Point-to-Point Wireless Communication (III): Coding Schemes, Adaptive Modulation/Coding, Hybrid ARQ/FEC Shiv Kalyanaraman Google: "Shiv RPI" shivkuma@ecse.rpi.edu Ref: David MacKay, Information Theory, Inference & Learning Algorithms http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html Based upon slides of Sorour Falahati, Timo O. Korhonen, P. Viswanath/Tse, A. Goldsmith, & textbooks by D. Mackay, A. Goldsmith, B. Sklar & J. Andrews et al. Shivkumar Kalyanaraman Rensselaer Polytechnic Institute #### References - □ David MacKay, Information Theory, Inference & Learning Algorithms. PDF available online: - □ http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html - □ Chapter 1: Introduction to Information Theory - Skim Chapter 9: Communication over a noisy channel - □ Section 11.4: Capabilities of Practical Error Correcting Codes - □ Skim Chap 13: Binary codes (ideas of "distance", "perfect"/MDS codes, concatenation) - □ Skim Chapter 47: LDPC codes - □ Chapter 48: Convolutional & Turbo Codes - Optional browsing: Chap 49: Digital Fountain (erasure) codes - Article by Berlekamp: "Application of Error Control Coding to Communications" (especially the discussions on RS coding, concatenated codes, hybrid ARQ/FEC strategies) # **Context: Time Diversity** ☐ Time diversity can be obtained by interleaving and coding over symbols across different coherent time periods. # What <u>is</u> channel coding? - □ Transforming signals to improve communications performance by increasing the robustness against channel impairments (noise, interference, fading, ..) - ☐ It is a time-diversity technique, but can be broadly thought of as techniques to make better use of the degrees-of-freedom in channels (eg: space-time codes) - Waveform coding: Transforming waveforms to <u>better</u> waveforms - □ Structured sequences: Transforming data sequences into <u>better</u> sequences, having structured redundancy. - □ "Better" in the sense of making the decision process less subject to errors. - ☐ Introduce constraints on transmitted codewords to have greater "distance" between them - Note: Channel coding was developed in the context of AWGN channels & we shall study them in the same context # **Channel Coding Schemes: Block, Convolutional, Turbo** # Coding Gain: The Value of Coding... - □ Error performance vs. bandwidth - □ Power vs. bandwidth - □ Data rate vs. bandwidth - □ Capacity vs. bandwidth #### Coding gain: For a given bit-error probability, the reduction in the Eb/N0 that can be realized through the use of code: $$G[dB] = \left(\frac{E_b}{N_0}\right)_{II}[dB] - \left(\frac{E_b}{N_0}\right)_{C}[dB]$$ # **Coding Gain Potential** ılyanaraman #### The Ultimate Shannon Limit - □ **Goal**: what is min Eb/No for any spectral efficiency $(\rho \rightarrow 0)$? - □ Spectral efficiency $\rho = B/W = log_2 (1 + SNR)$ - \square where SNR = E_s/N_o where E_s =energy per symbol - \Box Eb/No = Es/No * (W/B) - $= SNR/\Omega$ Eb/ Lets try to appreciate what Shannon's bound means by designing some simple codes and comparing it to the Shannon bound - □ Gap-to-capacity @ BER = 10^{-5} : 9.6dB + 1.59 = 11.2 dB (without regard for spectral eff.) or 9.6 - 1.76 = 7.84 dB (keeping spectral eff. constant) # **Binary Symmetric Channel (BSC)** $$x \xrightarrow{0} \xrightarrow{0} y \xrightarrow{P(y=0 \mid x=0)} = 1-f; \quad P(y=0 \mid x=1) = f; \\ P(y=1 \mid x=0) = f; \quad P(y=1 \mid x=1) = 1-f.$$ \Box Given a BER (f), we can construct a BSC with this BER... Rensselaer Polytechnic Institute Shivkumar Kalyanaraman # Reliable Disk Drive Application - We want to build a disk drive and write a GB/day for 10 years. - \square => desired BER: 10⁻¹⁵ - □ **Physical** solution: use more reliable components, reduce noise - System solution: accept noisy channel, detect/correct errors (engineer reliability over unreliable channels) #### Repetition Code (R3) & Majority Vote Decoding | Source sequence s | $\begin{array}{c} {\rm Transmitted} \\ {\rm sequence} \\ {\bf t} \end{array}$ | |-------------------|---| | 0 | 000 | | 1 | 111 | source message $s = 0 \ 0 \ 1 \ 0 \ 1 \ 0$ **AWGN**: | Received sequence ${f r}$ | Likelihood ratio $\frac{P(\mathbf{r} \mid s = 1)}{P(\mathbf{r} \mid s = 0)}$ | Decoded sequence $\hat{\mathbf{s}}$ | |---------------------------|--|-------------------------------------| | 000 | γ^{-3} | 0 | | 001 | γ^{-1} | 0 | | 010 | γ^{-1} | 0 | | 100 | γ^{-1} | 0 | | 101 | γ^1 | 1 | | 110 | γ^1 | 1 | | 011 | γ^1 | 1 | | 111 | γ^3 | 1 | Algorithm 1.9. Majority-vote decoding algorithm for R_3 . Also shown are the likelihood ratios (1.23), assuming the channel is a binary symmetric channel; $\gamma \equiv (1-f)/f$. $\gamma \equiv \frac{(1-f)}{f}$ is greater than 1, since f < 0.5, so the winning hypothesis is the one with the most 'votes', each vote counting for a factor of γ in the likelihood ratio. har Kalyanaraman #### Performance of R3 corrected errors undetected errors S ENCODER CHANNEL f = 10% r decoder $\hat{\mathbf{s}}$ REDUNDAN REDUNDA REDUNDAN GLASS. The error probability is dominated by the probability that <u>two bits in</u> <u>a block of three are flipped</u>, which scales as f^2 . For BSC with f = 0.1, the R3 code has a probability of error, after decoding, of $p_b = 0.03$ per bit or 3%. Rate penalty: need 3 noisy disks to get the loss prob down to 3%. To get to BER: 10⁻¹⁵, we need 61 disks! g 10 000 f = 10%and the algorithm. led bit 3%; the race has lanen to 1/o. # **Coding: Rate-BER Tradeoff?** Repetition code R3: corrected errors undetected errors - Shannon: The perception that there is a necessary tradeoff between Rate and BER is illusory! It is not true upto a critical rate, the channel capacity! - You only need to design better codes to give you the coding gain... Rensselaer Polytechnic Institute Rensselaer Polytechnic Institute # Hamming Code: Linear Block Code - A **block code** is a rule for converting a sequence of source bits s, of length K, say, into a transmitted sequence t of length N bits. - ☐ In a linear block code, the extra N-K bits are <u>linear functions</u> of the original K bits; these extra bits are called <u>parity-check</u> bits. - **(7, 4) Hamming code:** transmits N = 7 bits for every K = 4 source bits. - □ The first four transmitted bits, $t_1t_2t_3t_4$, are set equal to the four source bits, $s_1s_2s_3s_4$. - □ The parity-check bits $t_5t_6t_7$ are set so that the parity within each circle (see below) is even Rensselaer Polytechnic Institute # **Hamming Code: (Contd)** | \mathbf{s} | t | s | t | \mathbf{s} | t | \mathbf{s} | t | |--------------|---------|------|---------|--------------|---------|--------------|---------| | 0000 | 0000000 | 0100 | 0100110 | 1000 | 1000101 | 1100 | 1100011 | | 0001 | 0001011 | 0101 | 0101101 | 1001 | 1001110 | 1101 | 1101000 | | 0010 | 0010111 | 0110 | 0110001 | 1010 | 1010010 | 1110 | 1110100 | | 0011 | 0011100 | 0111 | 0111010 | 1011 | 1011001 | 1111 | 1111111 | Table 1.14. The sixteen codewords $\{t\}$ of the (7,4) Hamming code. Any pair of codewords differ from each other in at least three bits. Because the Hamming code is a linear code, it can be written compactly in terms of matrices as follows. The transmitted codeword t is obtained from the source sequence s by a linear operation, $$\mathbf{t} = \mathbf{G}^{\mathsf{T}}\mathbf{s},\tag{1.25}$$ where G is the generator matrix of the code, $$\mathbf{G}^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}, \tag{1.26}$$ Rensseluci i orgazimne insutuu nan # **Hamming Code: Syndrome Decoding** - □ If channel is BSC and all source vectors are equiprobable, then... - □ ... the optimal decoder identifies the source vector s whose encoding t(s) differs from the received vector r in the fewest bits. - □ Similar to "closest-distance" decision rule seen in demodulation! - □ Can we do it more efficiently? Yes: **Syndrome decoding** The decoding task is to find the smallest set of flipped bits that can account for these violations of the parity rules. 17 [The <u>pattern of violations of the parity checks is called the syndrome</u>: the syndrome above is $\mathbf{z} = (1, 1, 0)$, because the first two circles are `unhappy' (parity 1) and the third circle is `happy' (parity 0).] Rensselaer Polytechnic Institute # **Syndrome Decoding (Contd)** - □ Can we find a unique bit that lies <u>inside</u> all the `unhappy' circles and <u>outside</u> all the `happy' circles? - ☐ If so, the flipping of that bit would account for the observed syndrome. | Syndrome \mathbf{z} | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 | |-----------------------|------|-------|-------|-------|-------|-------|-------|-------| | Unflip this bit | none | r_7 | r_6 | r_4 | r_5 | r_1 | r_2 | r_3 | # **Hamming Code: Performance** - □ A decoding error will occur whenever the noise has flipped more than one bit in a block of seven. - The probability scales as $O(f^2)$, as did the probability of error for the repetition code R3; but Hamming code has a greater rate, R = 4/7. - Dilbert Test: About 7% of the decoded bits are in error. The residual errors are *correlated*: often two or three successive decoded bits are flipped... - ☐ Generalizations of Hamming codes: called BCH codes about 7%. ### Shannon's Legacy: Rate-Reliability of Codes R10 not achievable 0.8 Rate 0.1 0.08 0.06 0.04 0.02 - Noisy-channel coding theorem: defines achievable rate/reliability regions - Note: you can get BER as low as desired by designing an appropriate code within the capacity region The
equation defining the Shannon limit (the solid curve) is $R = C/(1 - H_2(p_b))$, where C and H_2 are defined in equation (1.35). ## **Shannon Legacy (Contd)** The equation defining the Shannon limit (the solid curve) is $R = C/(1 - H_2(p_b))$, where C and H_2 are defined in equation (1.35). - The maximum rate at which communication is possible with arbitrarily small pb is called the capacity of the channel. **BSC(f)** capacity: $$C(f) = 1 - H_2(f) = 1 - \left[f \log_2 \frac{1}{f} + (1 - f) \log_2 \frac{1}{1 - f} \right];$$ \Box f = 0.1 has capacity $\dot{C} \approx 0.53$. 'What performance are you trying to achieve? 10^{-15} ? You don't need sixty disk drives – you can get that performance with just two disk drives (since 1/2 is less than 0.53). And if you want $p_{\rm b} = 10^{-18}$ or 10^{-24} or anything, you can get there with two disk drives too! Rensselaer Polyte : "shiv rpi" araman #### **Caveats & Remarks** - □ Strictly, the above statements might not be quite right: - Shannon proved his noisy-channel coding theorem by studying sequences of block codes with *ever-increasing block lengths*, and the required block length might be bigger than a gigabyte (the size of our disk drive), - ... in which case, Shannon might say 'well, you can't do it with those <u>tiny</u> disk drives, but if you had two noisy <u>terabyte</u> drives, you could make a single high-quality terabyte drive from them'. - □ Information theory addresses both the <u>limitations</u> and the <u>possibilities</u> of communication. - Reliable communication at any rate <u>beyond</u> the capacity is *impossible*, and that reliable communication at *all rates up to capacity is possible*. #### Generalize: Linear Coding/Syndrome Decoding - The first four received bits, $r_1r_2r_3r_4$, purport to be the four source bits; and the received bits $r_5r_6r_7$ purport to be the parities of the source bits, as defined by the generator matrix G. - Evaluate the three parity-check bits for the received bits, $r_1r_2r_3r_4$, and see whether they match the three received bits, $r_5r_6r_7$. - The differences (modulo 2) between these two triplets are called the <u>syndrome</u> of the received vector. - ☐ If the syndrome is zero then the received vector is a codeword, and the most probable decoding is given by reading out its first four bits. - ☐ If the syndrome is non-zero, then the noise sequence for this block was non-zero, and the *syndrome is our pointer* to the most probable error pattern. ## **Linear Coding/Syndrome Decoding (Contd)** $$t = G^T s$$, $$\mathbf{G}^{\text{T}} = \left[\begin{array}{c} \mathbf{I}_4 \\ \mathbf{P} \end{array} \right]$$ Received vector & Syndome: $r = G^Ts + n$ $$r = G^T s + n$$ Lets now build linear codes from ground up (first principles) The syndrome-decoding problem is to find the most probable noise vector **n** satisfying the equation $$Hn = z$$. $$\mathbf{Ht} = \left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{array} \right]$$ **Parity Check Matrix H:** the parity-check matrix **H** is given by $\mathbf{H} = [-\mathbf{P} \ \mathbf{I}_3]$ in modulo 2 arithmetic, $$-1\equiv 1,\, {\rm so}$$ Rensselaer Polytechnic Institute #### Some definitions - Binary field: - \square The set $\{0,1\}$, under modulo 2 binary addition and multiplication forms a field. | Addition | Multiplication | |------------------|-----------------| | $0 \oplus 0 = 0$ | $0 \cdot 0 = 0$ | | $0 \oplus 1 = 1$ | $0 \cdot 1 = 0$ | | $1 \oplus 0 = 1$ | $1 \cdot 0 = 0$ | | $1 \oplus 1 = 0$ | $1 \cdot 1 = 1$ | \square Binary field is also called *Galois field*, GF(2). #### **Definitions: Fields** - ☐ Fields: - Let F be a set of objects on which two operations '+' and '.' are defined. - F is said to be a <u>field</u> if and only if - 1. F forms a **commutative group under** + operation. The additive identity element is labeled "0". $$\forall a, b \in F \Rightarrow a + b = b + a \in F$$ 2. F-{0} forms a **commutative group under** . operation. The multiplicative identity element is labeled "1". $$\forall a, b \in F \Rightarrow a \cdot b = b \cdot a \in F$$ 3. The operations "+" and "." **distribute**: $$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$ # Definitions: Vector Space over Fields - Vector space: (note: it mixes vectors and scalars) - Let V be a set of **vectors** and F a fields of elements called **scalars**. V forms a vector space over F if: - 1. Commutative: $\forall \mathbf{u}, \mathbf{v} \in V \Rightarrow \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} \in F$ - 2. Closure: $\forall a \in F, \forall \mathbf{v} \in \mathbf{V} \Rightarrow a \cdot \mathbf{v} = \mathbf{u} \in \mathbf{V}$ - 3. <u>Distributive</u>: $$(a+b) \cdot \mathbf{v} = a \cdot \mathbf{v} + b \cdot \mathbf{v}$$ and $a \cdot (\mathbf{u} + \mathbf{v}) = a \cdot \mathbf{u} + a \cdot \mathbf{v}$ - **4.** Associative: $\forall a, b \in F, \forall \mathbf{v} \in V \Rightarrow (a \cdot b) \cdot \mathbf{v} = a \cdot (b \cdot \mathbf{v})$ - 5. Identity Element: $\forall v \in V, 1 \cdot v = v$ ## Vector Spaces, Subspaces - \square Examples of vector spaces V_n - □ The set of binary n-tuples, denoted by $$V_4 = \{(0000), (0001), (0010), (0011), (0100), (0101), (0111), (1000), (1001), (1010), (1011), (1100), (1101), (1111)\}$$ #### Vector subspace: - \square A subset S of the vector space V_n is called a <u>subspace</u> if: - **■ Zero**: The all-zero vector is in S. - □ Closure: The sum of any two vectors in S is also in S. - Example: $\{(0000), (0101), (1010), (1111)\}$ is a subspace of V_4 . # Span, Bases... #### Spanning set: - □ A collection of vectors $G = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ the linear combinations of which include all vectors in a vector space V, is said to be a <u>spanning set</u> for V or to <u>span</u> V. - Example: $\{(1000), (0110), (1100), (0011), (1001)\}$ spans V_4 . #### **Bases**: - A spanning set for V that has *minimal cardinality* is called a basis for V. - □ Cardinality of a set is the number of objects in the set. - ■Example: $\{(1000), (0100), (0010), (0001)\}$ is a basis for V_4 . # Linear Block Codes are just Subspaces! - □ Linear block code (n,k) - □ A set $C \subset V_n$ with cardinality 2^k is called a linear block code *if*, *and only if*, *it is a subspace* of the vector space V_n . $$V_k \to C \subset V_n$$ - Members of C are called **codewords**. - □ The all-zero codeword is a codeword. - □ Any <u>linear combination of code-words is a</u> codeword. Rensselaer Polytechnic Institute Shivkumar Kalyanaraman - □ The information bit stream is chopped into blocks of k bits. - Each block is encoded to a larger block of n bits. - The coded bits are modulated and sent over channel. - □ The reverse procedure is done at the receiver. *n-k* Redundant bits $$R_c = \frac{k}{n}$$ Code rate Rensselaer Polytechnic Institute - □ The $\underline{Hamming weight}$ (w) of vector \mathbf{U} , denoted by w(\mathbf{U}), is the number of non-zero elements in \mathbf{U} . - □ The $\underline{Hamming\ distance}$ (d) between two vectors \mathbf{U} and \mathbf{V} , is the number of elements in which they differ. - □ The minimum distance of a block code is $$d(\mathbf{U}, \mathbf{V}) = w(\mathbf{U} \oplus \mathbf{V})$$ $$d_{\min} = \min_{i \neq j} d(\mathbf{U}_i, \mathbf{U}_j) = \min_{i} w(\mathbf{U}_i)$$ □ Error <u>detection</u> capability is given by $$e = d_{\min} - 1$$ □ Error **correcting** capability **t** of a code, which is defined as the maximum number of guaranteed correctable errors per codeword, is $$t = \left| \frac{d_{\min} - 1}{2} \right|$$ □ A matrix G is constructed by taking as its rows the vectors on the **basis**, $\{V_1, V_2, ..., V_{\iota}\}$. $$\mathbf{G} = \begin{bmatrix} \mathbf{V}_{1} \\ \vdots \\ \mathbf{V}_{k} \end{bmatrix} = \begin{bmatrix} v_{11} & v_{12} & \cdots & v_{1n} \\ v_{21} & v_{22} & \cdots & v_{2n} \\ \vdots & & \ddots & \vdots \\ v_{k1} & v_{k2} & \cdots & v_{kn} \end{bmatrix}$$ Shivkumar Kalyanaraman Rensselaer Polytechnic Institute □ Encoding in (n,k) block code $$(u_1, u_2, \dots, u_n) = m_1 \cdot \mathbf{V}_1 + m_2 \cdot \mathbf{V}_2 + \dots + m_2 \cdot \mathbf{V}_k$$ □ The rows of G, are linearly independent. □ Example: Block code (6,3) $$\mathbf{G} = \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \\ \mathbf{V}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$ | Message vector | Codeword | |----------------|----------| | 000 | 000000 | | 100 | 110100 | | 010 | 011010 | | 110 | 101110 | | 001 | 101001 | | 101 | 011101 | | 011 | 110011 | | 111 | 000111 | Rensselaer Polytechnic Institute Shivkumar Kalyanaraman Google: "shiv rpi" # Systematic Block Codes - **Systematic** block code (n,k) - □ For a systematic code, the first (or last) k elements in the codeword are information bits. $$\mathbf{G} = [\mathbf{P} \mid \mathbf{I}_k]$$ $\mathbf{G} = [\mathbf{P} \mid \mathbf{I}_k]$ $\mathbf{I}_k = k \times k \text{ identity matrix}$ $\mathbf{P}_k = k \times (n - k) \text{ matrix}$ $$\mathbf{P}_k = k \times (n - k)$$ matrix $$\mathbf{U} = (u_1, u_2, ..., u_n) = (\underbrace{p_1, p_2, ..., p_{n-k}}_{\text{parity bits}}, \underbrace{m_1, m_2, ..., m_k}_{\text{message bits}})$$ For any linear code we can find an matrix $\mathbf{H}_{(n-k)\times n}$ which its rows are <u>orthogonal</u> to rows of \mathbf{G} $$\mathbf{G}\mathbf{H}^T = \mathbf{0}$$ - **Why?** H *checks the parity* of the received word (i.e. maps the N-bit word to a M-bit *syndrome*). - \square Codewords (=**mG**) should have parity of 0 (i.e. null-space). - H is called the parity check matrix and its rows are linearly independent. - ☐ For systematic linear block codes: $$\mathbf{H} = [\mathbf{I}_{n-k} \mid \mathbf{P}^T]$$ $$\mathbf{r} = \mathbf{U} + \mathbf{e}$$ $\mathbf{r} = (r_1, r_2, \dots, r_n)$ received codeword or vector $\mathbf{e} = (e_1, e_2, \dots, e_n)$ error pattern or vector - Syndrome testing: - \square S is
syndrome of \mathbf{r} , corresponding to the error pattern \mathbf{e} . $$\mathbf{S} = \mathbf{r}\mathbf{H}^T = \mathbf{e}\mathbf{H}^T$$ #### Error pattern Syndrome | ziror pacceri | z = y and $z = y$ | |---------------|-------------------| | 000000 | 000 | | 000001 | 101 | | 000010 | 011 | | 000100 | 110 | | 001000 | 001 | | 010000 | 010 | | 100000 | 100 | | 010001 | 111 | | | | $$U = (101110)$$ transmitted. $$\mathbf{r} = (001110)$$ is received. \rightarrow The syndrome of **r** is computed: $$S = rH^T = (001110)H^T = (100)$$ - Error pattern corresponding to this syndrome is $\hat{\mathbf{e}} = (100000)$ - → The corrected vector is estimated $$\hat{\mathbf{U}} = \mathbf{r} + \hat{\mathbf{e}} = (001110) + (100000) = (101110)$$ There is a unique mapping from Syndrome ↔ Error Pattern # Standard Array: Error Patterns codewords □ Example: *Standard array* for the (6,3) code | _ | 000000 | 110100 | 011010 | 101110 | 101001 | 011101 | 110011 | 000111 | _ | |---|--------|--------|--------|--------|--------|--------|--------|--------|--------------| | | 000001 | 110101 | 011011 | 101111 | 101000 | 011100 | 110010 | 000110 | | | | 000010 | 110110 | 011000 | 101100 | 101011 | 011111 | 110001 | 000101 | | | | 000100 | 110000 | 011110 | 101010 | 101101 | 011010 | 110111 | 000110 | | | | 001000 | 111100 | : | | | : | | 1 | | | | 010000 | 100100 | | | | | | C | oset: | | | 100000 | 010100 | | | | : | | | rror patterr | | | 010001 | 100101 | | ••• | | | ••• | 010110 | odeword | | | | | | | | | | | | Coset leaders (error patterns) #### Standard array - 1. For row $i = 2,3,...,2^{n-k}$, find a vector in V_n of minimum weight which is not already listed in the array. - 2. Call this error pattern \mathbf{e}_i and form the i: th row as the corresponding coset - Standard array and syndrome table decoding - 1. Calculate syndrome $S = rH^T$ - 2. Find the coset leader, $\hat{\mathbf{e}} = \mathbf{e}_i$, corresponding to \mathbf{S} . - 3. Calculate $\hat{\mathbf{U}} = \mathbf{r} + \hat{\mathbf{e}}$ and corresponding $\hat{\mathbf{m}}$ - Note that $\hat{\mathbf{U}} = \mathbf{r} + \hat{\mathbf{e}} = (\mathbf{U} + \mathbf{e}) + \hat{\mathbf{e}} = \mathbf{U} + (\mathbf{e} + \hat{\mathbf{e}})$ - ☐ If $\hat{\mathbf{e}} = \mathbf{e}$, error is corrected. - ☐ If $\hat{\mathbf{e}} \neq \mathbf{e}$, undetectable decoding error occurs. # Hamming codes - Hamming codes - Hamming codes are a subclass of linear block codes and belong to the category of *perfect codes*. - □ Hamming codes are expressed as a function of a <u>single</u> $\underbrace{integer}_{m} \ge 2$, i.e. n and k are derived from m: Code length: $n = 2^m - 1$ Number of information bits: $k = 2^m - m - 1$ Number of parity bits: n-k = m Error correction capability: t = 1 □ The columns of the parity-check matrix, **H**, consist of all non-zero binary m-tuples. # Hamming codes □ Example: Systematic Hamming code (7,4) $$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{3\times3} & \mathbf{P}^T \end{bmatrix}$$ $$\mathbf{G} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} = [\mathbf{P} \ | \ \mathbf{I}_{4\times4}]$$ Rensselaer Polytechnic Institute - □ *Cyclic* codes are a subclass of linear block codes. - Encoding and syndrome calculation are easily performed using <u>feedback shift-registers</u>. - ☐ Hence, relatively *long* block codes can be implemented with a reasonable complexity. - □ **BCH** and **Reed-Solomon** codes are cyclic codes. ■ A linear (n,k) code is called a Cyclic code if all cyclic shifts of a codeword are also a codeword. $$\mathbf{U} = (u_0, u_1, u_2, ..., u_{n-1})$$ "i" cyclic shifts of U $$\mathbf{U}^{(i)} = (u_{n-i}, u_{n-i+1}, ..., u_{n-1}, u_0, u_1, u_2, ..., u_{n-i-1})$$ □Example: $$\mathbf{U} = (1101)$$ $\mathbf{U}^{(1)} = (1110)$ $\mathbf{U}^{(2)} = (0111)$ $\mathbf{U}^{(3)} = (1011)$ $\mathbf{U}^{(4)} = (1101) = \mathbf{U}$ Algebraic structure of Cyclic codes, implies expressing codewords in polynomial form $$\mathbf{U}(X) = u_0 + u_1 X + u_2 X^2 + ... + u_{n-1} X^{n-1}$$ degree (n-1) □ Relationship between a codeword and its cyclic shifts: $$X\mathbf{U}(X) = u_0 X + u_1 X^2 + \dots, u_{n-2} X^{n-1} + u_{n-1} X^n$$ $$= \underbrace{u_{n-1} + u_0 X + u_1 X^2 + \dots + u_{n-2} X^{n-1}}_{\mathbf{U}^{(1)}(X)} + \underbrace{u_{n-1} X^n + u_{n-1}}_{u_{n-1}(X^n + 1)}$$ $$= \mathbf{U}^{(1)}(X) + u_{n-1}(X^n + 1)$$ □Hence: $$\mathbf{U}^{(1)}(X) = X\mathbf{U}(X) \bmod (X^{n} + 1)$$ By extension $$\mathbf{U}^{(i)}(X) = X^{i}\mathbf{U}(X) \operatorname{modulo}(X^{n} + 1)$$ - Basic properties of Cyclic codes: - □ Let C be a binary (n,k) linear cyclic code - 1. Within the set of code polynomials in C, there is a unique monic polynomial g(X) with minimal degree r < n. g(X) is called the **generator polynomials**. $$\mathbf{g}(X) = g_0 + g_1 X + ... + g_r X^r$$ - 2. Every code polynomial U(X) in C, can be expressed uniquely as U(X) = m(X)g(X) - 3. The generator polynomial g(X) is a factor of $X^n + 1$ 4. The orthogonality of **G** and **H** in polynomial form is expressed as $\mathbf{g}(X)\mathbf{h}(X) = X^n + 1$ This means $\mathbf{h}(X)$ is also a factor of $X^n + 1$ 5. The row i, i = 1,...,k, of generator matrix is formed by the coefficients of the "i-1" cyclic shift of the generator polynomial. Toeplitz Matrix (like the circulant matrix): Efficient Linear Algebra Operations (multiplication, inverse, solution of Ax = b) etc possible $$\begin{bmatrix} X^{k-1}\mathbf{g}(X) \end{bmatrix} \begin{bmatrix} g_0 & g_1 & \cdots & g_r \\ g_0 & g_1 & \cdots & g_r \end{bmatrix}$$ Rensselaer Polytechnic Institute Shivkumar Kalyanaraman Google: "shiv rpi" - Systematic encoding algorithm for an (n,k)Cyclic code: - 1. Multiply the message polynomial $\mathbf{m}(X)$ by X^{n-k} - 2. Divide the result of Step 1 by the generator polynomial $\mathbf{g}(X)$. Let $\mathbf{p}(X)$ be the <u>reminder</u>. - 3. Add $\mathbf{p}(X)$ to $X^{n-k}\mathbf{m}(X)$ to form the codeword $\mathbf{U}(X)$ Remember CRC used to detect errors in packets? "Cyclic" Redundancy Check: same idea! - Example: For the systematic (7,4) Cyclic code with generator polynomial $\mathbf{g}(X) = 1 + X + X^3$ - 1. Find the codeword for the message $\mathbf{m} = (1011)$ ## **Example: Encoding of systematic cyclic codes** Encode 1011 in systematic form in the (7, 4) code #### Solution (1) $$d(x) = 1 + x^2 + x^3$$ (2) $$x^{n-k} d(x) = x^3 + x^5 + x^6$$ (3) $$x^{3} + x + 1) x^{6} + x^{5} + x^{3}$$ $$\underline{x^{6} + x^{4} + x^{3}}$$ $$\underline{x^{5} + x^{4}}$$ (6.10) $$\frac{x^5}{x^5} + \frac{x^3 + x^3}{x^5}$$ $$x^4 + x^3 + x^2$$ $$\frac{x^4}{x^2+x^2+x}$$ $$\underline{x^3} + x + 1$$ $$\Rightarrow r(x) = 1 \text{ or } \mathbf{r} = 100$$ (4) $$c(x) = r(x) + x^{n-k} d(x) = 1 + x^3 + x^5 + x^6 \Rightarrow \mathbf{c} = \mathbf{rd} = 1001011$$ which is systematic, although the data word is found at the end of the codeword, rather than at the beginning. The same data, encoded using the generator matrix of (6.1), would yield the codeword 1011100. Rensselaer Polytechnic Institute end of the codeword. (4) Form the codeword polynomial as: (1) Express the data **d** in polynomial form, as d(x). (3) Divide the result by g(x), and take the remainder r(x). (2) Multiply d(x) by x^{n-k} (equivalent to shifting the data bits to the right-hand $c(x) = r(x) + x^{n-k} d(x)$ # **Decoding cyclic codes** When the received word r is 1101101, $$r(x) = x^6 + x^5 + x^3 + x^2 + 1$$ We now compute s(x) = mod[r(x)/g(x)] $$x^{3} + x^{2} + 1) x^{6} + x^{5} + x^{3} + x^{2} + 1$$ $$x^{6} + x^{5} + x^{3}$$ $$x^{2} + 1$$ Hence, s = 101. From Table 16.6, this gives e = 0001000, and $$c = r \oplus e = 1101101 \oplus 0001000 = 1100101$$ | Hence, from Table 16.5 we have | d = 1100 | 1010
1001
1000
0111 | |---|-----------------------------|------------------------------| | In a similar way, we determine for $c = r \oplus e = 1101000$, and $d = 10000$, and $c = 100000$, and $c = 100000$, and $c = 1000000$, and $c = 1000000$, and | 1101. For $r = 0001100$, s | | eS **Table 16.5** | 1111111 | |---------| | 1110010 | | 1101000 | | 1100101 | | 1011100 | | 1010001 | | 1001011 | | 1000110 | | | ıan hiv rpi" 57 2. Find the generator and parity check matrices, **G** and **H**, respectively. - Syndrome decoding for Cyclic codes: - □ Received codeword in polynomial form is given by Received codeword $$\mathbf{r}(X) = \mathbf{U}(X) + \mathbf{e}(X)$$ Error pattern □ The syndrome is the reminder obtained by dividing the received polynomial by the generator polynomial. $$\mathbf{r}(X) = \mathbf{q}(X)\mathbf{g}(X) + \mathbf{S}(X)$$ Syndrome - □ With syndrome and Standard array, error is estimated. - □ In Cyclic codes, the size of standard array is considerably reduced. # Example of the block codes Rensselaer Polytechnic Institute # Well-known Cyclic Codes - (n,1) **Repetition codes**. High coding gain, but low rate - (n,k) **Hamming codes**. Minimum distance always 3. Thus can detect 2 errors and correct one error. $n=2^m-1$, k=n-m, $m \ge 3$ - Maximum-length codes. For every integer $k \ge 3$ there exists a maximum length code (n,k) with $n = 2^k 1$, $d_{min} = 2^{k-1}$. Hamming codes are dual of maximal codes. - **BCH-codes**. For every integer $m \ge 3$ there exist a code with $n = 2^m 1$, $k \ge n mt$ and $d_{\min} \ge 2t + 1$ where t is the error correction capability - □ (n,k) Reed-Solomon (RS) codes. Works with k symbols that consists of \underline{m} bits that are encoded to yield code words of n symbols. For these codes $n = 2^m 1$, number of check symbols n k = 2t and $d_{\min} = 2t + 1$ - BCH and RS are popular due to <u>large d_{min} </u>, <u>large number of
codes</u>, and easy <u>generation</u> # Reed-Solomon Codes (RS) Fig. 3. RS Code versus Convolutional Code. - □ Group bits into L-bit symbols. Like BCH codes with symbols rather than single bits. - Can tolerate burst error better (fewer symbols in error for a given bit-level burst event). - □ Shortened RS-codes used in CD-ROMs, DVDs etc Shivkumar Kalyanaraman Rensselaer Polytechnic Institute #### **Shortened Reed Solomon Codes** # **RS-code** performance Fig. 5. RS Codes of 7/8-th Rate - Longer blocks, better performance - Encoding/decoding complexity lower for higher code rates (i.e. $> \frac{1}{2}$): O{K(N-K) log₂N}. - □ 5.7-5.8 dB coding gain @ BER = 10^{-5} (similar to 5.1 dB for convolutional codes, see later) Rensselaer Polytechnic Institute Google: "shiv rpi" # Block vs convolutional coding k input bits - □ (n,k) block codes: Encoder output of *n* bits depends only on the *k* input bits - n output bits - □ (n,k,K) convolutional codes: - ightharpoonup each source bit influences n(K+1) encoder output bits - $\square n(K+1)$ is the constraint length - $\square K$ is the memory depth # **Block diagram: Convolutional Coding** ### Convolutional codes-cont'd - \square A Convolutional code is specified by three parameters (n, k, K) or (k/n, K) where - $\square R_c = k / n$ is the <u>coding rate</u>, determining the number of data bits per coded bit. - □ In practice, usually k=1 is chosen and we assume that from now on. - \square *K* is the **constraint length** of the encoder a where the encoder has K-1 memory elements. #### A Rate ½ Convolutional encoder - \square Convolutional encoder (rate $\frac{1}{2}$, K=3) - □ 3 bit shift-register where the first one takes the incoming data bit and the rest form the memory of the encoder. #### A Rate ½ Convolutional encoder Message sequence: $\mathbf{m} = (101)$ ### A Rate ½ Convolutional encoder (contd) $$\mathbf{m} = (101)$$ Encoder $\mathbf{U} = (11 \ 10 \ 00 \ 10 \ 11)$ $$n = 2, k = 1, K = 3,$$ L = 3 input bits $\rightarrow 10$ output bits Rensselaer Polytechnic Institute #### Effective code rate - ☐ Initialize the memory before encoding the first bit (all-zero) - Clear out the memory after encoding the last bit (all-zero) - ☐ Hence, a tail of zero-bits is appended to data bits. - Effective code rate : - \square L is the number of data bits and k=1 is assumed: $$R_{eff} = \frac{L}{n(L+K-1)} < R_c$$ $$\mathbf{m} = (101)$$ Encoder $\mathbf{U} = (11 \ 10 \ 00 \ 10 \ 11)$ **Example**: $$n = 2$$, $k = 1$, $K = 3$, $L = 3$ input bits. Output = $$n(L + K - 1) = 2*(3 + 3 - 1) = 10$$ output bits Rensselaer Polytechnic Institute Shivkumar Kalyanaraman Google: "shiv rpi" # **Encoder representation** - □ Vector representation: - □ We define n binary vector with *K* elements (one vector for each modulo-2 adder). - □ The i:th element in each vector, is "1" if the i:th stage in the shift register is connected to the corresponding modulo-2 adder, and "0" otherwise. - ■Example: $$\mathbf{g}_1 = (111)$$ $$\mathbf{g}_2 = (101)$$ #### **Encoder representation: Impulse Response** - □ Impulse response representation: - □ The response of encoder to a single "one" bit that goes through it. - ■Example: Input sequence: 1 0 0 Output sequence: 11 10 11 | Dagistan | Branch word | | | |-------------------|-------------|-------|--| | Register contents | u_1 | u_2 | | | 100 | 1 | 1 | | | 010 | 1 | 0 | | | 001 | 1 | 1 | | | Input m | | Output | | | | | |---------|----|--------|----|----|----|--| | 1 | 11 | 10 | 11 | | | | | 0 | | 00 | 00 | 00 | | | | 1 | | | 11 | 10 | 11 | | | 2 sum: | 11 | 10 | 00 | 10 | 11 | | Modulo-2 sum: 1 Rensselaer Polytechnic Institute #### **Encoder representation:** Polynomial - Polynomial representation: - We define n generator polynomials, one for each modulo-2 adder. Each polynomial is of degree *K-1* or less and describes the connection of the shift registers to the corresponding modulo-2 adder. - ■Example: $$\mathbf{g}_{1}(X) = g_{0}^{(1)} + g_{1}^{(1)}.X + g_{2}^{(1)}.X^{2} = 1 + X + X^{2}$$ $$\mathbf{g}_{2}(X) = g_{0}^{(2)} + g_{1}^{(2)}.X + g_{2}^{(2)}.X^{2} = 1 + X^{2}$$ The output sequence is found as follows: $$\mathbf{U}(X) = \mathbf{m}(X)\mathbf{g}_1(X)$$ interlaced with $\mathbf{m}(X)\mathbf{g}_2(X)$ #### Encoder representation -cont'd In more details: $$\mathbf{m}(X)\mathbf{g}_{1}(X) = (1+X^{2})(1+X+X^{2}) = 1+X+X^{3}+X^{4}$$ $$\mathbf{m}(X)\mathbf{g}_{2}(X) = (1+X^{2})(1+X^{2}) = 1+X^{4}$$ $$\mathbf{m}(X)\mathbf{g}_{1}(X) = 1+X+0.X^{2}+X^{3}+X^{4}$$ $$\mathbf{m}(X)\mathbf{g}_{2}(X) = 1+0.X+0.X^{2}+0.X^{3}+X^{4}$$ $$\mathbf{U}(X) = (1,1)+(1,0)X+(0,0)X^{2}+(1,0)X^{3}+(1,1)X^{4}$$ $$\mathbf{U} = 11 \qquad 10 \qquad 00 \qquad 10 \qquad 11$$ Shivkumar Kalyanaraman Google: "shiv rpi" ### State diagram - □ A finite-state machine only encounters a finite number of states. - □ State of a machine: the smallest amount of information that, together with a current input to the machine, can predict the output of the machine. - □ In a convolutional encoder, the state is represented by the content of the memory. - \square Hence, there are 2^{K-1} states. (grows exponentially w/constraint length) ### State diagram – cont'd | | Current state | input | Next
state | output | |--|--------------------------|----------|---------------|----------------| | | $S_0 \\ 00$ | 0 | S_0 | 00 | | | 0Ŏ | 1 | S_2 | 11 | | | <i>S</i> ₁ 01 | 0 | S_0 | 11 | | | | 1 | S_2 | 00 | | | S_{2} 10 | 0 | S_1 | 10 | | | $1\overline{0}$ | 1 | S_3 | 01 | | | S ₃ | 0 | S_1 | 01 | | | 11 | 1_{Sh} | S,
ivkumar | 10
Kalyanar | Google: "shiv rpi" aman #### Trellis - cont'd - □ Trellis diagram is an extension of the state diagram that shows the passage of time. - Example of a section of trellis for the rate ½ code Rensselaer Polytechnic Institute #### Trellis -cont'd ## **Optimum decoding** - □ If the input sequence messages are equally likely, the optimum decoder which minimizes the probability of error is the *Maximum likelihood* decoder. - ML decoder, selects a codeword among all the possible codewords which maximizes the likelihood function $p(\mathbf{Z} | \mathbf{U}^{(m')})$ where \mathbf{Z} is the <u>received</u> <u>sequence</u> and $\mathbf{U}^{(m')}$ is one of the possible codewords: ➤ML decoding rule: Choose $$\mathbf{U}^{(m')}$$ if $p(\mathbf{Z} | \mathbf{U}^{(m')}) = \max_{\text{over all } \mathbf{U}^{(m)}} p(\mathbf{Z} | \mathbf{U}^{(m)})$ 2^Lcodewords to search!!! ### ML decoding for memory-less channels ■ Due to the independent channel statistics for memoryless channels, the likelihood function becomes $$p(\mathbf{Z} \mid \mathbf{U}^{(m)}) = p_{z_1, z_2, \dots, z_i, \dots}(Z_1, Z_2, \dots, Z_i, \dots \mid U^{(m)}) = \prod_{i=1}^{\infty} p(Z_i \mid U_i^{(m)}) = \prod_{i=1}^{\infty} \prod_{j=1}^{n} p(z_{ji} \mid u_{ji}^{(m)})$$ and equivalently, the log-likelihood function becomes $$\gamma_{\mathbf{U}}(m) = \log p(\mathbf{Z} \mid \mathbf{U}^{(m)}) = \sum_{i=1}^{\infty} \log p(Z_i \mid U_i^{(m)}) = \sum_{i=1}^{\infty} \sum_{j=1}^{n} \log p(Z_{ji} \mid u_{ji}^{(m)})$$ Path metric Branch metric Branch metric The path metric up to time index "i", is called the partial path metric. #### ➤ ML decoding rule: Choose the path with maximum metric among all the paths in the trellis. This path is the "closest" path to the transmitted sequence. Rensselaer Polytechnic Institute #### **AWGN** channels - For BPSK modulation the transmitted sequence corresponding to the codeword $\mathbf{U}^{(m)}$ is denoted by where $\mathbf{S}^{(m)} = (S_1^{(m)}, S_2^{(m)}, ..., S_i^{(m)}, ...)$ and $S_i^{(m)} = (s_{1i}^{(m)}, ..., s_{ji}^{(m)}, ..., s_{ni}^{(m)})$ and $s_{ii} = \pm \sqrt{E_c}$. - □ The log-likelihood function becomes $$\gamma_{\mathbf{U}}(m) = \sum_{i=1}^{\infty} \sum_{j=1}^{n} z_{ji} s_{ji}^{(m)} = \langle \mathbf{Z}, \mathbf{S}^{(m)} \rangle$$ Inner product or correlation between \mathbf{Z} and \mathbf{S} - Maximizing the correlation is equivalent to minimizing the Euclidean distance. - ➤ML decoding rule: Choose the path which with minimum Euclidean distance to the received sequence. Rensselaer Polytechnic Institute #### The Viterbi algorithm - The Viterbi algorithm performs Maximum likelihood decoding. - It find a path through trellis with the largest metric (maximum correlation or minimum distance). - ☐ It processes the demodulator outputs in an iterative manner. - At each step in the trellis, it compares the metric of all paths entering each state, and <u>keeps only the path with the largest metric</u>, <u>called the survivor</u>, <u>together with its metric</u>. - ☐ It proceeds in the trellis by *eliminating the least likely paths*. - It reduces the decoding complexity to $L2^{K-1}$ ## The Viterbi algorithm - cont'd - ☐ Viterbi algorithm: - A. Do the following set up: - For a data block of L bits, form the trellis. The trellis has L+K-1 sections or levels and starts at time t_1 and ends up at time t_{L+K} . - Label all the branches in the trellis with their corresponding *branch metric*. - For each state in the trellis at the time t_i which is denoted by $S(t_i) \in \{0,1,...,2^{K-1}\}$, define a parameter (path metric) $\Gamma(S(t_i),t_i)$ - B. Then, do the following: ### The Viterbi algorithm - cont'd - 1. Set $\Gamma(0,t_1) = 0$ and i = 2. - 2. At time t_i , compute the partial path metrics for all the paths entering each state. - Set Γ(S(t_i),t_i) equal to the best partial path metric entering each state at time t_i. Keep the survivor path and delete the dead paths from the trellis. - 4. If i < L + K, increase i by 1 and return to step 2. - C. Start at state zero at time t_{L+K} . Follow the surviving branches backwards through the trellis. The path thus defined is unique and correspond to the ML codeword. #### **Example of Viterbi decoding** $$\mathbf{m} = (101)$$ $\mathbf{U} = (11 \ 10 \ 00 \ 10 \ 11)$ $\mathbf{Z} = (11 \ 10 \ 11 \ 10 \ 01)$ ■ Label al the branches with the branch metric (Hamming distance) <u>i=2</u> $\mathbf{m} =
(101)$ $\mathbf{U} = (11 \ 10 \ 00 \ 10 \ 11)$ $\mathbf{Z} = (11 \ 10 \ 11 \ 10 \ 01)$ t_4 Shivkumar Kalyanaraman Rensselaer Polytechnic Institute □ i=4 $\mathbf{m} = (101)$ $\mathbf{U} = (11 \ 10 \ 00 \ 10 \ 11)$ $\mathbf{Z} = (11 \ 10 \ 11 \ 10 \ 01)$ t_4 Shivkumar Kalyanaraman Rensselaer Polytechnic Institute <u>i=6</u> $\mathbf{m} = (101)$ $\mathbf{U} = (11 \ 10 \ 00 \ 10 \ 11)$ $\mathbf{Z} = (11 \ 10 \ 11 \ 10 \ 01)$ t_4 Shivkumar Kalyanaraman Rensselaer Polytechnic Institute VS Trace back and then: $$\hat{\mathbf{m}} = (100)$$ $\hat{\mathbf{U}} = (11 \ 10 \ 11 \ 00 \ 00)$ $$\mathbf{m} = (101)$$ $\mathbf{U} = (11 \ 10 \ 00 \ 10 \ 11)$ $\mathbf{Z} = (11 \ 10 \ 11 \ 10 \ 01)$ #### Soft and hard decisions #### Hard decision: - □ The demodulator makes a firm or hard decision whether one or zero is transmitted and provides no other information reg. how reliable the decision is. - ☐ Hence, its <u>output is only zero or one</u> (the output is quantized only to two level) which are called "<u>hard-bits</u>". #### ■ **Soft decision**: - ☐ The demodulator provides the decoder with some <u>side information</u> together with the decision. - □ The side information provides the decoder with a <u>measure of confidence for the</u> decision. - □ The demodulator outputs which are called soft-bits, are quantized to more than two levels. (eg: 8-levels) - Decoding based on soft-bits, is called the "soft-decision decoding". - On AWGN channels, 2 dB and on fading channels 6 dB gain are obtained by using soft-decoding over hard-decoding! #### Performance bounds ... ■ Basic coding gain (dB) for *soft-decision* Viterbi decoding | Uncoded | Code rate | | 1/3 | | 1/2 | | |-------------------|------------------------------|---|------|-----|-----|-----| | E_{b} / N_{0} | | |
 | i | | | | (dB) | $P_{\!\scriptscriptstyle B}$ | K | 7 | 8 | 6 | 7 | | 6.8 | 10^{-3} | | 4.2 | 4.4 | 3.5 | 3.8 | | 9.6 | 10^{-5} | | 5.7 | 5.9 | 4.6 | 5.1 | | 11.3 | 10^{-7} | | 6.2 | 6.5 | 5.3 | 5.8 | | Upper bound | | | 7.0 | 7.3 | 6.0 | 7.0 | ### **Interleaving** - Convolutional codes are suitable for memoryless channels with random error events. - Some errors have bursty nature: - □ Statistical dependence among successive error events (time-correlation) due to the channel memory. - Like errors in multipath fading channels in wireless communications, errors due to the switching noise, ... - □ "Interleaving" makes the channel looks like as a memoryless channel at the decoder. #### Interleaving ... - □ Consider a code with t=1 and 3 coded bits. - □ A burst error of length 3 can not be corrected. □ Let us use a block interleaver 3X3 Rensselaer Polytechnic Institute ## **Concatenated Codes** #### **Concatenated codes** - A concatenated code uses two levels on coding, an inner code and an outer code (higher rate). - Popular concatenated codes: Convolutional codes with Viterbi decoding as the inner code and Reed-Solomon codes as the outer code - The purpose is to reduce the overall complexity, yet achieving the required error performance. Google: "shiv rpi" #### **Concatenated Codes** $$\mathcal{C}' o \underbrace{\mathcal{C} o Q o \mathcal{D}}_{Q'} o \mathcal{D}'$$ - Encoder-channel-decoder system C → Q → D can be viewed as defining a <u>super-channel</u> Q' with a smaller probability of error, and with complex <u>correlations</u> among its errors. - We can create an encoder C' and decoder D' for this superchannel Q'. Fig. 4. Concatenated Code Schematic. Rensselaer Polytechnic Institute # **Product/Rectangular Codes: Concatenation + Interleaving** - □ Some concatenated codes make use of the idea of *interleaving*. - Blocks of size <u>larger</u> than the block lengths of the constituent codes C and C'. - □ After encoding the data of one block using code C', - □ ... the bits are <u>reordered</u> within the block in such a way that nearby bits are separated from each other once the block is fed to the second code C. - A simple example of an interleaver is a <u>rectangular code</u> or **product code** in which ... - \square ... the data: $K_2 \times K_1$ <u>rectangular block</u>, and ... - \square ... encoded <u>horizontally</u> using an (N_1, K_1) linear code, - \square ... then <u>vertically</u> using a (N_2, K_2) linear code. #### **Product code Example** - (a) A string 1011 encoded using a concatenated code w/ two Hamming codes, H(3, 1) ≡ Repetition code (R3) and H(7,4). - □ (b) a noise pattern that flips 5 bits. - **(c)** The received vector. #### **Product Codes (Contd)** - □ (d) After decoding using the horizontal (3, 1) decoder, and - (e) after subsequently using the vertical (7; 4) decoder. - □ The decoded vector matches the original. - Note: Decoding in the other order (weaker-code-first) leads to residual error in this example: ### Practical example: Compact disc "Without error correcting codes, digital audio would not be technically feasible." - Channel in a CD playback system consists of a transmitting laser, a recorded disc and a photo-detector. - Sources of errors are manufacturing damages, fingerprints or scratches - Errors have bursty like nature. - Error correction and concealment is done by using a concatenated error control scheme, called *cross-interleaver Reed-Solomon code (CIRC)*. - Both the inner and outer codes are *shortened RS codes* #### Compact disc – CIRC Encoder □ CIRC encoder and decoder: Google: "shiv rpi" #### **Adaptive Modulation** - Just vary the "M" in the MQAM constellation to the appropriate SNR - Can be used in conjunction with spatial diversity # Adaptive modulation/coding: Multi-User - □ Exploit *multi-user* diversity. - □ Users with **high SNR**: use MQAM (large M) + high code rates - □ Users with <u>low SNR</u>: use BPSK + low code rates (i.e. heavy error protection) - □ In any WiMAX frame, different users (assigned to time-frequency slots within a frame) would be getting a different rate! - □ i.e. be using different code/modulation combos... #### **Basis for Adaptive Modulation/Coding (AMC)** ■ K-user system: the subcarrier of interest experiences i.i.d. Rayleigh fading: each user's channel gain is independent of the others, and is denoted by h_k . RensselProbability density function of h_{max} #### Wimax: Uses Feedback & Burst Profiles Figure 6.7: Adaptive Modulation and Coding Block Diagram. - Lower data rates are achieved by using a small constellation such as QPSK and low rate error correcting codes such as rate 1/2 convolutional or turbo codes. - The higher data rates are achieved with large constellations such as 64QAM and less robust error correcting codes, for example rate 3/4 convolutional, turbo, or LDPC codes - Wimax burst profiles: 52 different possible configurations of modulation order and coding types and rates. - WiMAX systems heavily protect the feedback channel with error correction, so usually the main source of degradation is due to mobility, which causes channel estimates to rapidly become obsolete. Shivkumar Kalyanaraman Rensselaer Polytechnic Institute #### **AMC Considerations** - <u>BLER and Received SINR</u>: In adaptive modulation theory, the transmitter needs only to know the statistics and instantaneous channel SINR. From the channel SINR, it can determine the optimum coding/modulation strategy and transmit power. - □ In practice however, the BLER should be carefully monitored as the final word on whether the data rate should be increased (if the BLER is low) or decreased to a more robust setting. - Automatic Repeat Request (ARQ): ARQ allows rapid retransmissions, and Hybrid ARQ generally increases the ideal BLER operating point by about a factor of 10, e.g. from 1% to 10%. - □ For delay-tolerant applications, it may be possible to accept a BLER approaching even 70%, if Chase combining is used in conjunction with HARQ to make use of unsuccessful packets. - Power control vs. Waterfilling: In theory, the best power control policy from a capacity standpoint is the so-called waterfilling strategy, in which more power is allocated to strong channels, and less power allocated to weak channels. In practice, the opposite may be true in some cases. #### **AMC** vs Shannon Limit Optionally turbo-codes or LDPC codes can be used instead of simple block/convolutional codes in these schemes Rensselaer Polytechnic Institute Shivkumar Kalyanaraman #### **Main Points** - Adaptive MQAM uses capacity-achieving power and rate adaptation, with power penalty K. - Adaptive MQAM comes within 5-6 dB of capacity - Discretizing the constellation size results in negligible performance loss. - □ Constellations cannot be updated faster than 10s to 100s of symbol times: OK for most dopplers. - Estimation error and delay lead to irreducible error floors. # **Hybrid ARQ/FEC** # Type I HARQ: Chase Combining - □ In Type I HARQ, also referred to as *Chase Combining*, the redundancy version of the encoded bits is not changed from one transmission to the next, i.e. the puncturing patterns remains same. - □ The receiver uses the current and all previous HARQ transmissions of the data block in order to decode it. - With each new transmission the reliability of the encoded bits improve thus reducing the probability of error during the decoding stage. - This process continues until either the block is decoded without error (passes the CRC check) or the maximum number of allowable HARQ transmissions is reached. - When the data block cannot be decoded without error and the maximum number of HARQ transmissions is reached, it is left up to a higher layer such as MAC or TCP/IP to retransmit the data block. - ☐ In that case all previous transmissions are cleared and the HARQ process start from the beginning. - Used in WiMAX implementations: can provide range extension (especially at cell-edge). # Type II ARQ: Incremental Redundancy Figure 8.6 Illustration of HARQ Process with Incremental Redundancy - Type II HARQ is also referred to as *Incremental Redundancy* - □ The redundancy version of the encoded bits
is changed from one transmission to the next. (Rate-compatible Punctured Convolutional codes (RCPC)) used. - ☐ Thus the puncturing pattern changes from one transmission to the next. - This not only improves the log likelihood estimates (LLR) of parity bits but also reduces the code rate with each additional transmission. - Incremental redundancy leads to lower bit error rate (BER) and block error rate (BLER) compared to chase combining. - Wimax uses only Type I HARQ (Chase) and not Type II for complexity reasons 117 Shivkumar Kalyanaraman Rensselaer Polytechnic Institute #### **Hybrid ARQ/FEC: Combining Coding w/ Feedback** - Sequence Numbers - CRC or Checksum - Proactive FEC - ACKs - NAKs, - SACKs - Bitmaps - Packets - Reactive FEC Shivkumar Kalyanaraman Rensselaer Polytechnic Institute #### Hybrid ARQ/FEC For TCP over Lossy Networks Time diagram showing the use of Proactive and Reactive FEC. The initial transmission (Phase 1) consists of data and PFEC units for the block. Acks contain feedback that trigger transmission of RFEC segments. Ziii Kullur Kalyanaraman Rensselaer Polytechnic Institute #### **Loss-Tolerant TCP (LT-TCP) vs TCP-SACK** Fig. 5. LT-TCP and TCP-SACK performance with Increased Erasure Rates (Gilbert and Uniform Loss Probabilities, 10 Mb/s Capacity, 10 flows) #### Tradeoffs in Hybrid ARQ/FEC Analysis: (10 Mbps, p = 50%) Goodput = 3.61 Mbps vs 5 Mbps (max) PFEC waste: **1.0 Mbps = 10%** RFEC waste: 0.39 Mbps = 3.9% Residual Loss : <u>0.0%</u> Weighted Avg # Rounds: 1.13 1.4Mbps goodput sacrificed (FEC waste) to reduce latency, residual loss PFEC: μ + σ of loss process Upfront PFEC waste (10%) dominates RFEC waste Residual Loss can be negligible even for high loss rates (50%), even with a limit of just 1 ARQ attempt. Rensselaer Polytechnic Institute # **Recall: Coding Gain Potential** - With convolutional code alone, @BER of 10⁻⁵, we require Eb/No of 4.5dB or get a gain of 5.1 dB. - With concatenated RS-Convolutional code, BER curve ~ vertical cliff at an Eb/No of about 2.5-2.6 dB, i.e a gain of 7.1dB. - We are still 11.2 7.1 = 4.1 dB away from the Shannon limit \odot - □ Turbo codes and LDPC codes get us within 0.1dB of the Shannon limit !! © Rensselaer Polytechnic Institute Shivkumar Kalyanaraman #### **LDPC** - Low-Density Parity-Check (LDPC) codes are a class of linear block codes characterized by sparse parity check matrices H - H has a low-density of 1's - LDPC codes were originally invented by Robert Gallager in the early 1960's but were largely ignored until they were "rediscovered" in the mid-1990's by MacKay - Sparseness of H can yield large minimum distance d_{min} and reduces decoding complexity 125 - Can perform within 0.0045 dB of Shannon limit - These code are making their way into standards - Binary turbo: UMTS, cdma2000 - Duobinary turbo: DVB-RCS, 802.16 - LDPC: DVB-S2 standard. # **Example LDPC Code** - □ A low-density parity-check matrix and the corresponding (bipartite) graph of a rate-1/4 low-density parity-check code with blocklength N =16, and M =12 constraints. - Each white circle represents a transmitted bit. - Each bit participates in j = 3 *constraints*, represented by squares. \blacksquare - Each constraint forces the sum of the k = 4 bits to which it is connected to be even. - This code is a (16; 4) code. Outstanding performance is obtained when the blocklength is increased to $N \approx 10,000$. ### Tanner Graph - A Tanner graph is a bipartite graph that describes the parity check matrix H - There are two classes of nodes: - Variable-nodes: Correspond to bits of the codeword or equivalently, to columns of the parity check matrix - There are n v-nodes - Check-nodes: Correspond to parity check equations or equivalently, to rows of the parity check matrix - There are m=n-k c-nodes - Bipartite means that nodes of the same type cannot be connected (e.g. a c-node cannot be connected to another c-node) - The ith check node is connected to the jth variable node iff the (i,j)th element of the parity check matrix is one, i.e. if h_{ii} =1 - All of the v-nodes connected to a particular c-node must sum (modulo-2) to zero # A.k.a Factor Graph Notation $$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$ $$\mathbf{z} = \mathbf{Hr} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$ Rensselaer Polytechnic Institute # **Factor Graphs** - □ A factor graph shows how a function of several variables can be factored into a product of "smaller" functions. - For example, the function \mathbf{g} defined by $\mathbf{g}(x,y)=xy+x$ can be factored into $\mathbf{g}(x,y)=\mathbf{f_1}(x)\mathbf{f_2}(y)$ where $\mathbf{f_1}(x)=x$ and $\mathbf{f_2}(y)=y+1$. - □ The factor graph depicting this factorization: Graph for function $\mathbf{g}(x,y,z) = \mathbf{f_1}(x,y) \mathbf{f_2}(y,z) \mathbf{f_3}(x,z)$. - Why Factor graphs? - □ 1. Very *general*: variables and functions are arbitrary - 2. Factorization => <u>Sum-Product Algorithm</u> can be applied - 3. Third, many efficient algorithms are <u>special cases</u> of the Sum-Product Algorithm applied to factor graphs: - □ FFT (Fast Fourier Transform), Viterbi Algorithm, Forward-Backward Algorithm, Kalman Filter and Bayesian Network Belief Propagation. - □ Brings many good algorithms together in a common framework. # LDPC Coding Constructions - Around 1996, Mackay and Neal described methods for constructing sparse H matrices - The idea is to randomly generate a M × N matrix H with weight d_v columns and weight d_v rows, subject to some constraints - Construction 1A: Overlap between any two columns is no greater than 1 - This avoids length 4 cycles - Construction 2A: M/2 columns have d_v =2, with no overlap between any pair of columns. Remaining columns have d_v =3. As with 1A, the overlap between any two columns is no greater than 1 - Construction 1B and 2B: Obtained by deleting select columns from 1A and 2A - Can result in a higher rate code # LDPC Decoding: Iterative - Like Turbo codes, LDPC can be decoded iteratively - Instead of a trellis, the decoding takes place on a Tanner graph - Messages are exchanged between the v-nodes and c-nodes - Edges of the graph act as information pathways - Hard decision decoding - Bit-flipping algorithm - Soft decision decoding - Sum-product algorithm - Also known as message passing/ belief propagation algorithm - Min-sum algorithm - Reduced complexity approximation to the sum-product algorithm - In general, the per-iteration complexity of LDPC codes is less than it is for turbo codes 131 - However, many more iterations may be required (max≈100;avg≈30) - Thus, overall complexity can be higher than turbo # Regular vs Irregular LDPC Codes - An LDPC code is regular if the rows and columns of H have uniform weight, i.e. all rows have the same number of ones (d_v) and all columns have the same number of ones (d_c) - The codes of Gallager and MacKay were regular (or as close as possible) - Although regular codes had impressive performance, they are still about 1 dB from capacity and generally perform worse than turbo codes - An LDPC code is irregular if the rows and columns have non-uniform weight - Irregular LDPC codes tend to outperform turbo codes for block lengths of about n>10⁵ - The degree distribution pair (λ, ρ) for a LDPC code is defined as $$\lambda(x) = \sum_{i=2}^{d_r} \lambda_i x^{i-1}$$ $$\rho(x) = \sum_{i=1}^{d_r} \rho_i x^{i-1}$$ λ_i, ρ_i represent the fraction of edges emanating from variable (check) nodes of degree i Shivkumar Kalyanaraman ### **Irregular LDPC Codes** - Luby et. al. (1998) developed LDPC codes based on irregular LDPC Tanner graphs - Message and check nodes have conflicting requirements - Message nodes benefit from having a large degree - LDPC codes perform better with check nodes having low degrees - Irregular LDPC codes help balance these competing requirements - High degree message nodes converge to the correct value quickly - This increases the quality of information passed to the check nodes, which in turn helps the lower degree message nodes to converge - Check node degree kept as uniform as possible and variable node degree is non-uniform - Code 14: Check node degree =14, Variable node degree =5, 6, 21, 23 - No attempt made to optimize the degree distribution for a given code rate Shivkumar Kalyanaraman #### **Turbo Codes** Turbo codes get their name because the decoder uses feedback, like a turbo engine. #### Turbo Encoder - The encoder of a turbo code. - Each box C1, C2, contains a convolutional code. - The source bits are reordered using a permutation π before they are fed to C2. - □ The transmitted codeword is obtained by concatenating or interleaving the - outputs of the two convolutional codes. - The random permutation is chosen when the code is designed, and fixed thereafter. 136 # **Turbo: MAP Decoding** - The goal of the maximum a posteriori (MAP) decoder is to determine P(u(t)=1 | y) and P(u(t)=0 | y) for each t. - The probability of each message bit, given the entire received codeword. - These two probabilities are conveniently expressed as a log-likelihood ratio: $$\lambda(t) = \log \frac{P[u(t) = 1 \mid \mathbf{y}]}{P[u(t) = 0 \mid \mathbf{y}]}$$ # Performance as a Function of Number of Iterations - K = 5 - constraint length - r = 1/2 - code rate - L= 65,536 - interleaver size - number data bits - Log-MAP algorithm #### **Turbo Codes: Performance...** - Turbo codes have extraordinary performance at low SNR. - Very close to the Shannon limit. - Due to a low multiplicity of low weight code words. - However, turbo codes have a BER "floor". - This is due to their low minimum distance. - Performance improves for larger block sizes. - Larger block sizes mean more latency (delay). - However, larger block sizes are not more complex
to decode. - The BER floor is lower for larger frame/interleaver sizes - The complexity of a constraint length K_{TC} turbo code is the same as a K = K_{CC} convolutional code, where: - K_{CC} ≈ 2+K_{TC}+ log₂(number decoder iterations) #### **UMTS** Turbo Encoder - From 3GPP TS 25 212 v6.6.0, Release 6 (2005-09) - UMTS Multiplexing and channel coding - Data is segmented into blocks of L bits. - **–** where $40 \le L \le 5114$ nan Rens #### **WiMAX:** Convolutional Turbo Codes (CTC) The standard specifies an optional convolutional turbo code (CTC) for operation in the 2-11 GHz range. Uses same duobinary CRSC encoder as DVB-RCS, though without output W. - Modulation: BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM. - Key parameters: - Input message size 8 to 256 bytes long. - $r = \{1/2, 2/3, 3/4, 5/6, 7/8\}$ # What is a Digital Fountain? - □ A *digital fountain* is an ideal/paradigm for data transmission. - □ Vs. the standard (TCP) paradigm: data is an *ordered* finite sequence of bytes. - □ Instead, with a digital fountain, a *k* symbol file yields an *infinite* data stream ("fountain"); once you have received any *k* symbols from this stream, you can quickly reconstruct the original file. # How Do We Build a Digital Fountain? - We can construct (approximate) digital fountains using erasure codes. - □ Including Reed-Solomon, Tornado, LT, fountain codes. - Generally, we only come close to the ideal of the paradigm. - □ Streams not truly infinite; encoding or decoding times; coding overhead. ## Raptor/Rateless Codes - Properties: <u>Approximately</u> MDS - □ "Infinite" supply of packets possible. - □ Need $k(1+\varepsilon)$ symbols to decode, for some $\varepsilon > 0$. - \square Decoding time proportional to $k \ln (1/\epsilon)$. - □ On average, $\ln (1/\epsilon)$ (constant) time to produce an encoding symbol. - □ Key: Very fast encode/decode time compared to RS codes - Compute new check packets on demand! - Bottomline: these codes can be made very efficient and deliver on the promise of the digital fountain paradigm. ## Digital Fountain Encoder/Decoder □ Encoder: Each encoded packet t_n is produced from the source file $s_1s_2s_3...s_K$ as follows: - 1. Randomly choose the degree d_n of the packet from a degree distribution $\rho(d)$; the appropriate choice of ρ depends on the source file size K, as we'll discuss later. - 2. Choose, uniformly at random, d_n distinct input packets, and set t_n equal to the bitwise sum, modulo 2 of those d_n packets. This sum can be done by successively exclusive-or-ing the packets together. - 1. Find a check node t_n that is connected to *only one* source packet s_k . (If there is no such check node, this decoding algorithm halts at this point, and fails to recover all the source packets.) - (a) Set $s_k = t_n$. - (b) Add s_k to all checks $t_{n'}$ that are connected to s_k : $$t_{n'} := t_{n'} + s_k$$ for all n' such that $G_{n'k} = 1$. (50.1) - (c) Remove all the edges connected to the source packet s_k . - 2. Repeat (1) until all $\{s_k\}$ are determined. Rensselaer Polytechnic Instit Decoder: # Digital Fountain decoding (example) □ Received bits: 1011 - S_2 set to $t_4 = 0$ {degree = 1} \blacksquare Repeat as before; $s_3 = 1$ First such code called "*Tornado*" code. Later: *LT-codes*; Concatenated version: "*Raptor code*" Shivkumar Kalyanaraman Rensselaer Polytechnic Institute ### **Esoterics: Robust Soliton Degree Distribution** Figure 50.2. The distributions $\rho(1) = 1/K$ $\rho(d) \text{ and } \tau(d) \text{ for the case}$ $K = 10\,000, \, c = 0.2, \, \delta = 0.05,$ which gives $S = 244, \, K/S = 41,$ and $Z \simeq 1.3$. The distribution τ is $S \equiv c \ln(K/\delta) \sqrt{K}$ are significant to the case $S \equiv c \ln(K/\delta) \sqrt{K}$ $$\tau(d) = \begin{cases} \frac{S}{K} \frac{1}{d} & \text{for } d = 1, 2, \dots (K/S) - 1\\ \frac{S}{K} \ln(S/\delta) & \text{for } d = K/S\\ 0 & \text{for } d > K/S \end{cases}$$ Ren Figure 50.3. The number of degree-one checks S (upper figure) and the quantity K' (lower figure) as a function of the two parameters c and δ , for $K = 10\,000$. Lubv's main theorem c such that, given K' received packets, the decoding algorithm will recover the K source packets with probability $1 - \delta$. proves that there exists a value of $$\mu(d) = \frac{\rho(d) + \tau(d)}{Z}$$ ## **Applications:** Reliable Multicast - Many potential problems when multicasting to large audience. - Feedback explosion of lost packets. - □ Start time heterogeneity. - □ Loss/bandwidth heterogeneity. - A digital fountain solves these problems. - Each user gets what they can, and stops when they have enough: doesn't matter which packets they've lost - □ Different paths could have diff. loss rates vkumar Kalyanaraman # **Applications: Downloading in Parallel** - □ Can collect data from multiple digital fountains for the same source seamlessly. - □ Since each fountain has an "infinite" collection of packets, no duplicates. - □ Relative fountain speeds unimportant; just need to get enough. - □ Combined multicast/multi-gather possible. - Can be used for BitTorrent-like applications. - Microsoft's "Avalanche" product uses randomized linear codes to do "network coding" - □ http://research.microsoft.com/~pablo/avalanche.aspx - Used to deliver patches to security flaws rapidly; Microsoft Update dissemination etc #### Single path: limited capacity, delay, loss... Network paths usually have - low e2e capacity, - high latencies and - high/variable loss rates. Rensselaer Polytechnic Institute Shivkumar Kalyanaraman # **Idea: Aggregate Capacity, Use Route Diversity!** ⁷ Perceived Loss High Perceived 🗘 Capacity Scalable Performance Boost with ↑ **Paths** Snivkumai Kalyanaraman Rensselaer Polytechnic Institute #### Multi-path LT-TCP (ML-TCP): Structure Reliability @ aggregate, across paths (FEC block = weighted sum of windows, PFEC based upon weighted average loss rate) Note: these ideas can be applied to other link-level multi-homing, Network-level virtual paths, non-TCP transport protocols (including video-streaming) Rensselaer Polytechnic Institute Snivkumar Kaiyanaraman (like TCP) ## Summary - □ Coding: allows better use of degrees of freedom - □ Greater reliability (BER) for a given Eb/No, or - □ Coding gain (power gain) for a given BER. - **Eg**: @ BER = 10^{-5} : - 5.1 dB (Convolutional), 7.1dB (concatenated RS/Convolutional) - □ Near (0.1-1dB from) Shannon limit (LDPC, Turbo Codes) - Magic achieved through iterative decoding (belief propagation) in both LDPC/Turbo codes - □ Concatenation, interleaving used in turbo codes - □ Digital fountain erasure codes use randomized LDPC constructions as well. - Coding can be combined with modulation adaptively in response to SNR feedback - Coding can also be combined with ARQ to form Hybrid ARQ/FEC - Efficient coding schemes now possible in software/high line rates => they are influencing protocol design at higher layers also: - □ LT-TCP, ML-TCP, multicast, storage (RAID, CD/DVDs), Bittorrent, Network coding in Avalanche (Microsoft Updates) etc