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Abstract— The exchange of information between human and machine has been a bottleneck in 

interactive visual classification. The visible model of an object to be recognized is an abstraction 

of the object superimposed on its picture. It is constructed by the machine but it can be modified 

by the operator. The model guides the extraction of features from the picture. The classes are 

rank ordered according to the similarities (in the hidden high-dimensional feature space) between 

the unknown picture and a set of labeled reference pictures. The operator can either accept one 

of the top three candidates by clicking on a displayed reference picture, or modify the model. 

Model adjustment results in the extraction of new features, and a new rank ordering. The model 

and feature extraction parameters are re-estimated after each classified object, with its model and 

label, is added to the reference database. Pilot experiments show that interactive recognition of 

flowers and faces is more accurate than automated classification, faster than unaided human 

classification, and that both machine and human performance improve with use. 
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1. INTRODUCTION 
CAVIAR (Computer Assisted Visual InterActive Recognition) is a paradigm for interaction 

in narrow domains where higher accuracy is required than is currently achievable by automated 

systems, but where there is enough time for limited human interaction. The key to efficient 

interaction in CAVIAR is a visible model, overlaid on the unknown picture, which provides two-

way communication between human and machine.  

As early as 1992, a workshop organized by the National Science Foundation in Redwood, 

California, recommended that “computer vision researchers should identify features required for 

interactive image understanding, rather than their discipline's current emphasis on automatic 

techniques” (Jain, 1992). A panel discussion at the 27th AIPR Workshop asserted “... the needs 

for Computer-Assisted Imagery Recognition Technology” (Mericsko, 1998). Kak’s ICPR’02 

keynote emphasized the difficulties facing fully automated model-based vision (Kak and 

Desouza, 2002). 

2. PRIOR WORK 
In the broad domains of Content-Based Image Retrieval (CBIR), relevance feedback has 

been found effective (Rui et al. 1998). Interaction has been, however, necessarily limited to the 

initial query formulation and the selection of acceptable and unacceptable responses (Harman, 

1992; Cox et al. 2000; Carson et al., 2002). The designer of “Blobworld” (Carson et al., 2002) 

suggested that the CBIR system should display its representation of the submitted and returned 

images.  

Active Learning makes use of human intervention to reduce the number of training samples 

that the classifier needs to achieve a target error rate, but without interacting with images of the 

unknown object (MacKay 1992; Cohn et al., 1996).  
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In many OCR applications, every scanned page is checked by the operator before further 

processing (Bradford, 1991; Dickey, 1991; Klein and Dengel, 2004). In camera-based text 

recognition, the operator defines a bounding box (Haritaoglu, 2001; Zhang et al., 2002). In face 

recognition, the operator sets the pupil-to-pupil baseline (Yang et al., 2002). In all three tasks, 

the operator intervenes again at the end to classify rejects (Sarkar et al., 2002). In contrast, we 

propose that the human and the machine take turns throughout the classification process, each 

doing what they do best. A survey of the relevant psychophysical literature appears in (Zou and 

Nagy, 2006). 

Chen et al. give examples of the use of landmarks for classifying species of the fish genus 

Carpiodes (Chen et al., 2005). Homologous landmarks are also well established in aerial 

photography (Drewniok and Rohr, 1997), in radiography (Yue et al., 2005), and in 

dactylography (Nilsson and Bigun, 2002). The homologies or correspondences of interest range 

from translation, rotation, and scale invariance to affine and projective transformations.  

The recognition of flowers has been investigated in (Das et al., 1999; Saitoh et al., 2004), 

while face recognition is a growth industry with entire conferences devoted to it (Zhao et al., 

2004). Local matching methods (Pentland et al., 1994; Wiskott et al., 1997) classify the faces by 

comparing the local statistics of the corresponding facial features. 

3. THE CAVIAR MODEL 
The visible model consists of a minimal set of perceptually salient landmark points (pixels) 

that establish a homology between two images. The desired homology is the structural 

correspondence between imaged objects of the same class, which allows mapping a region (a 

compact set of pixels) from one image into another. In CAVIAR, unlike in numerical taxonomy 

and some face classification methods, the landmarks serve only to define the similarity 
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transformation required for registering (juxtaposing) pairs of images rather than as condensed 

object descriptors. The homology specified by the visible model ensures that the features 

extracted from images of the same class are commensurable. What distinguishes CAVIAR from 

previous work is the interactive refinement of the visible model – the landmarks – according to 

the results of the classification.  

The model mediates only a restricted set of information. It does not tell the computer 

anything about the image-based perceptions that lead the operator to correct or approve the 

model, and it does not reveal to the operator the configuration of the resulting feature vectors in 

high-dimensional feature space. Rich contextual knowledge and superior noise-filtering abilities 

render the operator superior in tasks like object-background separation (Palmer, 1999), but the 

machine can faultlessly compute geometric and histogram moments, posterior probability 

distributions, and rank orders. It also stores all the reference images, labels, feature vectors and 

the associations between them. The interaction itself can be modeled by a simple finite-state 

machine.  

The above formulation of the visible model leads to two evaluation criteria: (1) the error rate 

of interactive classification based on accurately instantiated visible models, and (2) the human 

time required to refine the automatically generated visible models as necessary.  

Figure 1 shows examples of our flower and face models. The interaction is restricted to 

isolated points: the user can point and drag, but not paint or shade. A line drawing is 

superimposed on the picture to let the operator judge whether a computer-suggested model fits 

the unknown object. These models are constructed automatically, and corrected interactively 

only when necessary.  
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Figure 1.  Examples of CAVIAR-Flower (top) and CAVIAR-Face (bottom) models, before and after human 
adjustment. Here automatic model construction failed because of overlapping flowers and partially closed eyes, 
respectively.  
 
 
 

    

 

 
Figure 2. CAVIAR-Flower (left) and CAVIAR-Face (right) graphic user interface. In CAVIAR-Face, because 
accurate pupil location is important, an enlarged view is provided for adjustment. 
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A model instance need not depict faithfully intensity, color, or texture edges. An ill-fitting model 

may suffice to classify an “easy” object. Conversely, even an accurate model may result in 

ambiguous features. (One consequence of the role of the visual model in our system is that there 

can be no “ground truth” for it. Several models, or none, may lead to features that cause the 

correct candidate to be ranked on top.) The computer displays, in addition to the visible model, a 

set of reference pictures ranked according to the posterior class probabilities of the unknown 

object (Fig. 2). The operator can then either correct the model if none of the top three candidates 

match, or consult more reference images to find a better match.  

4. CAVIAR-FLOWER AND CAVIAR-FACE SYSTEMS 
Model building 

The visible model of CAVIAR-Flower (Figure 1, top) is a rose curve with 6 parameters, 

which are estimated with prior probabilities learned from a training set (Zou, 2005). The visible 

model of CAVIAR-Face (Figure 1, bottom) consists of pixels at the centers of the eyes (pupils), 

at the bottom of the chin (chin), and below the ears (jowls, for lack of a better word). These 

characteristic points are located by hierarchic template matching. In both CAVIAR-Flower and 

CAVIAR-Face, interactive model correction requires positioning the cursor to “acquire” some 

landmark, and then dragging it to a preferred location. The machine then re-estimates the 

posterior probabilities and the resulting rank order according to the adjusted model. 

Feature extraction 

In CAVIAR-Flower, the 8 features are the two similarity-invariant parameters of the rose 

curve, and the first three moments of the hue and saturation histograms of the region enclosed by 

the curve (Zou, 2004). In CAVIAR-Face, the face is aligned based on the five landmarks, and 
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then divided into a large number of local regions. The pixel configurations of these local regions 

serve as features (Zou et al., 2006).  

Rank ordering (classification) 

In CAVIAR-Flower, the classes are ordered according to the Euclidian distance of the 

unknown features from the nearest feature vector of each class. In CAVIAR-Face, the local 

regions from the unknown image are compared against corresponding local regions of every 

reference face. The classes are then ordered by their total rank, i.e., the Borda Count (Ho et al., 

1994), computed over all local regions. 

In both CAVIAR-Flower and CAVIAR-Face, when the reference pictures of top three 

candidates are displayed, the operator decides whether to (1) accept one of the displayed classes 

by clicking on it, or (2) modify the model superimposed on the picture of the unknown object, or 

(3) inspect lower-ranked candidates (“browse”) until a good match is found. The operator need 

not be able to classify the unknown object, but only to decide whether it matches one of the 

displayed reference pictures. 

The model must be based on visible and readily discernible vertices and edges. The features 

must address properties of the objects that differentiate the classes. The choice of classifier is 

dictated by the number of classes, the number of features, the range and distribution of feature 

values, and the number of available reference samples per class (Nagy, 2004). Only the 

interactive recognition system architecture that we propose (Figure 3) is general across different 

domains. 
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5. EVALUATION:  CAVIAR-FLOWER 
We could not use pictures from any of the many excellent flower sites on the web because 

none have more than one or two samples per specie, and labeling conventions, background, and 

resolution differ from site to site. We therefore collected a database of 1078 flowers from 113 

species, mostly from the New England Wildflower Garden (http://www.newfs.org/). Our system 

was developed on a subset of 216 flowers with 29 classes (Nagy and Zou, 2002) and evaluated 

on a new subset of 612 flowers, consisting of 102 classes with 6 samples per class (Zou and 

Nagy, 2004). For classification, the photos, taken at the lowest resolution of a Canon Coolpix 

camera, were further reduced to 320 x 240 pixels. 

The flowers were photographed against complex backgrounds (dirt, weeds, and other flowers 

of the same or other species), under highly variable illumination (sharp shadows on foreground 

or background, specular reflections, saturation of some of the color channels), and poor imaging 

conditions (blur, incomplete framing), without necessarily a clear view of the camera viewfinder 

screen. The color distribution is not uniform, but most of our flowers are yellow, white, red, or 

blue. Several pictures contain multiple, tiny, overlapping flowers. Our database, including labels 

and segmentation, is freely available on http://www.ecse.rpi.edu/doclab/flowers. 

    

AdaptAdapt

 
Figure 3. CAVIAR system architecture. Operator interactions shown in red. 
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Experimental protocol 

We asked 30 naive subjects (male and female adults without any connection to our 

department) to classify, as rapidly and as accurately as possible, one flower of each of 102 

different categories (this took about one hour per subject). The order of the 102 flower images 

was randomized for each subject. None of these test images was used in training the CAVIAR 

system used by that subject.  

The 30 sessions addressed five different tasks (T1-T5). Each task was replicated by 6 

subjects, with images of different instances of the same 102 species. In baseline Task 1, neither 

the subjects nor the machine made use of a model: the subject just browsed the reference set 

(which was kept in an arbitrary fixed order) to find an acceptable candidate class. In Task 2, all 5 

of the available reference pictures were used to train the system. The remaining tasks (Task 3-5) 

explored semi-supervised learning based on decision directed approximation (Nagy and Shelton, 

1966; Baird and Nagy, 1994; Veeramachaneni and Nagy, 2004) and differed only by letting the 

users add the samples they classified to the training sample (we call samples with user-assigned 

labels and models pseudo-training samples). Table 1 shows the experimental design, based on 

612 distinct flower images. 

Table 1. CAVIAR-Flower recognition experiments  
Task Purpose Classification Training set composition 

 
  # of labeled 

samples 
# of pseudo-

training samples 
T1 Unaided 

classification 
Browsing only None None 

T2 510 None 
T3 102 None 
T4 102 204 
T5 

 
Interactive  

classification 

 
Rose curve adjustment

+ browsing 
102 408 
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Interactive accuracy and time compared to human alone and to machine alone 

Table 2 shows the median performance of six subjects for human-alone (T1), machine-alone 

(T2 initial auto), and CAVIAR (T2). There is no significant difference between CAVIAR and 

human-alone in accuracy. However, CAVIAR reduced the time spent on each test sample to less 

than half.  

Table 2. CAVIAR compared to human alone and to machine alone 
 Time 

(s) 
Top-1 

accuracy (%)
Top-3 

accuracy (%)
Rank 
Order 

T1 (human alone) 26.4 94 N/A 51.0 
T2 initial auto 0 39 55 6.6 
T2 (CAVIAR) 10.7 93 N/A N/A 

 
Machine Learning 

Table 3 shows the median values of the classification accuracy and the human time for T2, 

T3, T4, and T5. The median time spent on each interactive recognition task decreased from 16.4 

to 10.7 seconds, which is the same as the median time of T2. The speed-up is due to an increase 

in the initial machine accuracy of about 10% resulting from the addition of the (not-necessarily 

correctly) classified flowers to the database. 

Table 3. Machine learning. 

 # of labeled 
samples per class 

# of pseudo-training 
samples per class 

Human time Accuracy (%) 

T3 1 0 16.4 90 
T4 1 2 12.7 95 
T5 1 4 10.7 92 
T2 5 0 10.7 93 

 
The CAVIAR system can achieve high accuracy even when initialized with only a single 

training sample per class. Adding pseudo-labeled training samples improved automatic 

recognition, which in turn helped the subjects to identify the flowers faster. 
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Figure 4. Successive rose curve 
adjustments 

 
Figure 5. Recognition time as a  

function of experience with the system.
 

Human recognition strategy and learning 

Figure 4 shows the average percentage of successive rose curve adjustments. A geometric 

distribution with p=0.55 fits the curve well: the probability of success on each adjustment is just 

over one half.  On average, each sample requires 1.3 adjustments. Figure 5 shows the human 

time as a function of experience with the system, i.e., the number of samples that have been 

classified, for T1 and T2.  Even without the machine’s help, human time decreased from 26 to 17 

seconds per flower as the subjects become familiar with the database. With CAVIAR, the time 

decreased from 9 to 5 seconds.  

6. EVALUATION:  CAVIAR-FACE 
We downloaded the FERET face database from the National Institute of Standards and 

Technology (NIST) (Phillips et al., 1998; Phillips et al., 2000). Series BK was used for the 

“gallery” (reference) images. Part of the BA series was reserved for training, which requires 

pairs (BA and BK) of images of the same individual. Each of six subjects classified 50 randomly 

selected BA test pictures (different from the training set) against the same gallery of 200 BK 

pictures (taken on the same day as the test pictures but with a different camera and lighting). The 

faces vary in size by about 50%, and horizontal and vertical head rotations of up to 15° can be 

observed. Although the subjects had been asked to keep a neutral expression and look at the 
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camera, some blinked, 

smiled, frowned, or moved 

their head. Because we had 

only two samples per face, 

here we could not test 

decision-directed machine 

learning. 

Earlier experiments 

showed that human-alone 

(browsing only) required an 

average of 66 seconds per 

photo, and most subjects did 

not misclassify any photos 

(Zou, 2004).  

Figure 6 and Table 5 

summarize the experimental 

results. 50.3% of the photos 

were classified without 

adjustment, in 2.3 seconds on average. The accuracy was 99.7%, and the average recognition 

time, including adjustments and browsing, was 7.6 seconds per photo. Only 15% of the faces 

required more than two interactions. The top-3 accuracy rose from 56% for automatic 

recognition to 96% after interactive model modifications. 

Table 5. CAVIAR-Face compared to human alone and to machine alone. 

 

AUTO SELECT BROWSE 
50.3%1.0%

48.7%

ADJUST1 SELECT BROWSE 
19.7%0.7%

28.3%

ADJUST2 SELECT BROWSE 
13.3%0.0%

15.0%

ADJUST3 SELECT BROWSE 
4.7%1.0%

9.3%

ADJUST4 SELECT BROWSE 
5.3%0.3%

3.7%

ADJUST5 SELECT BROWSE 
2.0%0.7%

1.0%

ADJUST6 SELECT BROWSE 
0.7%0.0%

0.7%

ADJUST7 SELECT BROWSE 
0.3%0.0%

0.3%

7.7 sec 2.3 sec 

16.1 sec 7.7 sec 

10.6 sec 

14.4 sec 

16.6 sec 

19.6 sec 

42.9 sec 

34.7 sec 

42.6 sec

23.2 sec

33.2 sec

49.8 sec ADJUST8 SELECT BROWSE 
0.0%0.3%

56.0%

74.3%

84.3%

89.0%

94.0%

95.3%

95.7%

96.0%

96.0%

 
Figure 6. Interactions in CAVIAR-face (6 subjects). SELECT means 
choosing one of the displayed candidates. BROWSE means looking at more 
than 3 displayed faces before selecting a winner. Both SELECT and 
BROWSE terminate the interactive classification. ADJUST prompts 
automated rank ordering, which results in a new set of candidates for 
selection or browsing. Listed next to SELECT and BROWSE is the average 
(over subjects and pictures) human time required for final classification, 
including any adjustment or browsing. The percentage (in italic) indicated 
above AUTO or every ADJUST is the machine TOP-3 recognition accuracy. 
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 Accuracy Time per face 
Interactive      99.7% 7.6 sec 
Machine Alone      48.0% ---- 
Human Alone ~100.0% 66.3 sec 

 

7. MOBILE CAVIAR 
An early version of CAVIAR-Flower was reprogrammed in Java on a camera-equipped 

Sharp Zaurus Personal Digital Assistant (PDA) at Pace University (Evans et al., 2005). 

Subsequently it was ported in our laboratory to a camera and Wi-Fi equipped Toshiba e800 PDA 

dubbed M-CAVIAR (Fig. 7). The PDA forwards, via the wireless network interface, each newly 

acquired image to a host laptop computer. The host computes the initial visible model and rank 

order using its stored reference images, and returns the model parameters and index number of 

the top candidates to the PDA. The PDA then displays the top three candidates from its stored 

database of thumbnail reference pictures. If the 

user adjusts the model (using stylus or thumb), 

the adjusted model parameters are sent to the 

laptop and a new model and rank order is 

computed and communicated to the PDA 

(Gattani, 2004; Zou and Gattani, 2005).  

We repeated on the PDA some of the earlier 

experiments with six new subjects. With this 

system, it was also possible to conduct field 

experiments to recognize flowers in situ. An 

additional 68 classes of flowers, with 10 samples 

of each, were collected with the new, lower-
     Figure 7.   M-CAVIAR graphic user interface. 
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quality PDA camera. Recognition time per flower was over 20% faster than using the desktop, 

mainly because model adjustment was faster with either stylus or thumb than with a mouse. 

Recognition accuracy was slightly lower, because some reference flowers could not be easily 

distinguished on the small PDA display. The networked computation did not impose any 

significant delay: except for uploading each new flower picture to the laptop, only very short 

messages (model coordinates and rank orders) are exchanged. 

8. SUMMARY 
We presented a case for interaction throughout the recognition of visual objects, rather than 

only at the beginning or the end. The human retains the initiative at all times and, as final arbiter 

of correct matches (as opposed to merely proofreading already classified items), ensures high 

accuracy. The visible models formulated for flowers and for faces show that such models can 

mediate human-computer communication. In these applications an interactive system is more 

accurate than the machine alone and faster than the human alone. Furthermore, it improves with 

use.  

The feature extraction and automated rank ordering can obviously be improved. Any 

improvement of the automated part of the system will further reduce interaction time. The 

network protocol of M-CAVIAR will require some changes for camera-phone applications. 

Careful interface and display design will be required to avoid disorienting the operator, but direct 

action manipulation will be faster with stylus and thumb than with a mouse.  

Portable, wireless CAVIAR systems offer the possibility of Internet-wide reference data 

collection and collaborative interactive recognition, including some medical and  educational 

applications. They may also prove valuable for constructing very large labeled training sets for 
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automated algorithms by “growing” training sets with interactive classification under operational 

conditions. 
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