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Context: Time Diversity

O Time diversity can be obtained by interleaving and coding
over symbols across different coherent time periods.

Channel: time
diversity/selectivity,
but correlated across
successive symbols

No interleaving

(Repetition) Coding...
w/o interleaving: a full
codeword lost during fade

Interleaving
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Coding alone is not sufficient!
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Interleaving: of sufficient depth:
(> coherence time)
=At most 1 symbol of codeword lost
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What is channel coding?

O Transforming signals to improve communications performance by
increasing the robustness against channel impairments (noise,
interference, fading, ..)

Q It is a time-diversity technique, but can be broadly thought ot as
techniques to make better use of the degrees-of-freedom in channels
(eg: space-time codes)

O Waveform coding: Transforming waveforms to better waveforms

a Structured sequences: Transforming data sequences into better
sequences, having structured redundancy.

0O “Better” in the sense of making the decision process less subject to
CITOorS.

O Introduce constraints on transmitted codewords to have greater
“distance” between them

O Note: Channel coding was developed in the context of AWGN channels
& we shall study them in the same context

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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(Modified) Block Diagram
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Channel Coding Schemes:
Block, Convolutional, Turbo
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Coding Gain: The Value of Coding...

a Error performance vs. bandwidth
aPower vs. bandwidth

A Data rate vs. bandwidth
A Capacity vs. bandwidth

Coding gain:

For a given bit-error probability,

the reduction in the Eb/NO that can be
realized through the use of code:

G [dB] =[%] [dB]—(%] [dB]

0 0

E, /N, (dB)
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Symbol error probability: P_(M)

10

10 E-

8/

Coding Gain Potential

Symbol error perfromance of M-ary PAM

-| Gap-from-Shannon-limit:
| @BER=10"

" 19.6+1.59=11.2dB

o (about 7.8 dB if you maintain
spectral efficiency)

— Binary-PAM |]

10
E,/N,, [dB]
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The Ultimate Shannon Limit

O Goal: what 1s min Eb/No for any spectral efficiency (p—0)?

a Spectral efficiency|p = B/W =log, (1 + SNR)
a where SNR = E/N_where E =energy per symbol
OOrSNR=(2r-1)

0 Eb/No = Es/No * (W/B)

= SNR/a

Eb/] Lets try to appreciate what Shannon’s bound means
by designing some simple codes and comparing it to

Fi the Shannon bound
D IX r/ —T T \=r_/ .x./'r_/ ~a a — o T OTF=

0 Gap-to-capacity (@ BER =10-:
9.6dB + 1.59 =11.2 dB (without regard for spectral eff.)
or 9.6 — 1.76 = 7.84 dB (keeping spectral eff. constant)

Shivkumar Kalyanaraman
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Binary Symmetric Channel (BSC)

T Y - /
1—»><1 Ply=1|z=0)

'F-.EDUH'DAh

2a Given a BER (f), we can construct a BSC with this
BER...

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

10 Google : “shiv rpi”



Reliable Disk Drive Application

O We want to build a disk drive and write a GB/day for 10 years.

0 => desired BER: 10-1°

O Physical solution: use more reliable components, reduce noise

O System solution: accept noisy channel, detect/correct errors
(engineer reliability over unreliable channels)

Source

|

Encoder

‘é

Decoder

L

Noisy
channel
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Repetition Code (R3) & Majority Vote Decoding

Source Transmitted
sequernce sequence
s t source message s=0010110
0 000
1 111
s 0 0

1 0 1 1 0
t 000 000 111 000 111 111 000
A“GN n 000 001 000 000 101 000 00O

r 000 001 111 000 010 111 00O

Algorithm 1.9. Majority-vote
Received sequence r Likelihood ratio ;E_III;E)T Decoded sequence § decoding algorithm for Rs. Also

shown are the likelihood ratios

000 7? 0 (1.23), assuming the channel is a

001 *]*_1 0 binary symmetric channel;

010 A1 0 y=Q@0-£H/f.

100 A1 0

101 A 1

110 A 1

011 o 1

111 o 1

¥ = 09 s ereater than 1, since f < 0.5, so the winning hypothesis is the

1ar Kalyanaraman I
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Performance of R3

s O 0 1 0 1 1 0

t 000 000 111 000 111 111 000
n 000 001 000 000 101 000 QOO
r 000 001 111 000 010 111 000
s 0 0 1 0 0 1 0

corrected errors *
undetected errors *
ENCODER t CHANNEL T DECODER ;%

~ B

The error probability is dominated by the probability that two bits in
a block of three are flipped, which scales as f 2.

For BSC with f= 0.1, the R3 code has a probability of error, after
decoding, of p, = 0.03 per bit or 3%.

Rate penalty: need 3 noisy disks to get the loss prob down to 3%. To

get to BER: 10715, we need 61 disks!

e 10000

f=10%
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wlgorithm.
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Coding: Rate-BER Tradeoff?

s 0 0 1 0 1 1 0
11 o~ e e e
Repetltlon t 000 000 111 0200 11f 111 00O
. 000 001 000 000 1 000 000
code R3: n
r 000 001 111 000 O 111 000
S 0 0 1 0 0 1 0
CDl‘l‘ECtEd errors *

undetected errors *

O
R5__\-B R1
0.1 - RO 001 4 R%-Y"gg
m El;‘ﬂm
0.08 - | g
1e-05 A i more ysaful codag

Lets try to design a “better” code: Hamming Code

]
0.04 1e-10 40
i}
i
O
0.02 H §
R5 more useful codes ]
RG'ID, H RB1
0 —*EE T T T T T le-15 2 T T T T T
0 02 04 06 08 1 0 02 04 0.6 0.8 1

Rate Rate

O Shannon: The perception that there is a necessary tradeoff between Rate and BER s
illusory! It 1s not true upto a critical rate, the channel capacity!

A You only need to design better codes to give you the coding gain...
Shivkumar Kalyanaraman
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Hamming Code: Linear Block Code

O A block code 1s a rule for converting a sequence of source bits s, of length
K, say, into a transmitted sequence t of length N bits.

O In a linear block code, the extra N-K bits are linear functions of the original
K bits; these extra bits are called parity-check bits.

O (7.4) Hamming code: transmits N = 7 bits for every K = 4 source bits.

Q The first four transmitted bits, t,t,t,t,, are set equal to the four source
bits, ,5,55S,

QO The parity-check bits tstt, are set so that the parity within each circle
(see below) is even

AR
) &
SNV N/

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Hamming Code: (Contd)

s t s t s t S ¢ Table 1.14. The sixteen codewords
{t} of the (7,4) Hamming code.

0000 0000000 0100 0100110 1000 1000101 1100 1100011 Any pair of codewords differ from
0001 0001011 0101 0101101 1001 1001110 1101 1101000 cach other in at least three bits.

0010 0010111 0110 0110001 1010 1010010 1110 1110100
0011 0011100 0111 0111010 1011 1011001 1111 1141111

Because the Hamming code 1s a linear code, it can be written compactly in
terms of matrices as follows. The transmitted codeword t is obtained from the

source sequence s by a linear operation,

o t=GTs, i 1.25
. (1.25)

.
.......
-------------

-----
"a
"y
.

------
...........
. b

1 0 0 0.
10 1 0 0|*
.| 0 0 1 0]/
G'="1.0 0 0 1. (1.26)
1 .... I ..... I ---- 0
01 1 1
1 0 1 1

- - nan

Rensseluc, + vy vovimie souan
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Hamming Code: Syndrome Decoding

O If channel i1s BSC and all source vectors are equiprobable, then...

O ... the optimal decoder identifies the source vector s whose encoding
t(s) differs from the received vector r in the fewest bits.

O Similar to “closest-distance’ decision rule seen in demodulation!
O Can we do it more efficiently? Yes: Syndrome decoding

N SN ST
AN A N AT

| [
\/ / \ % NS

The decoding task 1s to find the smallest set of flipped bits that can account for
these violations of the parity rules.

[The pattern of violations of the parity checks is called the syndrome: the
syndrome above is z = (1, 1, 0), because the first two circles are "unhappy’
(parity 1) and the third circle is "happy* (parity 0).]

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Syndrome Decoding (Contd)

a Can we find a unique bit that lies inside all the
‘unhappy' circles and outside all the “happy' circles?

aIf so, the flipping of that bit would account for the
observed syndrome.

- - - -
- "'"-.., - - - ™ -
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Syndrome z 000 001 010 O11 100 101 110 111

Unflip this bit  nene  r7 re T4 5 1 r2 T3
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Hamming Code: Performance

O A decoding error will occur whenever the noise has flipped more than one
bit in a block of seven.

0 The probability scales as O(f 2), as did the probability of error for the
repetition code R3; but Hamming code has a greater rate, R = 4/7.

O Dilbert Test: About 7% of the decoded bits are in error. The residual errors
are correlated: often two or three successive decoded bits are flipped...

O Generalizations of Hamming codes: called BCH codes

S ENCODER t CHANNEL r DECODER S T ‘ |
f=10% == P8k # sp).
e a e L k=1
o I ERONDAR

ST kes T

Figure 1.17. Transmitting 10000
source bits over a binary
symmetric channel with f = 10%
using a (7,4) Hamming code. The
probability of decoded bit error is
about 7%.

parity bits
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Shannon’s Legacy: Rate-Reliability of Codes

o FhE R RI
a e "0 ;ﬁﬁt e Q Noisy-channel
0.08 - P 6.0 - Em A ol codoc coding theorem:
Sos T, EH (Y’j) e :DEI!I‘E;++++BCH(5'I1,?6) defines
o 18 achievable
0.04 T+ 4BCH(31,16) 1e-10 :E: rate/rehablllty
i | p— regions
0 m@%ﬁﬁ : : : : 1e-15 _Eﬁ . : : : :
) 1

0O 02 04 06 08 1 0 02 04 06 08
Rate Rate A Note: you can
T e e — get BER as low
0.1 R1 001 A .
I as desired by
{8 . .
0.08 o te.05 4§17 d@Slgnlng an
+ P T HE 4 Db {18+ .
- e 18 appropriate code
: _;[5"“ + . .
e 1. within the
0.04 1 e / 1e-10 48 + ; ;
j%ﬁmjL f,/ —§+ : achievable | not achievable CapaCIty reglon
+ [u}
0.02 - i/ ‘@ ¥
# g ' '
R5 actevable /not - chievable I ) The equation deﬁmlng the |
0 FERARN | | | o5 Bt | | . _| Shannon limit (the solid curve) is
o 02 04 %06 08 1 o 02 04 6 08 1 R=C/(1— Hapy)), where C' and
Rate Rate H, are defined in equation (1.35).
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Shannon Legacy (Contd)

0.1 4 it Ea+ +— R . )
01 001 4 ﬁ} +* The equation defining the
1 & Shannon limit (the solid curve) is
-
_ e A R . ¥
0.08 - 1o0s 4§57 R=C/(1 - Ha(py)), where C' and
o {8+ Hy are defined in equation (1.35).
40 +
0.06 | ]
1.
18 7
0.04 1e-10 %:
%5 1= : achievable | not achievable
s 0
0.02 ; %L R
R5 B
@
'y
0 j-m@%— T 1e-15 ha T T T T T
0 _ o 02 o4 o6 08 1
Rate

The maximum rate at which communication 1S possible with
arbitrarily small p, is called the capacity of the chann

1 1
flogg =+ (1 — f)logs -

0 BSC(D capac1ty -C-*(f =1—H-;a(f_=l—{ - - f]

Q

“‘What performance are you trying to achieve? 1071°? You don’t
need sirty disk drives — you can get that performance with just
two disk drives (since 1/2 is less than 0.53). And if you want
Rensselacr Polytd  p, = 10718 or 10724 or anything, vou can get there with two disk

iraman
: “shiv rpi”
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Caveats & Remarks

a Strictly, the above statements might not be quite right:

A Shannon proved his noisy-channel coding theorem by studying
sequences of block codes with ever-increasing block lengths,
and the required block length might be bigger than a gigabyte
(the size of our disk drive),

Q ... in which case, Shannon might say "well, you can't do 1t with
those tiny disk drives, but if you had two noisy terabyte drives,
you could make a single high-quality terabyte drive from them'.

0 Information theory addresses both the limitations and the
possibilities of communication.

0 Reliable communication at any rate beyond the capacity 1s
Impossible, and that reliable communication at all rates up

to capacity 1s possible.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Generalize: Linear Coding/Syndrome Decoding

Q The first four recetved bits, 11,151, purport to be the four source bits; and
the received bits r.r,r, purport to be the parities of the source bits, as defined
by the generator matrix G.

Q Evaluate the three parity-check bits for the received bits, r,r,r;r,, and see
whether they match the three received bits, r.r,r-.

O The differences (modulo 2) between these two triplets are called the
syndrome of the received vector.

O If the syndrome is zero then the received vector is a codeword, and the
most probable decoding is given by reading out its first four bits.

O If the syndrome 1s non-zero, then the noise sequence for this block was
non-zero, and the syndrome is our pointer to the most probable error
pattern.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear Coding/Syndrome Decoding (Contd)

1 0 0 0
a Coding: t = Qs 0 100 I
' O 0 1 0 GT 4
G is the generator matrix of the code G'=[0 0 0 1 |: P ]
1 1 1 (} -------------------------------------
0 1 1 1
1 0 1 1

...............

Lets now build linear codes from ground up (first pr1nc1ples)
The syndrome-decoding problem is to find the most — o
probable noise vector n satisfying the equation | ¢, — , -

th tisfy

O Parity Check Matrix H:

the parity-check matrix H is given by H = [ —P I ]

. . 0
in modulo 2 arithmetic, —1 =1, so 0 -|
1

H=[P I | =
J amar Kalyanaraman

- e

1 0
0 1
0 0

= I
[ R
= = O

Rensselaer Polytechnic Institute
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Some definitions

Q Binary field :

A The set {0,1}, under modulo 2 binary addition
and multiplication forms a field.

Addition Multiplication
020=0 0-0=0
0@1=1 0-1=0
1©0=1 1-0=0
1®&1=0 1-1=1

0 Binary field is also called Galois field, GF(2).

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Definitions: Fields
a Fields:

O Let F be a set of objects on which two operations ‘+’ and
“.” are defined.

O Fissaid to be a field if and only 1f

1. F forms a commutative group under + operation.
The additive 1dentity element is labeled “0”.

VapbeF=a+b=b+acF

2. F-{0} forms a commutative group under . operation.
The multiplicative identity element is labeled “1”.

VabeF=a-b=b-aeF

3. The operations “+” and *“.” distribute:

a-(b+c)=(a-b)+(a-c)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Definitions: Vector Space over Fields

O Vector space: (note: it mixes vectors and scalars)

a LetV be a set of vectors and F a fields of elements
called scalars. V forms a vector space over F if:

1. Commutative: Vu,veV = u+v=v+uek

2. Closure: VaeF,VveV=a-v=ueV

3. Distributive:
(a+b)-v=a-v+b-v and a-(u+v)=a-u+a-v

4. Associative: Va,beF,VveV = (a-b)-v=a-(b-v)
5. Identity Element:VveV, 1-v=v

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Vector Spaces, Subspaces

0 Examples of vector spaces V,
O The set of binary n-tuples, denoted by

V, = {(0000),(0001),(0010),(0011),(0100),(0101),(0111),
(1000),(1001),(1010),(1011),(1100),(1101),(1111)}

O Vector subspace:

0 A subset S of the vector space V, 1s called a subspace if:

aZero: The all-zero vector 1s in S.

A Closure: The sum of any two vectors 1n S 1s also in S.

0 Example:
{(0000),(0101),(1010),(1111)} 1sa subspaceof V,.

Shivkumar Kalyanaraman
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Span, Bases...

O Spanning set:
Q A collection of vectors G = {V1 R S ,,Vn}

the linear combinations of which include all vectors in a

vector space V, 1s said to be a spanning set for V or to span
V.

aExample:
{(1000),(0110),(1100),(0011),(1001)} spans V,.

O Bases:

0 A spanning set for V that has minimal cardinality is called
a basis for V.
0 Cardinality of a set is the number of objects in the set.

aExample:
{(1000),(0100),(0010),(0001)} is a basis for V,.

Shivkumar Kalyanaraman
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Linear Block Codes are just Subspaces!

A Linear block code (n,k)

QA set C <V, with cardinality 2" is called a linear
block code If, and only if, it is a subspace of the
vector space V..

V, >CcV,

O Members of C are called codewords.

a The all-zero codeword 1s a codeword.

Q Any linear combination of code-words is a
codeword.

Rensselaer Polytechnic Institute
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Linear block codes — cont’d

mappin V

7

Bases of C

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear block codes — cont’d

The information bit stream 1s chopped into blocks of k bits.

Q

O Each block is encoded to a larger block of n bits.

O The coded bits are modulated and sent over channel.
M|

The reverse procedure is done at the receiver.

k bits

Data block —

Channel
encoder

Codeword

n-kK Redundant bits

R:k

. =— Coderate
n

Rensselaer Polytechnic Institute
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Recall: Reed-Solomon RS(N,K): Linear Algebra in

Action...
>=K of N Recover K

data packets!
—>

1 | ossv Network

This 1s linear algebra in action: design a
k-dimensional vector sub-space out of an
N-dimensional vector space

A -

Rensselaer Polytechnic Institute

RS(N,K)

received
y'y

FEC (N-K)

Block
Size

N)

A A

Shivkumar Kalyanaraman
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Linear block codes — cont’d

0 The Hamming weight (w) of vector U, denoted by w(U), is
the number of non-zero elements in U.

0 The Hamming distance (d) between two vectors U and V, is
the number of elements in which they differ.

O The minimum distance of a block code i1s

d(U,V)=w(U® V)

dmin: P
i# ]

mind(U;,U;) =minw(U,)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear block codes — cont’d

O Error detection capability is given by

e:dmin _1

a Error correcting capability t of a code, which 1s defined as
the maximum number of guaranteed correctable errors per

codeword, 1s - Ldmm _1 J

2

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear block codes —cont’d

mappin

7

a A matrix G 1s constructed by taking as its row

the vectors on the basis,{v,.v,....,V,}

Bases of C

o vy, v Vv,
11 12 1
V, "
G — E _ v .21 v 22 v 2n
\4 K
| v k1 v k2 v kn
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear block codes — cont’d

a Encoding 1n (n,k) block code

U=mG
/ NI

(u,,U,,...,u.)=(m,m,,...,m,)-

(U,U,,...,u)=m-V,+m,-V,+...+m, -V,
aThe rows of G, are linearly independent.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear block codes — cont’d

2 Example: Block code (6,3)

Message vector Codeword

000 000000

V.| [r10o100 100 110100
G=|V,|=1011010 010 011010
Vs [101001 110 101110
001 101001

101 011101

011 110011

111 000111

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Systematic Block Codes

a Systematic block code (n,k)

a For a systematic code, the first (or last) k elements 1n
the codeword are information bits.

G=[P:I]
I, =kxk identity matrix
P, =kx(n—Kk) matrix

U=(,,U,,...,u; )= (\pl, Pa5ees P> My, My, My )

J/

parity bits message bits

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear block codes — cont’d

Q For any linear code we can find an matrix H (n_k)xyvhich 1ts
rows are orthogonal to rows of G

GH' =0
0 Why? H checks the parity of the received word (i.e. maps the
N-bit word to a M-bit syndrome).

a Codewords (=mG) should have parity of O (i.e. null-space).

O H 1s called the parity check matrix and 1ts rows are linearly
independent.

Q For systematic linear block codes:

H=[I_,i P']

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear block codes — cont’d

U

Modulation 7

channel

m Channel
Data source —— Format —» .
encoding
Data sink Format | Chanflel
A decoding
m
r=U-+e

r=(r,r,,....,I) recetved codeword or vector

e=(e,e,,....,e,) error pattern or vector
Q Syndrome testing:

a S 1s syndrome of r, corresponding to the error pattern e.

S=rH' =eH'

Rensselaer Polytechnic Institute

emodulatioﬂ
Detection

Shivkumar Kalyanaraman
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Linear block codes — cont’d

Error pattern Syndrome

000000
000001
000010
000100
001000
010000
100000
010001

000 U=(101110) transmitted.

101 r=(001110) 1isreceived.

' m Thesyndromeof ris computed:

001 S=rH' =(001110)H" =(100)

010 m Error pattern corresponding to this syndrome s
1(1’? é = (100000)

=) The corrected vector 1s estimated

U=r+¢é=(001110)+(100000) = (101110)

There 1s a unique mapping from Syndrome < Error Pattern

Rensselaer Polytechnic Institute
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Standard Array: Error Patterns

000000

110100

011010

codewords

101110

\

101001

011101

a Example: Standard array for the (6,3) code

110011

000111

000001
000010
000100
001000
010000
100000
010001

110101
110110
110000
111100
100100
010100
100101

011011
011000
011110

101111
101100
101010

101000
101011
101101

011100
011111
011010

110010
110001
110111

000110
000101
000110

Coset:
Error patterp +
codeword

010110

~

Coset leaders
(error patterns)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear block codes — cont’d

O Standard array

- _k i .
1. Forrow 1=23,..2"", finda vectorinV, of minimum

weight which is not already listed in the array.
2. Call this error pattern €; and form the i:th row as the

corresponding coset

VA1 {0

codeword\\[I1 U2 50 o U )

2

e, e, ®U, - ¢,®U,

coset

/ € n—k

n—k
coset leaders 2 2

U, DU,

2nk

Rensselaer Polytechnic Institute
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Linear block codes — cont’d

O Standard array and syndrome table decoding
1. Calculate syndrome S =rH'
2. Find the coset leader, e =e,, corresponding to S .
3. Calculate U=r+é and corresponding m

N

2 Notethat U=r+e=(U+e)+e=U+(e+e)
a Ife=e  erroris corrected.

a Ife=e, undetectable decoding error occurs.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Hamming codes

0 Hamming codes

0 Hamming codes are a subclass of linear block codes and
belong to the category of perfect codes.

0 Hamming codes are expressed as a function of a single
Integer m > 2 , i.e. n and K are derived from m:

Code length : n=2"-1
Number of information bits: k =2" —m-1
Number of parity bits : n-k =m

Error correction capability: t=1

a The columns of the parity-check matrix, H, consist of all
non-zero binary m-tuples.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Hamming codes
a Example: Systematic Hamming code (7,4)
10 0/0 111
H=(0 1 0{1 0 1 1|=[I,, ! P"]
00 1i1 10 1
01 1:1 0 0 O
c_|10 150 L oo o
1 0:0 0 1 O e
11 1i0 001
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Cyclic block codes

2 Cyclic codes are a subclass of linear block codes.

2 Encoding and syndrome calculation are easily
performed using feedback shift-registers.

1 Hence, relatively long block codes can be
implemented with a reasonable complexity.

0 BCH and Reed-Solomon codes are cyclic codes.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Cyclic block codes

a A linear (n,k) code 1s called a Cyclic code 1f all
cyclic shifts of a codeword are also a codeword.

[ U = (u09u19u2,...,un_1) ]whc shifts of U

U = (U U, .Uy, U, U, VY

n—i?2 n I+19°°°2

QExample:

U=(1101)
Uu® =@1110) U® =(0111) U® =011 U®=(1101)=U

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Cyclic block codes

O Algebraic structure of Cyclic codes, implies expressing codewords in
polynomial form

[U(X) =U, +U X +U,X>+...+u_ X" degree (n—l)]

O Relationship between a codeword and its cyclic shifts:
XU(X)=u,X +uX*+..,u X" +u X"

=Uu_, +UX+UuX*+. . +U X" +u X"+uU_,

U (X U, (X"+1)
n-1

=UD(X)+u,_ (X" +1)

OHence: ( U (X) = XU(X) modulo (X" +1)
y extension [ UP(X)=X'"U(X)modulo (X" +1) ]

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Cyclic block codes

a Basic properties of Cyclic codes:
a Let C be a binary (n,k) linear cyclic code

1. Within the set of code polynomials in C,
there 1s a unique monic polynomial g(X)
with minimal degree r <n. g(X)is called
the generator polynomials.

g(X)=9,+9, X +..+9, X"

2. Every code polynomial U(X) in C, can be
expressed uniquely as U(X)=m(X)g(X)

3. The generator polynomial g(X)1s a factor
of X"+1

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Cyclic block codes

4. The orthogonality of G and H in
polynomial form is expressed as g(X)h(X)= X" +1
This means h(X)i1s also a factor of X" +1

5. The row i,i=1,...,k , of generator matrix is
formed by the coefficients of the "j—1"

cyclic shift of the generator polynomial.
(a0 ... 0 0|

Toeplitz Matrix (like the circulant matrix): Efficient Linear Algebra
Operations (multiplication, inverse, solution of Ax = b) etc possible

_' 9 9, - 0,
X *g(X
L & )J {0 9 9, - ng

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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a Systematic encoding algorithm for an (n,k)

Cyclic block codes

Cyclic code:

1. Multiply the message polynomial m(X) by X Nk

2. Divide the result of Step 1 by the generator
polynomial g( X ). Let p(X) be the reminder.

3. Add p(X)toX "*m(X) to form the codeword U(X)

Remember CRC used to detect errors 1n packets?
“Cyclic” Redundancy Check: same idea!

Rensselaer Polytechnic Institute
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d Example: For the systematic (7,4) Cyclic code with generator

Cyclic block codes

polynomial g(X)=1+ X + X’

I. Find the codeword for the message m = (1011)

Rensselaer Polytechnic Institute
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Example: Encoding of systematic cyclic codes

Encode 1011 in systematic form in the (7, 4) code

Solution

(1) d(x)=1+x*+x°

) X" *d(x) = x* +x° + 8

(3) ¥4t x4 1

x3+x+l)x6+x5+ x

x5 +x*+ X3
x +x*
X + x> + x?
v+ X+ X
(1) Express the data d in polynomial form, as d(x). Z
(2) Multiply d(x) by X" ¥ (equivalent to shifting the data bits to the right-hand x4 +xX2+x
end of the codeword. %
(3) Divide the result by g(x), and take the remainder r(x). X +x
(4) Form the codeword polynomial as: X +x+1
e(x) = r(x) + ¥" % d(x) (6.10) 1

Rensselaer Polytechnic Institute

= r(x) =1 orr=100
@) c(x)=r(x) + X" *dx)=1+x+x° +x* = ¢ =rd = 1001011

which is systematic, although the data word is found at the end of the code-
word, rather than at the beginning. The same data, encoded using the generator
matrix of (6.1), would yield the codeword 1011100.

Shivkumar Kalyanaraman
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Decoding cyclic codes

e s
, , 1000000 110
When the received word r is 1101101, 0100000 011
{ 5 ; , 0010000 1l
r(x)=x"+x"+x"+x"+1 0001000 101
0000100 100
We now compute S(X) =mod|r(X)/ g(X 0000010 010
P () [ )/ 9( )] 0000001 001
.1'3
x3+x3+1) RO N
x + x° + x3 Table 16.5
g(X) x? 41 d c
Hence, s = 101. From Table 16.6, this gives e = 0001000, and 110 {10010
1101 1101000
_ _ _ 1100 1100101
c=r®e=1101101 & 0001000 = 1100101 011 1011100
1010 1010001
Hence, from Table 16.5 we have 1001 1001011
1000 1000110
d = 1100 0111 0111001

In a similar way, we determine for » = 0101000, s = 110 and e = 1000000; hence
c=r &e = 1101000, and d = 1101. For r = 0001100, s = 001 and e = 0000001;

hencec =r & e = 0001101, and d = 0001. 1an |
| hiv rpi”




2. Find the generator and parity check matrices, G and H,

respectively.

Rensselaer Polytechnic Institute
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Cyclic block codes

a Syndrome decoding for Cyclic codes:
a Received codeword in polynomial form 1s given by

Received /l’(X) = U(X)—|—e(X)\> Error

codeword pattern

a The syndrome 1s the reminder obtained by dividing the received
polynomial by the generator polynomial.

(X) =000 4SO syudram

a With syndrome and Standard array, error is estimated.

alIn Cyclic codes, the size of standard array 1s considerably
reduced.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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10 ¢

T — uncoded
10 B, ===: Hamming(7,4)
. Hamming(15,11)

E, /N, [dB]

Shivkumar Kalyanaraman
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Well-known Cyclic Codes

O (n,1) Repetition codes. High coding gain, but low rate

O (n,k) Hamming codes. Minimum distance always 3. Thus can detect 2
errors and correct one error. N=2"-1, k=n-m, m>3

O Maximum-length codes. For every integer k > 3 there exists a maximum
length code (n,K) with n = 2k-1,d .. = 21, Hamming codes are dual of
maximal codes.

0 BCH-codes. For every integer M = 3 there exist a code with n = 2M-1,
k>n—mt andd >2t+1 wheretis the error correction capability

O (n,k) Reed-Solomon (RS) codes. Works with k symbols that consists of m
bits that are encoded to yield code words of n symbols. For these codes

n=2"—1,number of check symbols N—k =2t and d_=2t+1

O BCH and RS are popular due to large d . . large number of codes, and easy

oeneration

min2

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Reed-Solomon Codes (RS)

T T
\ —-\\ o .
\\ RS (246,192)
\ \\ )
10
<[
VAN sl o
mh’limita hard Bit Error
limited Rate
1078
] k io"?
\ X
| 107"
1 2 3 4 5 6 7 ]
SNR (EbNo) (dB)

Fig. 3. RS Code versus Convolutional Code.

O Group bits into L-bit symbols. Like BCH codes with symbols rather than single bits.

O Can tolerate burst error better (fewer symbols in error for a given bit-level burst
event).

O Shortened RS-codes used in CD-ROMs, DVDs etc _
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Shortened Reed Solomon Codes

RS(N,K) RS(N,K)

Zeros (z) zZ

(=1 (=) == (== =] =]

FEC(F=N-K) K=d+z
Block
Size
*‘ ™)

Data=d d

y vy A A

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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RS-code performance

/ RS{ﬁcl 56) /
4

-f /

/

/RS(128,112) / /

b=7

| R§(256,224)
RsC

] ;

4 -1 -
10 10 10 2
Random Channel BER

Fig. 5. RS Codes of 7/8-th Rate

O Longer blocks, better performance

O Encoding/decoding complexity lower for higher code rates (1.e. > 2 ): O{K(N-K) log,N}.
O 5.7-5.8 dB coding gain @ BER = 10 (similar to 5.1 dB for convolutional codes, see later)

Rensselaer Polytechnic Institute

Random Channel Bit Error Rate

0™ 10"’ 0™ 10"
107"
; : 7
r - ///f‘//r///f.f//ff 107
KetO — |~ / /7////&;’ |
// g ] 777 M}, [
e 17/
——A A |
utpy /_ / | J 107"
R Z 77T ff;,f;n{ 1 —
Z_'_.//%L /f / j fjf I] 107"
7 7 7‘_/ 7%%‘%“1
VAL ED NI ,__]
e 1 s
: g i i1

Fig. 2. RS{64.k) Random Digital Error Performance.

Shivkumar Kalyanaraman
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Convolutional Codes
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Block vs

K bli> (n,K) n bits
convolutional coding encoder

a (n,k) block codes: Encoder output of K input bits

n bits depends only on the k input bits i

0 (n.k,K) convolutional codes: N output bits

0 each source bit influences n(K+1) input bit

<+“>

encoder output bits l
an(K+1) is the constraint length
aK 1s the memory depth n(K+1) output bits

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Block diagram: Convolutional Coding

Information

Information Rate 1/n
Modulator
Source / Conv. encoder /
U=G(m
m=(m,m,,...,m,...) (m)
Input ;équence :gU19U29U39°°°9Ui9°°°2
CodewordY sequence
Ui= Ul Uy

Branch word (n coded bits)

!

[ouuey)

Rate 1/n

sink

A

m

Rensselaer Polytechnic Institute

Conv. decoder Demodulator

/ /

I

A o

(M, m,,...,Mm.,...)

7=(2,2,,Z,,..2,,..)

received sequence

Z = ZjjyeerZjireensZ
— N
Demodulator outputs

for Branch word i

ni
J

N outputs per Branch word Shjykymar Kalyanaraman
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Convolutional codes-cont’d

a A Convolutional code 1s specified by three parameters
(n,k,K) or (k/n,K) where

AR, =Kk /n is the coding rate, determining the
number of data bits per coded bit.

Q In practice, usually k=1 is chosen and we
assume that from now on.

a K 1s the constraint length of the encoder a where
the encoder has K-1 memory elements.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman

67 Google : “shiv rpi”



A Rate 2 Convolutional encoder

O Convolutional encoder (rate 2, K=3)

Q 3 bit shift-register where the first one takes the incoming
data bit and the rest form the memory of the encoder.

C

D

A

b

Input data bits ——>

m

Rensselaer Polytechnic Institute

N

S

.

D

U, { First coded bit
[ ]

(Branch word)
Output coded bits
ul > u2

®
u2 { Second coded bit

Shivkumar Kalyanaraman
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A Rate 2 Convolutional encoder

Time Output Time Output

(Branch word) (Branch word)
ol b

u, u,
v —[1]JoTo \§—> bt —0]1]0 \6—’10
®

1 u, U,
11
U,
u, u, u, u,
t——]1]0]1 \6—’00 L——0]110 \6—”0

u
u

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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A Rate 2 Convolutional encoder (contd)

Time

Output

(vﬁ?\ ‘ (Branch Word.?

u, u,
ts 4"0'0 1 \6—)11

v |

Rensselaer Polytechnic Institute

Time

t. —0JoJo \§—>”5

m=(101) — Encoder [— U=(11 10 00 10 11)

n=2,k=1,K=3,
L = 3 mput bits -> 10 output bits

Shivkumar Kalyanaraman
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(Branch word)

2

u
0
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Effective code rate

O Initialize the memory before encoding the first bit (all-zero)
O Clear out the memory after encoding the last bit (all-zero)
O Hence, a tail of zero-bits is appended to data bits.

data tail —  Encoder H— codeword

O Effective code rate :
a L is the number of data bits and k=1 is assumed:

Ry = L <R,
n(L+K-1)

m=(101) — Encoder [— U=(11 10 00 10 11)

Example: n=2,k=1, K=3, L =3 input bits.
Output =n(L + K -1)=2%*(3 + 3 — 1) = 10 output bits

Shivkumar Kalyanaraman
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Encoder representation

a Vector representation:

0 We define n binary vector with K elements (one vector for
ecach modulo-2 adder).

Q The 1:th element 1n each vector, 1s “1” 1f the 1:th stage in the
shift register 1s connected to the corresponding modulo-2
adder, and “0” otherwise.

QO Example: c l

g, = (111) ;

g, =(101) . \6—’ o
i

Shivkumar Kalyanaraman
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Encoder representation: Impulse Response
O Impulse response representaiton:
a The response of encoder to a single “one” bit that goes
through 1it.
d Example: Branch word
Register
contents U, u,
100 1 1
Inputsequence: 1 0 O 010 -
Output sequence: 11 10 11
P 001 __ 1.1 __
Input m Output
1 i 11 10 11
0 i 00 00 00
1 I 11 10 11
nmever oo e 00 1 Shivkumar Kalyanaraman
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Encoder representation: Polynomial

a Polynomial representation:

0 We define n generator polynomials, one for each modulo-2
adder. Each polynomial 1s of degree K-1 or less and
describes the connection of the shift registers to the
corresponding modulo-2 adder.

aExample:
g (X)=9g" +g" X +g’. X? =1+ X +X"?
g, (X)=gP+gP X +g?.X* =1+ X"

The output sequence 1s found as follows:

U(X)=m(X)g,(X) interlaced with m(X)g,(X)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Encoder representation —cont’d

In more details:
m(X)g (X)=(1+X)A+X +X*) =1+ X + X’ + X*
m(X)g,(X)=(1+X2)(1+X?) =1+ X*
m(X)g, (X)=1+X +0.X%+ X* + X*
m(X)g,(X)=1+0.X +0.X*>+0.X> + X*
UX) = (LD +(LO)X +(0.0)X 2+ (L,O)X > + (L)X *
U=11 10 00 10 11

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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State diagram

a A finite-state machine only encounters a finite number
of states.

a State of a machine: the smallest amount of
information that, together with a current iput to the
machine, can predict the output of the machine.

A In a convolutional encoder, the state 1s represented by
the content of the memory.

0 Hence, there are 2% 'states. (grows exponentially w/
constraint length)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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State diagram — cont’d
0/00 Outpt C:g;nt input I;i: output
Inpu (Branch word)|
R s, | 0 ]S, 00
00 1 1|8, | 11
s | o]s, | 1
of [ S, | 00
s, | 0 ]s |10
11
, . 1813 0 S, | 01
\ l
Rensselaer Polytechnic I;st%'u/; 0’ g 1 ShliVI(%lﬁlaH Ka}vanaI aman
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Trellis — cont’d

Q Trellis diagram 1s an extension of the state diagram that

shows the passage of time.

a Example of a section of trellis for the rate %2 code

State 4 Branch
_ 0/00
S) =00 &=
ML
S, =10
S, =01
N
5, =11 ¢=--~-146 -~ -9 :
Itl ti+1 Time
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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- b
Trellis —cont’d
O A trellis diagram for the example code o
Input blts Tall bltS
1 0 1 0 0
Output bits

11 10 00 10 11

. 0/00 0/00 0/00 0/00 0/00
\iﬂl \ial \ial \ial \1/11
A1 s A1 > 1% S A1 s A1 " Se
AN /,1/00 AN /41/00 AN /,1/00 AN /,1/00 AN /1/00
- < N - < i P d < s ~ < - <
Z o |
101" Y01 Y01 101 3% 101 Y
\ N\ \ \ N\
\ \ \ \ \
A \\ A \\ DA \\ ) A \\ DA N N
y P — — - =-=-="- Yy - - —-—-—-—"TF - - - ---—"-"-"---"—-""9-_ - - -"-=-" ‘ >
t 1 t 2 t 3 t 4 t 5 t 5
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Trellis — cont’d

Input bits Tail bits
1 0 1 0 0
Output bits
11 10 00 10 T
0/00 0/00 0/00

\ial

'—|-—
—_
—H
[\
~
w
~—H
N
~—
W
(o
N
v

Path through the trellis

Shivkumar Kalyanaraman
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Optimum decoding

O If the input sequence messages are equally likely, the
optimum decoder which minimizes the probability of error is
the Maximum likelthood decoder.

O ML decoder, selects a codeword among all the possible
codewords which maximizes the likelihood function p(Z|U
where Z. is the received sequence and U™ is one of the
possible codewords:

(m’))

2L codewords
to search!!!

»ML decoding rule:
Choose U™ if p(Z|U™)= max p(Z|U™)

over all U™

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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ML decoding for memory-less channels

O Due to the independent channel statistics for memoryless channels, the
likelihood function becomes

p(Z|U(m))_ pz1 Zy,.. (Zlazza *o |9 U(m)) H p(Z |U(m)) HH p(ZJI |u(m)

i=1 j=1

and equivalently, the log-likelihood function becomes

yy(M) = log p(ZIU(m)) Zlog IO(Z U™) = Zzlog IO(Z,. ui”)

~ i=1 j=1

Path metric Branch metric Bit metr1c

0 The path metric up to time index 1", is called the partial path metric.

» ML decoding rule:

Choose the path with maximum metric among

all the paths 1n the trellis.
This path 1s the “closest” path to the transmitted sequence.

Shivkumar Kalyanaraman
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AWGN channels

O For BPSK modulation the transmitted sequence
corresponding to the codeword U™ is denoted by
where $™ =(S™,s!™ ..s™ and S™ =(si™,..,s'™ ...,sM™)

ji 200 Vni
and s, =+,/E,
Q The log-likelihood function becomes

m) _ (m) Inner product or correlation
7/U(m) ZZZJISJI <Z S > between Z and S
i=1 j=I
0 Maximizing the correlation is equivalent to minimizing the
Euclidean distance.

» ML decoding rule:

Choose the path which with minimum Euclidean distance
to the received sequence.

Rensselaer Polytechnic Institute
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O  The Viterbi algorithm performs Maximum likelihood decoding.
O It find a path through trellis with the largest metric (maximum

correlation

Q It processes the demodulator outputs in an iterative manner.

O At each step in the trellis, it compares the metric of all paths
entering each state, and keeps only the path with the largest
metric, called the survivor, together with its metric.

The Viterbi algorithm

or minimum distance).

O It proceeds in the trellis by eliminating the least likely paths.
0 Itreduces the decoding complexity to |2 K=

Rensselaer Polytechnic Institute
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The Viterbi algorithm - cont’d

d  Viterbi algorithm:

A. Do the following set up:

O  For a data block of L bits, form the trellis. The trellis has
L+K-1 sections or levels and starts at time t, and ends up at
time t_ .

O Label all the branches in the trellis with their corresponding
branch metric.

O Foreach stateKi_Ill the trellis at the time ; which is denoted by
S(t;) €{0,1,....2" '}, define a parameter (path metric) T(S(t,),t;)
B.  Then, do the following:

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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C.

Rensselaer Polytechnic Institute

3

The Viterbi algorithm - cont’d

Set 1(0,t)=0 and i=2.
paths entering each state.

entering each state at time t; .

Keep the survivor path and delete the dead paths from the

trellis.

unique and correspond to the ML codeword.

At time t, , compute the partial path metrics for all the

Set T'(S(t,),t.) equal to the best partial path metric

If i<L+K,increasel by 1 and return to step 2.

Start at state zero at time [, . . Follow the surviving branches
backwards through the trellis. The path thus defined is

Shivkumar Kalyanaraman
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Example of Viterbi decoding

m = (101)

U=(11 10 00 10 11)
Z=(1 10 11 10 01)

. 0/00 . 0/00 ° 0/00 0/00 0/00
Vi RN V7 L SR Vi §|
) \ 1 e, 0A1 o 0A1 o
SON0/10 100
\\\ ,\(:\ i ' ' '
0 o 101 1/01 ’
\ /01 /01
0 Y o o 0
| | | | tl: tI >
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Viterbi decoding-cont’d

O Label al the branches with the branch metric (Hamming distance)

m = (101)
U=(11 10 00 10 11)
Z=(1 10 11 10 01)

S(4).t,
}t)t)

@ 2 Q1+ Q

l > //
| R
. . y n .
\\2 I\\
o ¢ ¥ t----- ’ o 0
! ! ! ! ! L
t t t t t t
1 2 3 4 : G
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Viterbi decoding-cont’d

Q =2
m = (101)
U=(11 10 00 10 11)
Z=(11 10 11 10 01)

© » @ Q » O 1 O
e .

0 \ , 0 0
\\\ \\\ / /2’
N . N > s
\\\ U ' :( g !
N g \\\ y, s

. . AN I .

o ¢ ¥ t----- ’ o 0

! ! ! ! ! L,
t t t t t t

1 2 3 4 : G
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Viterbi decoding-cont’d

0 =3
m = (101)
U=(1 10 00 10 11)
Z=(11 10 11 10 01)

0 C G ) 0 0
2
\ ] > P ¢
NNOZaNeANe
. L7 N / Y
0 o \ c 1 ’
o ) g=------- t----- ” o o
| | | | | L,
t t t t ! L,
1 2 3 4 Shivkumar Kalyanataman
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Viterbi decoding-cont’d

m = (101)
U=(11 10 00 10 11)
Z=(11 10 11 10 01)

’ \ ) o o
\\\ \ . /2,
N . N > s
\\\ J » ,\‘( - !
. L \\\ n
0 0 N 1 0 0
(2, (3
' *® ¥ 1----- B o )
! ! ! ! ! L
t t t t t t
1 2 3 4 . G
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Viterbi decoding-cont’d

O =
m = (101)
U=(11 10 00 10 11)
Z=(1 10 11 10 01)

;\ ;\ ;\ X
~ ~
~ ~ \\
So S <
0 1 0
o Se So g
\\ \\ ~
~ ~ ~
~ ~
~ ~
~ ~
) )
4 !
N N -
A \

0 0 0
\\\ . / /2’
N . N > s
\\\ J Q ,\‘( - !
N SRS /
. . AN I .
(2) (3
) I T t----- o )
! ! ! ! ! L,
t t t t t t
1 2 3 4 . G
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman

92 Google : “shiv rpi”



Viterbi decoding-cont’d

0 =6
m = (101)
U=(11 10 00 10 11)
Z=(11 10 11 10 01)

;\ ;\ ;\ X
~ ~
~ ~ \\
So S <
0 1 0
o Se So g
\\ \\ ~
~ ~ ~
~ ~
~ ~
~ ~
) )
4 !
N N -
A \

0 0 0
\ N . / /2’
N . N > s
AN . J » ,\‘( - !
AN -7 \\\ J .
. . AN I .
(2) (3
) I T t----- o )
! ! ! ! ! L,
t t t t t t
1 2 3 4 . G
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O Trace back and then:

m = (101)
= (100) Vs U=(11 10 00 10 11)
U=(1 10 11 00 00) Z=(11 10 11 10 01)

Viterbi decoding-cont’d

R: Q10 .0 L Q4 C

~ \1 . .
0
0
0 ¢ -
0 0
! ! ! ! ! L
t t t t t t
1 2 3 4 : G
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Soft and hard decisions

O Hard decision:

O The demodulator makes a firm or hard decision whether one or zero is
transmitted and provides no other information reg. how reliable the decision is.

O Hence, its output is only zero or one (the output is quantized only to two level)
which are called “hard-bits”.

O Soft decision:

O The demodulator provides the decoder with some side information together with
the decision.

O The side information provides the decoder with a measure of confidence for the
decision.

O The demodulator outputs which are called soft-bits, are quantized to more than
two levels. (eg: 8-levels)

O Decoding based on soft-bits, is called the “soft-decision decoding”.

O On AWGN channels, 2 dB and on fading channels 6 dB gain are obtained by
using soft-decoding over hard-decoding!

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Performance bounds ...
0 Basic coding gain (dB) for soft-decision Viterbi
decoding
Uncoded Code rate 1/3 - 1/2
E, /N, =
(dB) P, K 7 8.6 7
0.8 107 .42 44 35 38
G . (U 5.7..59..46. A1l
11.3 1077 62 65 53 58
Upper bound 70 73 60 7.0
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Interleaving

O Convolutional codes are suitable for memoryless channels
with random error events.

Q Some errors have bursty nature:

a Statistical dependence among successive error events
(time-correlation) due to the channel memory.

aLike errors in multipath fading channels 1n wireless
communications, errors due to the switching noise, ...

a “Interleaving” makes the channel looks like as a memoryless
channel at the decoder.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Interleaving ...

Q Consider a code with t=1 and 3 coded bits.
a A burst error of length 3 can not be corrected.

Al

A2

A3

Bl

B2

B3

Cl

C2(C3

Al1(A2|A3|B1{B2|B3|C1|C2

C3

|

Interleaver

Al1|B1|C1|A2(B2|C2|A3|B3

C3

Rensselaer Polytechnic Institute

——
2 errors

a Let us use a block interleaver 3X3

Al

B1|CI1|A2

B2|C2(A3

B3

C3

|

Deinterleaver

A\ 4

Al

A2|A3|BI

B2|B3|(Cl1

C2

C3

g -

g -

)

1 error

1 error
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Concatenated Codes
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Concatenated codes

O A concatenated code uses two levels on coding, an inner code and an
outer code (higher rate).

O Popular concatenated codes: Convolutional codes with Viterbi

decoding as the inner code and Reed-Solomon codes as the outer
code

O The purpose is to reduce the overall complexity, yet achieving the
required error performance.

Input

_aput |} Outer Interleaver Inner Modulate

data encoder encoder %
=
o
=
5
(N

Output ) j

SLutput | Outer Deinterleaver Inner emodulate

data decoder decoder

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Concatenated Codes

¢'=C—-Q—-D-1D “Sowrge | Encoder || EntSder [
Q! - e
QO Encoder-channel-decoder o - R
SYStem C — Q — D can be B Fig. 4. Concatenated Code Schematic.
viewed as defining a super- e
Channel Q’ Wlth a Smaller 1:_ 2.0 3.0 40 5.0 6.0 7.0 8.0 .
probability of error, and with NJ\ |
. . | | |
complex correlations among its i \K i .
errors. i |
O We can create an encoder C’ | \ N Cog;glugggzie 1’ uput
and decoder D’ for this super- | - L;f— | 10
channel Q’. 1 T\ |
i s | 10
J Concatem l—‘
‘ and Fon\'oluui’nai ’
Rensselaer Polytechnic Institute ! ‘ t ( 10
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Product/Rectangular Codes: Concatenation +
Interleaving

O Some concatenated codes make use of the idea of Interleaving.

0O Blocks of size larger than the block lengths of the constituent
codes C and C’.
O After encoding the data of one block using code C’,

Q ... the bits are reordered within the block in such a way that nearby bits
are separated from each other once the block 1s fed to the second code C.

0O A simple example of an interleaver is a rectangular code or
product code in which ...
a ... the data: K, x K, rectangular block, and ...
a ... encoded horizontally using an (N,,K,) linear code,
Q ... then vertically using a (N,,K,) linear code.

Shivkumar Kalyanaraman
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Product code Example

qLiL 1 1141
0f0 0 |, 13130
P1EL 1 1111
g1 1 . 110/1
000 * 0, 013
000 e 13070

(a) LLLL 1[ (b) (c)l_11

a (a) A string 1011 encoded using a concatenated code

w/ two Hamming codes, H(3, 1) = Repetition code
(R3) and H(7.4).

3 (b) a noise pattern that flips 5 bits.
A (¢) The received vector.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Product Codes (Contd)
11 N [ O I Y P
oo o * | % 1110 << L1 T 0|10 0
T il 1 77
L1 1 * 1[0 1 111 11 1
000 * 001 =+ (000 000
000 * Loof = 000 000
(a) L 1] (b (¢)l_1 1 ({{q’xl 1 1] (eyl 1 1
O (d) After decoding using the horizontal (3, 1)
decoder, and 110 1 /1 1
O (e) after subsequently using the vertical (7; 4) 1 1 0 1 II 1
decoder. i é i i i i
O The decoded vector matches the original. 70 0 00 0
0 Note: Decoding in the other order (weaker-code- 100 000
first) leads to residual error in this example: (d)[L1 1] ()|l 11
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Practical example: Compact disc

“Without error correcting codes, digital audio
would not be technically feasible.”

O Channel in a CD playback system consists of a transmitting laser, a recorded
disc and a photo-detector.

O Sources of errors are manufacturing damages, fingerprints or scratches
O Errors have bursty like nature.

O Error correction and concealment is done by using a concatenated error
control scheme, called cross-interleaver Reed-Solomon code (CIRC).

O Both the inner and outer codes are shortened RS codes

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Compact disc — CIRC Encoder

O CIRC encoder and decoder:

Encoder
/\
/ \
. C, . D’ C, .
interleave encode interleave encode interleave
'
. . C, D’ C, .
< deinterleave [* decode < deinterleave [* decode < deinterleave
\\ S
—
Decoder

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Adaptive Modulation and Coding

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Fading envelope (dB) of user 1

-10

Q Just vary the “M” in the MQAM constellation to the

Adaptive Modulation

2

/ Send 64 QAM Here

Send BPSK Here
S

0

|
0.2

appropriate SNR

O Can be used 1n conjunction with spatial diversity

Rensselaer Polytechnic Institute

I
0.4

| | | | | |
0.6 0.8 1 1.2 1.4 1.6
Time (secs)
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Adaptive modulation/coding: Multi-User

2 Exploit multi-user diversity.

A Users with high SNR: use MQAM (large M) +
high code rates

Q Users with low SNR: use BPSK + low code
rates (1.e. heavy error protection)

A In any WiIMAX frame, different users (assigned to
time-frequency slots within a frame) would be
getting a different rate!

ad1.e. be using different code/modulation combos..

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Basis for Adaptive Modulation/Coding (AMC) ‘

O K-user system: the subcarrier of

—_
o

interest experiences 1.1.d. 5
. . 5 8 —
Rayleigh fading: each user’s z =12, 10
channel gain is independent of =
. ©
the others, and is denoted by h,. &
1.4
1.2¢ 00 5 1I0 1I5 2I0 2I5 30
1t 10°
308 /O o
E AN (/AN S
= 06t / /[ -
0.4- / / \ 2
\ %
0.2 a
0 [/ /j’/// ©
0 4
RensselProbability density function of / lmaz SNR (dB) =

the maximum of the K" users channel gains. 110 Google: “shiv rpi”



Wimax: Uses Feedback & Burst Profiles

bits
in

Clueue

Transmitter
ECC Symbol Power
—
Encoder Mapper Control
Select Select
Code Const. Piy)

Adaptive Modulation and Coding

Controller

f

Figure 6.7: Adaptive Modulation and Coding Block Diagram.

O Lower data rates are achieved by using a small constellation — such as QPSK — and
low rate error correcting codes such as rate 1/2 convolutional or turbo codes.

O The higher data rates are achieved with large constellations — such as 64QAM — and
less robust error correcting codes, for example rate 3/4 convolutional, turbo, or

LDPC codes.

O Wimax burst profiles: 52 different possible configurations of modulation order and

coding types and rates.

O WiMAX systems heavily protect the feedback channel with error correction, so
usually the main source of degradation is due to mobility, which causes channel

estimates to rapidly become obsolete.

Rensselaer Polytechnic Institute

Receiver
bits
Channel out
> _ ———» Demod = Decoder >
SINR =y
Channel
Feedback Channel: Estimation

PER, v
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AMC Considerations

0 BLER and Received SINR: In adaptive modulation theory, the transmitter
needs only to know the statistics and instantaneous channel SINR. From the
channel SINR, it can determine the optimum coding/modulation strategy
and transmit power.

O In practice however, the BLER should be carefully monitored as the
final word on whether the data rate should be increased (if the BLER is
low) or decreased to a more robust setting.

0 Automatic Repeat Request (ARQ): ARQ allows rapid retransmissions,
and Hybrid ARQ generally increases the ideal BLER operating point by
about a factor of 10, e.g. from 1% to 10%.

O For delay-tolerant applications, it may be possible to accept a BLER
approaching even 70%, if Chase combining is used in conjunction with
HARQ to make use of unsuccessful packets.

O Power control vs. Waterfilling: In theory, the best power control policy
from a capacity standpoint 1s the so-called waterfilling strategy, in which
more power 1s allocated to strong channels, and less power allocated to
weak channels. In practice, the opposite may be true in some cases.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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AMC vs Shannon Limit

5 ! ! ! !

=
[ |
T

L
(%]
T

Shannon Limit
— G4 2AM N

e R2/3

Throughput (bps/Hz)
o]
(&3]

1
0 2 4 6 8 10 12 14 16 18 20
SINR (dB)

O Optionally turbo-codes or LDPC codes can be used instead of simple

block/convolutional codes in these schemes _
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Main Points

O Adaptive MQAM uses capacity-achieving power and rate
adaptation, with power penalty K.

a Adaptive MQAM comes within 5-6 dB of capacity

O Discretizing the constellation size results 1in negligible
performance loss.

O Constellations cannot be updated faster than 10s to 100s of
symbol times: OK for most dopplers.

O Estimation error and delay lead to irreducible error floors.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Type I HARQ: Chase Combining

O In Type I HARQ, also referred to as Chase Combining, the redundancy
version of the encoded bits is not changed from one transmission to the
next, 1.e. the puncturing patterns remains same.

O The receiver uses the current and all previous HARQ transmissions of the
data block in order to decode it.

O With each new transmission the reliability of the encoded bits improve thus
reducing the probability of error during the decoding stage.

O This process continues until either the block 1s decoded without error
(passes the CRC check) or the maximum number of allowable HARQ
transmissions is reached.

O When the data block cannot be decoded without error and the maximum

number of HARQ transmissions is reached, it is left up to a higher layer
such as MAC or TCP/IP to retransmit the data block.

O In that case all previous transmissions are cleared and the HARQ process
start from the beginning.

O Used in WiIMAX implementations: can provide range extension (especially
at cell-edge).

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Q

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman

Type 11 ARQ: Incremental Redundancy

E173 Codmg

\j
100 . S
3 E 00 EE— [

Figure 8.6 Illustration of HARQ Prcoess with Incremental Redundancy

Type I HARQ is also referred to as Incremental Redundancy

The redundancy version of the encoded bits is changed from one transmission to the
next. (Rate-compatible Punctured Convolutional codes (RCPC)) used.

Thus the puncturing pattern changes from one transmission to the next.

This not only improves the log likelihood estimates (LLR) of parity bits but also
reduces the code rate with each additional transmission.

Incremental redundancy leads to lower bit error rate (BER) and block error rate
(BLER) compared to chase combining.

Wimax uses only Type I HARQ (Chase) and not Type II for complexity reasons
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Hybrid ARQ/FEC: Combining Coding w/ Feedback

5 « Sequence Numbers

* CRC or Checksum

* Proactive FEC
Timeout

Status Repor " ACKs

* NAKs,

* SACKs
* Bitmaps
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Hybrid ARQ/FEC For TCP over Lossy Networks

N=K+ Pfec
DATA(K) P-FEC(B-.. ) \
EEREREE
PROACTIVE
FEC (PFEC)

Units lost (L) _
No. of units needad (K]J Pr.= f(1,0)

r-rec DN
B » R—FEC units lost (S) REACTIVE
R-FEC umts sent (Y) R—FEC units received (Q)f FEC (RFEC
' ' - Y= Q(P,G,Xl
DECODED DATA BYTES
[T T

Time diagram showing the use of Proactive and Reactive FEC. The
mitial transmission (Phase 1) consists of data and PEEC vmits for the block. Acks

contain feedback that trigger transmission of RFEC segments.
Rensselaer Polytechnic Institute
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Loss-Tolerant TCP (LT-TCP) vs TCP-SACK
TLP Goodput v/s PER

LTTCP (Gilbert Model} S—
LTTCP (Uniform Model) -
SACK (Gilbert Modegl) ««-=----
SACK (Uniform Model) wwe |

Maximum

l \ / Goodput
3k . \\_} MlSSlng

| \ Goodput!

]
-----
L™
LT
L LT

N (s3]

1 1
¥
1

TCP Goodput (Mb/s)

10 20 30
Average Packet Error Rate (%)

Fig. 5. LT-TCP and TCP-SACK performance with Increased Erasure Rates
(Gilbert and Uniform Loss Probabilities, 10 Mb/s Capacity, 10 flows)

Shivkumar Kalyanaraman
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Tradeofts in Hybrid ARQ/FEC

1.4Mbps goodput sacrificed

Analysis : (10 Mbps, p = 50%) (FEC waste) to reduce
latency, residual loss

Goodput = 3.61 Mbps vs 5 Mbps (max) PFEC: u + o of loss process

Upfront PFEC waste (10%)
PFEC waste: 1.0 Mbps =10% — dominates RFEC waste

RFEC waste: 0.39 Mbps =3.9% *

Residual Loss can be negligible

Residual Loss - 0.0% — even for high loss rates (50%), even
. Ue 0

with a limit of just 1 ARQ attempt.
Weighted Avg # Rounds: 1.13
Tradeoffs

Goodput

Block
Residual recovery
Loss Rate latency

Shivkumar Kalyanaraman
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Towards the Shannon Limit!

LDPC, Turbo Codes, Digital Fountains

Rensselaer Polytechnic Institute
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Symbol error probability: P_(M)

e

a
a

Rensselaer Polytechnic Institute

Recall: Coding Galn Potentlal

Symbol error perfromance of M-ary PAM EbNg i)

‘ : 1 — = 1.0 :' 2.0 50 &% 50 60 70 80
EZZZZZ o o o o o o o o o o — |nary- E ‘t - ': " : 10
O 0 e 4-ary PAM | ir- [\ i
JOT SV S SR PIUOON E R ‘\\.\ ' ‘
'__i i . | 10
EEEE \R '
g _ ’__ I 10
| \ i\ 'Ct:nwi lutional ‘i Output
R S EH EH é \ e Alone Bit Error
____________________ I AN N E
e ] | | | 10
4 | o T . | N |
Gap-from-Shannon-limit: 1 ] ks’ %\ |
- | @BER=107 E | - g ____, ’__ 10
4 9 6 + 1 59 _ 11 2 dB ............... 7 J Conchtenated
3 . . o X . and Convolutional
.| (about 7.8 dB if you maintain - S ——— i’ ’
=] spectral efficiency) 0 umNcmmmmoMIimn I ‘ t ‘ [
|| BIPSUELEINEEIGY) | VR S ST ] ‘0
é 16 20 Fig. 10. Performance of RS(255,223) and (2,1), K=7 Conuv. Code.
Eb/N0 [dB]

With convolutional code alone, @BER ot 10>, we require Eb/No of 4.5dB or get a
gain of 5.1 dB.

With concatenated RS-Convolutional code, BER curve ~ vertical cliff at an Eb/No
of about 2.5-2.6 dB, 1.e a gain of 7.1dB.

We are still 11.2 — 7.1 = 4.1 dB away from the Shannon limit &

Turbo codes and LDPC codes get us within 0.1dB of the Shannon limit !! ©
Shivkumar Kalyanaraman
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Low-Density Parity Check (LDPC) Codes

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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LDPC

m Low-Density Parity-Check (LDPC) codes are a class of linear block |
codes characterized by sparse parity check matrices H

— H has a low-density of 1's

= LDPC codes were originally invented by Robert Gallager in the early
1960’s but were largely ignored until they were “rediscovered” in the
mid-1990’s by MacKay

m Sparseness of H can yield large minimum distance d,. and reduces
decoding complexity

m Can perform within 0.0045 dB of Shannon limit

m These code are making their way into standards
— Binary turbo: UMTS, cdma2000
— Duobinary turbo: DVB-RCS, 802.16
— LDPC: DVB-S2 standard.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Example LDPC Code

1 11 1
1 1 1 1
1 1 1 1
1 1 1 1
1:L 1 %1 H
H = 1 1 1 1
1 1 1 1
1 1 1 1
1 1 1.1
1 1 1 1
1 1 1 ]

O A low-density parity-check matrix and the corresponding (bipartite) graph
of a rate-1/4 low-density parity-check code with blocklength N =16, and M
=12 constraints.

O Each white circle represents a transmitted bit.
O Each bit participates in j = 3 constraints, represented by squares.

O Each constraint forces the sum of the k = 4 bits to which it 1s connected to
be even.

O This code 1s a (16; 4) code. Outstanding performance is obtained when the
blocklength is increased to N = 10,000.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Tanner Graph

m A Tanner graph is a bipartite graph that describes the parity check
matrix H

m There are two classes of nodes:
— Variable-nodes: Correspond to bits of the codeword or equivalently, to
columns of the parity check matrix
» There are n v-nodes

— Check-nodes: Correspond to parity check equations or equivalently, to
rows of the parity check matrix

« There are m=n-k c-nodes
— Bipartite means that nodes of the same type cannot be connected (e.g. a
c-node cannot be connected to another c-node)
= The i"check node is connected to the | variable node iff the (i,j)™"
element of the parity check matrix is one, i.e. if h; =1

— All of the v-nodes connected to a particular c-node must sum (modulo-2)
to zero

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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A.Kk.a Factor Graph Notation

1 1 1T T T T
111100
H={(001101
(100110)
1
o)
1100 0
1101;=D
011 0/|] 0
\1/

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Factor Graphs

O A factor graph shows how a function of several variables can be factored into a
product of "smaller" functions.

O For example, the function g defined by g(X,y)=xy+x can be factored into
g(x,y)=tf,(x)f,(y) where f;(x)=x and f,(y)=y+1.

O The factor graph depicting this factorization: 1{ fy f2 ¥
O —

Q Graph for function g(x,y,2) = fi(x,y) ,(v,2) fi(x,2). %
L]

g O

Why Factor graphs?
1. Very general: variables and functions are arbitrary
2. Factorization => Sum-Product Algorithm can be applied

3. Third, many efficient algorithms are special cases of the Sum-Product Algorithm
applied to factor graphs:

O FFT (Fast Fourier Transform), Viterbi Algorithm, Forward-Backward
Algorithm, Kalman Filter and Bayesian Network Belief Propagation.

O Brings many good algorithms together in a common framework.

() R W

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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LDPC Coding Constructions

ﬂ Around 1996, Mackay and Neal described methods for constructing sparse I“
matrices

m The idea is to randomly generate a M x N matrix H with weight d, columns
and weight d. rows, subject to some constraints

m  Construction 1A: Overlap between any two columns is no greater than 1
— This avoids length 4 cycles

=  Construction 2A: M/2 columns have d, =2, with no overlap between any pair
of columns. Remaining columns have d, =3. As with 1A, the overlap between
any two columns is no greater than 1

= Construction 1B and 2B: Obtained by deleting select columns from 1A and 2A

K — (Can result in a higher rate code /

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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LDPC Decoding: Iterative

ﬁ Like Turbo codes, LDPC can be decoded iteratively \
— Instead of a trellis, the decoding takes place on a Tanner graph

— Messages are exchanged between the v-nodes and c-nodes

— Edges of the graph act as information pathways

= Hard decision decoding
— Bit-flipping algorithm
= Soft decision decoding
— Sum-product algorithm
« Also known as message passing/ belief propagation algorithm
— Min-sum algorithm
+ Reduced complexity approximation to the sum-product algorithm
= |n general, the per-iteration complexity of LDPC codes is less than it is
for turbo codes
\ — However, many more iterations may be required (max=100;avg~30)
_/

— Thus, overall complexity can be higher than turbo

Shivkumar Kalyanaraman

Rensselaer Polytechnic Institute

131 Google : “shiv rpi”



Regular vs Irregular LDPC Codes

ﬂ An LDPC code is regular if the rows and columns of H have uniform \
weight, i.e. all rows have the same number of ones (d,) and all columns
have the same number of ones (d.)
— The codes of Gallager and MacKay were regular (or as close as possible)
— Although regular codes had impressive performance, they are still about 1 dB
from capacity and generally perform worse than turbo codes
= An LDPC code is irregular if the rows and columns have non-uniform
weight
— lrregular LDPC codes tend to outperform turbo codes for block lengths of
about n>102
= The degree distribution pair (A, p) for a LDPC code is defined as
A(x) = Eﬂ‘ Aoxi!

I

=

p(x) =3 pix'!
Fml

m A, p, represent the fraction of edges emanating from variable (check)
nodes of degree i /

Shivkumar Kalyanaraman |
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Irregular LDPC Codes

/

k rate /

Luby et. al. (1998) developed LDPC codes based on irregular LDPC\
Tanner graphs

Message and check nodes have conflicting requirements
— Message nodes benefit from having a large degree
— LDPC codes perform better with check nodes having low degrees
Irregular LDPC codes help balance these competing requirements
— High degree message nodes converge to the correct value quickly

— This increases the quality of information passed to the check nodes,
which in turn helps the lower degree message nodes to converge

Check node degree kept as uniform as possible and variable node
degree is non-uniform

— Code 14: Check node degree =14, Variable node degree =5, 6, 21, 23
No attempt made to optimize the degree distribution for a given code

I Rensselaer Polytechnic Institute Shivkumar Kalyanaraman I
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feedback, like a turbo engine.

m Turbo codes get their name because the decoder uses
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Turbo Encoder

(_Tl -

—p af'T (_TE —
O The encoder of a turbo code.
Q FEach box C1, C2, contains a convolutional code.
O The source bits are reordered using a permutation ©t before they are fed to

C2.

O The transmitted codeword 1s obtained by concatenating or interleaving the
O outputs of the two convolutional codes.
O The random permutation is chosen when the code 1s designed, and fixed

thereafter.

Rensselaer Polytechnic Institute
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Turbo: MAP Decoding

‘m The goal of the maximum a posteriori (MAP) decoder is to determine
P(u(t)=1]y)and P(u(t)=0 |y ) for each t.

— The probability of each message bit, given the entire received codeword.
m These two probabilities are conveniently expressed as a log-likelihood

ratio:
Plu(t)=1]y]
Plu(t)=0|y]

=y

A(t) =log

Shivkumar Kalyanaraman
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BER

Performance as a Function of
Number of Iterations

1 iteration
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m K=5

— constraint length
= r=1/2

— code rate
m L=65536

— Interleaver size
— number data bits

= Log-MAP algorithm
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Turbo Codes: Performance...

= Turbo codes have extraordinary performance at low SNR. "

— Very close to the Shannon limit.
— Due to a low multiplicity of low weight code words.

m However, turbo codes have a BER “floor”.
— This is due to their low minimum distance.

m Performance improves for larger block sizes.
— Larger block sizes mean more latency (delay).

— However, larger block sizes are not more complex to decode.
— The BER floor is lower for larger frame/interleaver sizes

= The complexity of a constraint length K. turbo code is the

same as a K = K. convolutional code, where:
— Koo = 24K o+ log,(number decoder iterations)

Rensselaer Polytechnic Institute
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Rens:

UMTS Turbo Encoder

Systematic \\I
Input Dmput

.

Uninterleaved

* Parity Output
Z,

Interleaved
Panty

L, /J

B
-

Interleav &d
Iuput

m From 3GPP TS 25 212 v6.6.0, Release 6 (2005-09)
— UMTS Multiplexing and channel coding

m Data is segmented into blocks of L bits.
— whered40 <L <5114 1an
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WiMAX: Convolutional Turbo Codes (CTC)

The standard specifies an optional convolutional turbo code (CTC) for
operation in the 2-11 GHz range.

Uses same duobinary CRSC encoder as DVB-RCS, though without
output W.

B SI —{— S: -
B + T e

T

= Modulation: BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM.
m Key parameters:

— Input message size 8 to 256 bytes long.
- r={1/2, 2/3, 3/4, 5/6, 7/8}

Fal Y

-D
L
|
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Digital Fountain Erasure Codes
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What is a Digital Fountain?

2 A digital fountain is an ideal/paradigm for data
transmission.

a Vs. the standard (TCP) paradigm: data is an
ordered finite sequence of bytes.

2 Instead, with a digital fountain, a k symbol file yields
an Infinite data stream (“fountain”); once you have
received any K symbols from this stream, you can
quickly reconstruct the original file.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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How Do We Build a Digital Fountain?

O We can construct (approximate) digital fountains using erasure
codes.

a Including Reed-Solomon, Tornado, LT, fountain codes.
a Generally, we only come close to the i1deal of the paradigm.

QO Streams not truly infinite; encoding or decoding times;
coding overhead.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Forward Error Correction (FEC):
Eg: Reed-Solomon RS(N,K)

>=K of N Recover K
RS(N,K) received data packets!
=F )
]
FEC (N-K) | ‘
Block |||]|::> .
Si;e T Lossy Network
®) High Encode/Decode times: O {K(N-K) log, N}.
Hard to do (@ very fast line rates (eg: 1Gbps+).

(B2 o

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Digital Fountain Codes (Eg: Raptor codes)

>= K+¢ Recover K

received data packets!

Rateless: No Block Size !

“Fountain of encoded pkts” -
Compute on demand!

Data=K :
R s B e
Low Encode/Decode times: O{K In(K/0)}

w/ probability 1- d. Overhead € ~ 5%.
Can be done by software & @ very fast (eg: 1Gbps+).

Shivkumar Kalyanaraman
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Raptor/Rateless Codes

O Properties: Approximately MDS
a “Infinite” supply of packets possible.
0 Need k(1+¢) symbols to decode, for some € > 0.
0O Decoding time proportional to K In (1/¢).

Q On average, In (1/¢€) (constant) time to produce an encoding
symbol.

O Key: Very fast encode/decode time compared to RS codes
O Compute new check packets on demand!

O Bottomline: these codes can be made very efficient and deliver

on the promise of the digital fountain paradigm.
Shivkumar Kalyanaraman
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Digital Fountain Encoder/Decoder

2 Encoder:

O Decoder:

Rensselaer Polytechnic Instit

Each encoded packet #,, is produced from the source file sys083... 55 as
follows:

-----------------------------------------
L

size I\, as we'll discuss later.

2. Choose, uniformly at random. d,, distinct input packets, and set £,
equal to the bitwise sum, modulo 2 of those d,, packets. This sum
can be done by successively exclusive-or-ing the packets together.

1. Find a check node #,, that is connected to only one source packet
sg. (If there is no such check node, this decoding algorithm halts at
this point, and fails to recover all the source packets.)

(a) Set sp =1,.

(b) Add s to all checks ¢, that are connected to s;:
tne 1= ty + s for all n’ such that G, = 1. (50.1)

(c) Remove all the edges connected to the source packet s.

2. Repeat (1) until all {s;} are determined.

1“TO \..-'v"on-u- . A4 B E

rpi



Digital Fountain decoding (example)

O Received bits: 1011

Q tyisofdegree 1,5, =1, =1

First such code

called “Tornado” code.
Later: LT-codes;
Concatenated version:
“Raptor code”

at, &t; XOR’ed w/ s, = 1.
Remove s;’s edges

a s,setto t, =0 {degree =1}

1 Y
O Repeat as before; s; =1 WO

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Esoterics: Robust Soliton Degree Distribution

gho
au
0.4 4 Figure 50.2. The distributions p(l) = 1/K
pld) and 7(d) for the case old) = 1 for d = 2.3 K
0-3 1 K =10000, ¢ = 0.2, § = 0.05, d(d—1) '
which gives 5 = 244, K /5 = 41,
0.2 4 and Z =~ 1.3. The distribution 7 is S = cln(K/6) ‘v?
largest at d =1 and d = K/S. '
0.1 +
| hlu 21 ford=1,2,...(K/S)-1
a i 1 T T 1 l.T‘SL‘ d By
0 10 20 30 40 50 T(d) =4 =In(S/§) ford=K/S
0 ford = K/S
140 '
_ delta=0.01 / _ :
120 - geﬂa=l}.1 Iy ,U,{d) = M
100 b delta=09 - =z
80 - e Figure 50.3. The number of
60 I £ degree-one checks S5 (upper figure)
40 - K{;E;-L’.‘-"' and the quantity K’ (lower figure)
20 e as a function of the two
e DE]I — ”EIJI'I parameters ¢ and 4, for
11000 ~ ' o ) K = 10000. Luby's main theorem
delta=0.01 {7 proves that there exists a value of
10800 - 32}{:;3;; f/# e such that, given K’ received
10600 | Yy packets, the decoding algorithm
10400 - s will recover the K source packets
with probability 1 — 4.
10200 _,,,:-:'_‘l;j_‘.'.--"'
10000 ‘D::” e ....E.]..I
Ren | ¢ Shivkumar Kalyanaraman
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Applications: Reliable Multicast

O Many potential problems when multicasting to large audience.
O Feedback explosion of lost packets.
O Start time heterogeneity.
O Loss/bandwidth heterogeneity.

O A digital fountain solves these problems.

O Each user gets what they can, and stops when they have enough: doesn’t
matter which packets they’ve lost

O Different paths could have diff. loss rates

Rensselaer Polytechnic Institute vkumar Kalyanaraman
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Applications: Downloading in Parallel

a Can collect data from multiple digital fountains for the same
source seamlessly.

O Since each fountain has an “infinite” collection of packets, no
duplicates.

O Relative fountain speeds unimportant; just need to get enough.
O Combined multicast/multi-gather possible.

O Can be used for BitTorrent-like applications.

O Microsoft’s “Avalanche” product uses randomized linear codes to
do “network coding”

d

0 Used to deliver patches to security flaws rapidly; Microsoft Update
dissemination etc

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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http://research.microsoft.com/~pablo/avalanche.aspx

Single path: limited capacity, delay, /oss...

High Delay/J

=)

Low
Capacit

Network paths usually have
* low e2e capacity,
* high latencies and
» high/variable loss rates.

Rensselaer Polytechnic Institute
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Idea: Aggregate Capacity, Use Route Diversity!

High Perceived

Capacity

Rensselaer Polytechnic Institute

 Perceived

Loss

v

Scalable Performance Boost with 1 |tter

Paths
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Multi-path LT-TCP (ML-TCP): Structure

Socket Map pkts—paths intelligently
Buffer based upon Rank(p;,, RTT,;, w;)
Per-path congestion control
Reliability @ agqgregate, across paths (like TCP)

(FEC block = weighted sum of windows,
PFEC based upon weighted average loss rate)

Note: these ideas can be applied to other link-level multi-homing,
Network-level virtual paths, non-TCP transport protocols (including video-streaming)

Rensselaer Polytechnic Institute
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Summary

O Coding: allows better use of degrees of freedom
O Greater reliability (BER) for a given Eb/No, or
O Coding gain (power gain) for a given BER.
0 Eg: @ BER=10";
0 5.1 dB (Convolutional), 7.1dB (concatenated RS/Convolutional)
a Near (0.1-1dB from) Shannon limit (LDPC, Turbo Codes)

O Magic achieved through iterative decoding (belief propagation) in both
LDPC/Turbo codes

0 Concatenation, interleaving used in turbo codes

0O Digital fountain erasure codes use randomized LDPC constructions as
well.

O Coding can be combined with modulation adaptively in response to SNR
feedback

O Coding can also be combined with ARQ to form Hybrid ARQ/FEC

O Efficient coding schemes now possible in software/high line rates => they
are influencing protocol design at higher layers also:

a LT-TCP, ML-TCP, multicast, storage (RAID, CD/DVDs), Bittorrent,
Network coding in Avalanche (Microsoft Updates) etc
Shivkumar Kalyanaraman
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