human-alone and
machine-alone

Experiments I and II use the same set of training samples
and the same set of test samples. Experiment I is considered
the human-alone experiment. The initial automatic recogni-
tion phase of experiment II reflects the performance of the
machine alone. So comparing CAVIAR to human-alone and
machine-alone is to compare the results of experiment II to
the results of experiment I, and to the results of the initial
automatic recognition of experiment II, respectively.

There are two critical aspects of the system performance,

Accuracy vs Time
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Figure 5: CAVIAR reduces the recognition time signifi-
cantly compared to the human-alone (browsing only), and
increases the accuracy significantly compared to machine-
alone.

accuracy and time. The machine time depends on the hard-
ware configuration of the machine and on the degree of soft-
ware optimization. Since it is always much shorter than the
human time, we ignore the machine time, and compare only
the human time.

The first two rows of Table 1 and Figure 5 show the
results. We observe that there are no obvious differences
between CAVIAR and human-alone in accuracy. Every
subject achieves above 90% accuracy. With the machine’s
help, the median time spent on each test sample is only
half of the human-alone. On the other hand, the accu-
racy of the machine-alone is less than 50%. With a lit-
tle human help (10 seconds average per flower), the ac-
curacy increases to more than 90%. In summary, well-
designed interactive recognition can halve the time com-
pared to human-alone, and almost double the accuracy com-
pared to machine-alone.

4.2 CAVIAR learning

Experiments III, IV, and V were designed to evaluate the
machine’s learning ability. These three experiments simu-
late the scenario where CAVIAR accumulates statistics as it
is used. The same set of samples are used in Experiment V
(1 ground truth and 4 pseudo per class) and Experiment II
(5 ground truth per class).

From Table 1, we observe that 1) the accuracy of Ex-
periment III, which has only one training sample, is still
high (median 90%); 2) there is not much difference in accu-
racy among these four experiments. The median accuracies
are all above 90%. However, the rank orders5 of automatic

5The rank order is between 1 and the number of classes (102). If the
correct candidate appears in the first place, the rank order is 1.
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Table 1: System adaptation

Exp’t Accuracy (%) Auto Rank Order Time (s) 

93 91 92 18.4 21.1 36.5 

94 97 97 28.3 24.5 28.4 

I 

Max: 97 Min: 91 

Median: 93.6 

 

 

Max: 36.5 Min: 18.4 

Median: 26.4 

92 90 92 6.6 6.6 8.1 19.9 8.8 12.5 

93 93 98 8.1 6.3 6.3 7.3 7.2 13.8 

II 

Max: 98 Min: 90 

Median: 92.6 

Max: 8.1 Min: 6.3 

Median: 6.6 

Max: 19.9 Min: 7.2 

Median: 10.7 

85 98 90 14.6 14.1 12.1 27.1 20.3 15.1 

83 92 90 12.6 12.6 12.8 16.5 16.3 15.0 

III 

Max: 98 Min: 83 

Median: 90.2 

Max: 14.6 Min: 12.1 

Median: 12.7 

Max: 27.1 Min: 15.0 

Median: 16.4 

91 95 92 10.5 11.0 8.4 10.3 13.6 8.4 

99 94 99 10.5 12.9 10.6 12.3 14.6 13.1 

IV 

Max: 99 Min: 91 

Median: 94.6 

Max: 12.9 Min: 8.4 

Median: 10.6 

Max: 14.6 Min: 8.4 

Median: 12.7 

91 94 88 9.0 9.0 8.3 9.3 12.2 7.3 

92 90 92 8.3 8.6 8.6 13.7 10.4 10.9 

V 

Max: 94 Min: 88 

Median: 91.7 

Max: 9.0 Min: 8.3 

Median: 8.6 

Max: 13.7 Min: 7.3 

Median: 10.7 

recognition decrease from 12.7 to 8.6. This means that the
performance of the machine improves by adding pseudo-
training samples, although some pseudo-training samples
are not correctly labelled; 3) in consequence of the im-
proved automatic prediction, the time for interactive recog-
nition decreases from 16.4 seconds to 10.7 seconds. This
means that the improved performance of the automated
components of CAVIAR does help the users to identify the
flowers faster. 4) Both automatic rank order and time for
complete interactive recognition are near the corresponding
values of Experiment II, which, as expected, has the best
performance. This suggests that instead of initializing the
CAVIAR system with many training samples, we can trust
the system’s self-learning ability. Of course, the first users
would need more time.

5. Conclusions

We proposed a parameterized geometrical model to mediate
the communication between human and computer for inter-
active visual object recognition. We modelled the recogni-
tion procedure as a finite state machine. We demonstrated
the methodology with a flower recognition system. Based
on the evaluation of the system, we claim that: 1) A param-
eterized visible model leads to effective human-computer
interaction; 2) Human intervention, especially in the early
segmentation stage and at final identification, is valuable;
3) Calculating features and culling unlikely candidates are
appropriate tasks for the machine; 4) CAVIAR can, in some
situations, outperform human-alone and machine-alone; 5)
the system can be initialized with a minimum number of

training samples, but still achieve high accuracy; 6) the sys-
tem shows self-learning ability.

Model-mediated visual interactive recognition poses
many exciting research challenges and may also have prac-
tical applications. We have begun to study the user’s cogni-
tive state transitions through examination of our detailed log
of the timing of the interactions and through eye tracking
with an ASL GazeTracker. With a mobile (Sharp Zaurus)
implementation developed at Pace University [13], we will
investigate the benefits of obtaining additional photographs
(e.g., of pistils and leaves). Candidate applications include
faces, fruit, and photographs of skin diseases.
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