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References
� David MacKay, Information Theory, Inference & Learning Algorithms. 

PDF available online:
� http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html

� Chapter 1: Introduction to Information Theory
� Skim Chapter 9: Communication over a noisy channel
� Section 11.4: Capabilities of Practical Error Correcting Codes
� Skim Chap 13: Binary codes (ideas of “distance”, “perfect”/MDS codes, 

concatenation)
� Skim Chapter 47: LDPC codes
� Chapter 48: Convolutional & Turbo Codes
� Optional browsing: Chap 49: Digital Fountain (erasure) codes

� Article by Berlekamp: “Application of Error Control Coding to 
Communications” (especially the discussions on RS coding, concatenated 
codes, hybrid ARQ/FEC strategies)

http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html
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Context: Time Diversity
� Time diversity can be obtained by interleaving and coding

over symbols across different coherent time periods.

Coding alone is not sufficient!

Channel: time
diversity/selectivity, 
but correlated across
successive symbols

(Repetition) Coding…
w/o interleaving: a full 
codeword lost during fade

Interleaving: of sufficient depth: 
(> coherence time)

⇒At most 1 symbol of codeword lost
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� Transforming signals to improve communications performance by 
increasing the robustness against channel impairments (noise, 
interference, fading, ..)
� It is a time-diversity technique, but can be broadly thought of as 

techniques to make better use of the degrees-of-freedom in channels 
(eg: space-time codes)

� Waveform coding: Transforming waveforms to better waveforms

� Structured sequences: Transforming data sequences into better
sequences, having structured redundancy.
� “Better” in the sense of making the decision process less subject to 

errors.
� Introduce constraints on transmitted codewords to have greater 

“distance” between them

� Note: Channel coding was developed in the context of AWGN channels 
& we shall study them in the same context

What is channel coding?
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(Modified) Block Diagram

Format
Source
encode

Format
Source
decode

Channel
encode

Pulse
modulate

Bandpass
modulate

Channel
decode

Demod.
SampleDetect

C
hannel

Digital modulation

Digital demodulation
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Channel Coding Schemes: 
Block, Convolutional, Turbo
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Coding Gain: The Value of Coding…
�Error performance vs. bandwidth
�Power vs. bandwidth
�Data rate vs. bandwidth
�Capacity vs. bandwidth 
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Coding Gain Potential

Gap-from-Shannon-limit: 
@BER=10-5

9.6 + 1.59 = 11.2 dB
(about 7.8 dB if you maintain
spectral efficiency)
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The Ultimate Shannon Limit
� Goal: what is min Eb/No for any spectral efficiency (ρ→0)?
� Spectral efficiency ρ = B/W = log2 (1 + SNR)

� where SNR = Es/No where Es=energy per symbol
� Or SNR = (2ρ - 1)

� Eb/No = Es/No * (W/B) 
= SNR/ρ

Eb/No = (2ρ - 1)/ρ > ln 2 = -1.59dB

� Fix ρ = 2 bits/Hz = (2ρ - 1)/ρ = 3/2 = 1.76dB
� Gap-to-capacity @ BER =10-5: 

9.6dB + 1.59 = 11.2 dB (without regard for spectral eff.)
or 9.6 – 1.76 = 7.84 dB (keeping spectral eff. constant)

Lets try to appreciate what Shannon’s bound means
by designing some simple codes and comparing it to
the Shannon bound
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Binary Symmetric Channel (BSC)

� Given a BER (f), we can construct a BSC with this 
BER…
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Reliable Disk Drive Application
� We want to build a disk drive and write a GB/day for 10 years. 

� => desired BER: 10-15

� Physical solution: use more reliable components, reduce noise
� System solution: accept noisy channel, detect/correct errors 

(engineer reliability over unreliable channels)
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Repetition Code (R3) & Majority Vote Decoding

AWGN: 
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Performance of R3

The error probability is dominated by the probability that two bits in
a block of three are flipped, which scales as f 2. 

For BSC with f = 0.1, the R3 code has a probability of error, after 
decoding, of pb = 0.03 per bit or 3%.

Rate penalty: need 3 noisy disks to get the loss prob down to 3%. To 
get to BER: 10-15, we need 61 disks!
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Coding: Rate-BER Tradeoff?

� Shannon: The perception that there is a necessary tradeoff between Rate and BER is 
illusory! It is not true upto a critical rate, the channel capacity!
� You only need to design better codes to give you the coding gain…

Repetition
code R3:

Lets try to design a “better” code: Hamming Code
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Hamming Code: Linear Block Code
� A block code is a rule for converting a sequence of source bits s, of length

K, say, into a transmitted sequence t of length N bits.
� In a linear block code, the extra N-K bits are linear functions of the original 

K bits; these extra bits are called parity-check bits.
� (7, 4) Hamming code: transmits N = 7 bits for every K = 4 source bits.

� The first four transmitted bits, t1t2t3t4, are set equal to the four source 
bits, s1s2s3s4. 

� The parity-check bits t5t6t7 are set so that the parity within each circle 
(see below) is even
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Hamming Code: (Contd)
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Hamming Code: Syndrome Decoding
� If channel is BSC and all source vectors are equiprobable, then…

� … the optimal decoder identifies the source vector s whose encoding 
t(s) differs from the received vector r in the fewest bits.

� Similar to “closest-distance” decision rule seen in demodulation!
� Can we do it more efficiently? Yes: Syndrome decoding

Tx
The decoding task is to find the smallest set of flipped bits that can account for 
these violations of the parity rules. 
[The pattern of violations of the parity checks is called the syndrome: the 
syndrome above is z = (1, 1, 0), because the first two circles are `unhappy' 
(parity 1) and the third circle is `happy‘ (parity 0).]
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Syndrome Decoding (Contd)

� Can we find a unique bit that lies inside all the 
`unhappy' circles and outside all the `happy' circles? 
� If so, the flipping of that bit would account for the 

observed syndrome.
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Hamming Code: Performance
� A decoding error will occur whenever the noise has flipped more than one 

bit in a block of seven. 
� The probability scales as O(f 2), as did the probability of error for the 

repetition code R3; but Hamming code has a greater rate, R = 4/7.
� Dilbert Test: About 7% of the decoded bits are in error. The residual errors 

are correlated: often two or three successive decoded bits are flipped…
� Generalizations of Hamming codes: called BCH codes
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Shannon’s Legacy: Rate-Reliability of Codes

� Noisy-channel 
coding theorem: 
defines 
achievable 
rate/reliability 
regions

� Note: you can 
get BER as low 
as desired by 
designing an 
appropriate code 
within the 
capacity region
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Shannon Legacy (Contd)

� The maximum rate at which communication is possible with 
arbitrarily small pb is called the capacity of the channel.

� BSC(f) capacity:
� f = 0.1 has capacity C ≈ 0.53.
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Caveats & Remarks
� Strictly, the above statements might not be quite right:
� Shannon proved his noisy-channel coding theorem by studying 

sequences of block codes with ever-increasing block lengths, 
and the required block length might be bigger than a gigabyte 
(the size of our disk drive), 

� … in which case, Shannon might say `well, you can't do it with 
those tiny disk drives, but if you had two noisy terabyte drives, 
you could make a single high-quality terabyte drive from them'.

� Information theory addresses both the limitations and the 
possibilities of communication.
� Reliable communication at any rate beyond the capacity is 

impossible, and that reliable communication at all rates up 
to capacity is possible.
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Generalize: Linear Coding/Syndrome Decoding

� The first four received bits, r1r2r3r4, purport to be the four source bits; and 
the received bits r5r6r7 purport to be the parities of the source bits, as defined 
by the generator matrix G. 
� Evaluate the three parity-check bits for the received bits, r1r2r3r4, and see 

whether they match the three received bits, r5r6r7. 

� The differences (modulo 2) between these two triplets are called the 
syndrome of the received vector. 
� If the syndrome is zero then the received vector is a codeword, and the 

most probable decoding is given by reading out its first four bits. 
� If the syndrome is non-zero, then the noise sequence for this block was 

non-zero, and the syndrome is our pointer to the most probable error 
pattern. 
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Linear Coding/Syndrome Decoding (Contd)

� Coding:

� Parity Check Matrix H:

� Received vector & Syndome:

The syndrome-decoding problem is to find the most 
probable noise vector n satisfying the equation

Lets now build linear codes from ground up (first principles)
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Some definitions

� Binary field : 
� The set {0,1}, under modulo 2 binary addition 

and multiplication forms a field. 

� Binary field is also called Galois field, GF(2).
011
101
110
000

=⊕
=⊕
=⊕
=⊕

111
001
010
000

=⋅
=⋅
=⋅
=⋅

Addition Multiplication
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Definitions: Fields
� Fields : 

� Let F be a set of objects on which two operations ‘+’ and 
‘.’ are defined. 

� F is said to be a field if and only if
1. F forms a commutative group under + operation. 

The additive identity element is labeled “0”.

2. F-{0} forms a commutative group under . operation. 
The multiplicative identity element is labeled “1”.

3. The operations “+” and “.” distribute:

FabbaFba ∈+=+⇒∈∀ ,

FabbaFba ∈⋅=⋅⇒∈∀ ,

)()()( cabacba ⋅+⋅=+⋅
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Definitions: Vector Space over Fields

� Vector space: (note: it mixes vectors and scalars)
� Let V be a set of vectors and F a fields of elements 

called scalars. V forms a vector space over F if:

1. Commutative:
2. Closure:
3. Distributive: 

4. Associative:
5. Identity Element: 

VuvVv ∈=⋅⇒∈∀∈∀ aFa ,

vuvuvvv ⋅+⋅=+⋅⋅+⋅=⋅+ aaababa )(   and   )(

FV ∈+=+⇒∈∀ uvvuvu,

)()(,, vvv ⋅⋅=⋅⋅⇒∈∀∈∀ babaVFba
vvVv =⋅∈∀ 1  ,
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Vector Spaces, Subspaces

� Examples of vector spaces
� The set of binary n-tuples, denoted by  

� Vector subspace:
� A subset S of the vector space         is called a subspace if:

�Zero: The all-zero vector is in S.
�Closure: The sum of any two vectors in S is also in S.

� Example:
 .  of subspace a is   )}1111(),1010(),0101(),0000{( 4V

nV

nV

)}1111(),1101(),1100(),1011(),1010(),1001(),1000(         
),0111(),0101(),0100(),0011(),0010(),0001(),0000{(4 =V
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Span, Bases…
� Spanning set:

� A collection of vectors                              , 
the linear combinations of which include all vectors in a 
vector space V, is said to be a spanning set for V or to span
V.
�Example:

� Bases:
� A spanning set for V that has minimal cardinality is called 

a basis for V.
� Cardinality of a set is the number of objects in the set.
�Example:
{ } .for   basis a is  )0001(),0010(),0100(),1000( 4V

{ } .  spans  )1001(),0011(),1100(),0110(),1000( 4V

{ }nG vvv ,,, 21 K=



Shivkumar KalyanaramanRensselaer Polytechnic Institute

30 : “shiv rpi”

Linear Block Codes are just Subspaces!
� Linear block code (n,k)
�A set            with cardinality     is called a linear 

block code if, and only if, it is a subspace of the 
vector space     .

� Members of C are called codewords.
� The all-zero codeword is a codeword.
� Any linear combination of code-words is a 

codeword.

nV

nVC ⊂ k2

   nk VCV ⊂→
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Linear block codes – cont’d

nV
kV

C

Bases of C

mapping
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Linear block codes – cont’d
� The information bit stream is chopped into blocks of k bits. 
� Each block is encoded to a larger block of n bits.
� The coded bits are modulated and sent over channel.
� The reverse procedure is done at the receiver.

Data block
Channel
encoder Codeword

k bits n bits

rate Code   

bits Redundant        

n
kR

n-k

c =
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Recall: Reed-Solomon RS(N,K): Linear Algebra in 
Action…

Data = K

FEC (N-K)

Block 
Size 
(N)

RS(N,K) >= K of N
received

Lossy Network

Recover K 
data packets!

This is linear algebra in action: design a
k-dimensional vector sub-space out of an

N-dimensional vector space
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Linear block codes – cont’d

� The Hamming weight (w) of vector U, denoted by w(U), is 
the number of non-zero elements in U.

� The Hamming distance (d) between two vectors U and V, is 
the number of elements in which they differ.  

� The minimum distance of a block code is 

)()( VUVU, ⊕= wd

)(min),(minmin iijiji
wdd UUU ==

≠
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Linear block codes – cont’d

� Error detection capability is given by

� Error correcting capability t of a code, which is defined as 
the maximum number of guaranteed correctable errors per 
codeword, is

⎥⎦
⎥

⎢⎣
⎢ −

=
2

1mindt

1min −= de
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Linear block codes –cont’d

�A matrix G is constructed by taking as its rows 
the vectors on the basis,   .

nV
kV

C

Bases of C

mapping

},,,{ 21 kVVV K

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

knkk

n

n

k vvv

vvv
vvv

L

MOM

L

L

M

21

22221

11211
1

V

V
G
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Linear block codes – cont’d
� Encoding in (n,k) block code

�The rows of G, are linearly independent.

mGU =

kn

k

kn

mmmuuu

mmmuuu

VVV
V

V
V

⋅++⋅+⋅=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅=

2221121

2

1

2121

),,,(

),,,(),,,(

KK

M
KK
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Linear block codes – cont’d

� Example: Block code (6,3)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
0
0

0
1
0

0
0
1

1
1
0

0
1
1

1
0
1

3

2

1

V
V
V

G

1
1

1
1

1
0

0
0

0
1

0
1
           1

1
1
1

1
0

1
1
0

0
0
1

1
0
1

1
1
1

1
0
0

0
1
1
           

1
1
0

0
0
1

1
0
1

  
0
0
0

1
0
0

0
1
0

1
0
0

1
1
0

0
1
0
           

0
0
0

1
0
0

0
1
0

Message vector Codeword
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Systematic Block Codes
� Systematic block code (n,k)
�For a systematic code, the first (or last) k elements in 

the codeword are information bits.

matrix   )(
matrixidentity   

][

knk
kk

k

k

k

−×=
×=

=

P
I

IPG

),...,,,,...,,(),...,,(
bits message

21

bitsparity 

2121 44344214434421 kknn mmmpppuuu −==U
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Linear block codes – cont’d
� For any linear code we can find an matrix which its 

rows are orthogonal to rows of 

� Why? H checks the parity of the received word (i.e. maps the 
N-bit word to a M-bit syndrome). 
� Codewords (=mG) should have parity of 0 (i.e. null-space).

� H is called the parity check matrix and its rows are linearly 
independent.

� For systematic linear block codes:

nkn ×− )(H
G

0GH =T

][ T
kn PIH −=
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Linear block codes – cont’d

� Syndrome testing:
� S is syndrome of r, corresponding to the error pattern e.

Format Channel 
encoding Modulation

Channel
decodingFormat Demodulation

Detection

Data source

Data sink

U

r

m

m̂

channel

or vectorpattern error   ),....,,(
or vector codeword received  ),....,,(

21

21

n

n

eee
rrr

=
=

e
r

eUr +=

TT eHrHS ==
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Linear block codes – cont’d

111010001
100100000
010010000
001001000
110000100
011000010
101000001
000000000

(101110)(100000)(001110)ˆˆ
estimated is vector corrected The

(100000)ˆ
is syndrome  this toingcorrespondpattern Error 

(100)(001110)
:computed is  of syndrome The

received. is    (001110)
ted.  transmit(101110)

=+=+=

=

===

=
=

erU

e

HrHS
r

r
U

TT

Error pattern Syndrome

There is a unique mapping from Syndrome ↔ Error Pattern
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Standard Array: Error Patterns

� Example: Standard array for the (6,3) code

010110100101010001
010100100000
100100010000
111100001000

000110110111011010101101101010011110110000000100
000101110001011111101011101100011000110110000010
000110110010011100101000101111011011110101000001
000111110011011101101001101110011010110100000000

LL

M

MMM

Coset leaders
(error patterns)

Coset:
Error pattern +
codeword

codewords
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Linear block codes – cont’d
� Standard array

1. For row                ,     find a vector in       of minimum 
weight which is not already listed in the array.

2. Call this error pattern     and form the row as the 
corresponding coset

kknknkn

k

k

22222

22222

221

UeUee

UeUee
UUU

⊕⊕

⊕⊕

−−− L

MOLM

L

L
zero 

codeword

coset

coset leaders

kni −= 2,...,3,2 nV

ie th:i
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Linear block codes – cont’d

� Standard array and syndrome table decoding
1. Calculate syndrome 
2. Find the coset leader,           , corresponding to      .
3. Calculate                 and corresponding           .

� Note that 
� If        , error is corrected.
� If        , undetectable decoding error occurs.

TrHS =

iee =ˆ S
erU ˆˆ += m̂

)ˆˆ(ˆˆ e(eUee)UerU ++=++=+=
ee =ˆ

ee ≠ˆ
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� Hamming codes
� Hamming codes are a subclass of linear block codes and 

belong to the category of perfect codes.
� Hamming codes are expressed as a function of a single 

integer , i.e. n and k are derived from m: 

� The columns of the parity-check matrix, H, consist of all 
non-zero binary m-tuples.

2≥m

Hamming codes

 t
mn-k

mk
n

m

m

1    :capability correctionError 
            :bitsparity  ofNumber 

12   :bitsn informatio ofNumber 
12                           :length Code

=
=

−−=

−=
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Hamming codes
� Example: Systematic Hamming code (7,4)

][
1011100
1101010
1110001

33
TPIH ×=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

][

1000111
0100011
0010101
0001110

44×=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= IPG
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Cyclic block codes

� Cyclic codes are a subclass of linear block codes.
� Encoding and syndrome calculation are easily 

performed using feedback shift-registers.
�Hence, relatively long block codes can be 

implemented with a reasonable complexity.
� BCH and Reed-Solomon codes are cyclic codes. 
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Cyclic block codes

� A linear (n,k) code is called a Cyclic code if all 
cyclic shifts of a codeword are also a codeword.

),...,,,,,...,,(

),...,,,(

121011
)(

1210

−−−+−−

−

=

=

inninin
i

n

uuuuuuu

uuuu

U

U “i” cyclic shifts of U

UUUUU
U

=====

=

)1101(   )1011(   )0111(   )1110(
)1101(

)4()3()2()1(

�Example:
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Cyclic block codes
� Algebraic structure of Cyclic codes, implies expressing codewords in 

polynomial form

)1( degree     ...)( 1
1

2
210 n-XuXuXuuX n

n
−

−++++=U

)1()(

...

...,)(

1
)1(

)1(

11

)(

1
2

2
101

1
1

2
2

10

1
)1(

++=

++++++=

+++=

−

+

−−
−

−−

−
−

−

−

n
n

Xu

n
n

n

X

n
nn

n
n

n
n

XuX

uXuXuXuXuu

XuXuXuXuXX

n
n

U

U

U
4434421444444 3444444 21

� Relationship between a codeword and its cyclic shifts:

)1( modulo )()()( += nii XXXX UU
By extension

)1( modulo )()()1( += nXXXX UU�Hence:
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Cyclic block codes
� Basic properties of Cyclic codes:
� Let C be a binary (n,k) linear cyclic code

1. Within the set of code polynomials in C, 
there is a unique monic polynomial          
with minimal degree                   is called 
the generator polynomials.

2. Every code polynomial          in C, can be 
expressed uniquely as 

3. The generator polynomial         is a factor 
of 

)(Xg
)(  . Xnr g<

r
r XgXggX +++= ...)( 10g

)(XU
)()()( XXX gmU =

)(Xg
1+nX
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Cyclic block codes

4. The orthogonality of G and H in 
polynomial form is expressed as                               
This means          is also a factor of  

5. The row                  , of generator matrix is 
formed by the coefficients of the          
cyclic shift of the generator polynomial. 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

−

r

r

r

r

k

ggg
ggg

ggg
ggg

XX

XX
X

L

L

OOOO

L

L

M

10

10

10

10

1 )(

)(
)(

0

0

g

g
g

G

1)()( += nXXX hg
1+nX)(Xh

kii ,...,1, =
"1" −i

Toeplitz Matrix (like the circulant matrix): Efficient Linear Algebra
Operations (multiplication, inverse, solution of Ax = b) etc possible
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Cyclic block codes

� Systematic encoding algorithm for an (n,k) 
Cyclic code:

1. Multiply the message polynomial               by 

2. Divide the result of Step 1 by the generator 
polynomial          . Let            be the reminder.

3. Add            to                    to form the codeword       

)(Xm knX −

)(Xg )(Xp

)(Xp )(XX kn m− )(XU

Remember CRC used to detect errors in packets?
“Cyclic” Redundancy Check: same idea!
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Cyclic block codes
� Example: For the systematic (7,4) Cyclic code with generator 

polynomial 
1. Find the codeword for the message

)1  1  0  1  0  0  1(
1)()()(

:polynomial codeword  theForm

1)1()1(
:(by  )( Divide

)1()()(
1)()1011(
3   ,4   ,7

bits messagebitsparity 

6533

)(remainder generator 

3

quotient 

32653

6533233

32

321321

4342143421444 3444 21

=
+++=+=

++++++=++

++=++==

++=⇒=

=−==

−

−

U
mpU

gm
mm

mm

pgq

XXXXXXX

XXXXXXXX
X)XX

XXXXXXXXXX
XXX

knkn

X(X)(X)

kn

kn

)1011(=m

31)( XXX ++=g
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Example: Encoding of systematic cyclic codes
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( )g x

[ ]( ) mod ( ) / ( )s x r x g x=

Table 16.6Decoding cyclic codes
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Cyclic block codes
2. Find the generator and parity check matrices, G and H, 

respectively.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

=⇒⋅+⋅+⋅+=

1011000
0101100
0010110
0001011

)1101(),,,(1011)( 3210
32

G

g ggggXXXX

Not in systematic form.
We do the following:

row(4)row(4)row(2)row(1)
row(3)row(3)row(1)

→++
→+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000101
0100111
0010110
0001011

G
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1110100
0111010
1101001

H

44×I
33×I TPP
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Cyclic block codes
� Syndrome decoding for Cyclic codes:

� Received codeword in polynomial form is given by

� The syndrome is the reminder obtained by dividing the received 
polynomial by the generator polynomial. 

� With syndrome and Standard array, error is estimated.

�In Cyclic codes, the size of standard array is considerably 
reduced. 

)()()( XXX eUr +=Received 
codeword

Error 
pattern

)()()()( XXXX Sgqr += Syndrome
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Example of the block codes

8PSK

QPSK

[dB] / 0NEb

 BP
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Well-known Cyclic Codes 
� (n,1) Repetition codes. High coding gain, but low rate
� (n,k) Hamming codes. Minimum distance always 3. Thus can detect 2 

errors and correct one error. n=2m-1, k = n - m, 
� Maximum-length codes. For every integer            there exists a maximum 

length code (n,k) with n = 2k - 1,dmin = 2k-1. Hamming codes are dual of 
maximal codes.

� BCH-codes. For every integer             there exist a code with n = 2m-1, 
and                      where t is the error correction capability

� (n,k) Reed-Solomon (RS) codes. Works with k symbols that consists of m
bits that are encoded to yield code words of n symbols. For these codes                 

and
� BCH and RS are popular due to large dmin, large number of codes, and easy 

generation

3k ≥

3≥m
≥ −k n mt

min 2 1≥ +d t

2 1,number of check symbols  2= − − =mn n k t min 2 1= +d t

3m ≥
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Reed-Solomon Codes (RS)

� Group bits into L-bit symbols. Like BCH codes with symbols rather than single bits. 
� Can tolerate burst error better (fewer symbols in error for a given bit-level burst 

event). 
� Shortened RS-codes used in CD-ROMs, DVDs etc
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Shortened Reed Solomon Codes

Data = d

FEC (F =N-K)

0
0
0
0
0
0

Zeros (z)

Block 
Size 
(N)

K = d + z

d

z

RS(N,K)RS(N,K)
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RS-code performance

� Longer blocks, better performance
� Encoding/decoding complexity lower for higher code rates (i.e. > ½ ): O{K(N-K) log2N}.
� 5.7-5.8 dB coding gain @ BER = 10-5 (similar to 5.1 dB for convolutional codes, see later)
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Convolutional Codes
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Block vs
convolutional coding 

� (n,k) block codes: Encoder output of 
n bits depends only on the k input bits 

� (n,k,K) convolutional codes:
� each source bit influences n(K+1)

encoder output bits 
�n(K+1) is the constraint length 
�K is the memory depth

(n,k) 
encoder
(n,k) 

encoder
k bits n bits

k input bits

n output bits

n(K+1) output bits

input bit



Shivkumar KalyanaramanRensselaer Polytechnic Institute

66 : “shiv rpi”

Block diagram: Convolutional Coding

Information
source

Rate 1/n 
Conv. encoder Modulator

Information
sink

Rate 1/n 
Conv. decoder Demodulator

44 344 21
sequenceInput  

21 ,...),...,,( immm=m

44 344 21

444 3444 21

bits)  coded  ( rdBranch  wo 
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sequence    Codeword

321
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i

,...,u,...,uuU
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=

=
= G(m)U

,...)ˆ,...,ˆ,ˆ(ˆ 21 immm=m

{ 4434421
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 dBranch worper  outputs  

1

 dBranch worfor 
 outputsr Demodulato

sequence received
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Convolutional codes-cont’d
� A Convolutional code is specified by three parameters       

or    where
� is the coding rate, determining the 

number of data bits per coded bit.
� In practice, usually k=1 is chosen and we 

assume that from now on.
�K is the constraint length of the encoder a where 

the encoder has K-1 memory elements.

),,( Kkn ),/( Knk
nkRc /=



Shivkumar KalyanaramanRensselaer Polytechnic Institute

68 : “shiv rpi”

A Rate ½ Convolutional encoder
� Convolutional encoder (rate ½, K=3)

� 3 bit shift-register where the first one takes the incoming 
data bit and the rest form the memory of the encoder. 

Input data bits Output coded bits
m

1u

2u

First coded bit

Second coded bit

21,uu

(Branch word)



Shivkumar KalyanaramanRensselaer Polytechnic Institute

69 : “shiv rpi”

A Rate ½ Convolutional encoder

1 0 01t

1u

2u
11

21 uu

1 0 13t

1u

2u
00

21 uu
0 1 04t

1u

2u
01

21 uu

)101(=m
Time Output

Message sequence:

(Branch word)

0 1 02t

1u

2u
01

21 uu

OutputTime
(Branch word)
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A Rate ½ Convolutional encoder (contd)

Encoder)101(=m )1110001011(=U

0 0 15t

1u

2u
11

21 uu
0 0 06t

1u

2u
00

21 uu

Time Output Time Output
(Branch word) (Branch word)

n = 2, k = 1, K = 3, 
L = 3 input bits -> 10 output bits 
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Effective code rate
� Initialize the memory before encoding the first bit (all-zero)
� Clear out the memory after encoding the last bit (all-zero)

� Hence, a tail of zero-bits is appended to data bits.

� Effective code rate :
� L is the number of data bits and k=1 is assumed:

data Encoder codewordtail

ceff R
KLn

LR <
−+

=
)1(

Encoder)101(=m )1110001011(=U

Example: n = 2, k = 1, K = 3, L = 3 input bits.
Output = n(L + K -1) = 2*(3 + 3 – 1) = 10 output bits 
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Encoder representation

� Vector representation:
� We define n binary vector with K elements (one vector for 

each modulo-2 adder). 
� The i:th element in each vector, is “1” if the i:th stage in the 

shift register is connected to the corresponding modulo-2 
adder, and “0” otherwise.
�Example:

m

1u

2u

21 uu)101(
)111(

2

1

=
=

g
g
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Encoder representation: Impulse Response

� Impulse response representaiton:
� The response of encoder to a single “one” bit that goes 

through it.
�Example:

11001
01010
11100

111011  :sequenceOutput 
001       :sequenceInput 

21 uu
Branch word

Register
contents

1110001011
1110111

0000000
1110111

OutputInput m

Modulo-2 sum:
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Encoder representation: Polynomial
� Polynomial representation:

� We define n generator polynomials, one for each modulo-2 
adder. Each polynomial is of degree K-1 or less and 
describes the connection of the shift registers to the 
corresponding modulo-2 adder.
�Example:

The output sequence is found as follows:

22)2(
2

)2(
1

)2(
02

22)1(
2

)1(
1

)1(
01

1..)(

1..)(

XXgXggX

XXXgXggX

+=++=

++=++=

g

g

)()( with  interlaced  )()()( 21 XXXXX gmgmU =
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Encoder representation –cont’d

In more details:

1110001011
)1,1()0,1()0,0()0,1()1,1()(

.0.0.01)()(

.01)()(

1)1)(1()()(

1)1)(1()()(

432

432
2

432
1

422
2

4322
1

=
++++=

++++=

++++=

+=++=

+++=+++=

U
U

gm

gm

gm

gm

XXXXX

XXXXXX

XXXXXX

XXXXX

XXXXXXXX
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State diagram
� A finite-state machine only encounters a finite number 

of states. 
� State of a machine: the smallest amount of 

information that, together with a current input to the 
machine, can predict the output of the machine.

� In a convolutional encoder, the state is represented by 
the content of the memory.

� Hence, there are         states. (grows exponentially w/ 
constraint length)

12 −K
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State diagram – cont’d

10 01

00

11

Current 
state

input Next 
state

output

0 00

1 11

0 11

1 00

0 10

1 01

0 01

1 1011

10

01

00
0S

1S

2S

3S

0S
2S

0S

2S

1S

3S
1S

3S

0S

1S2S

3S

1/11

1/00

1/01

1/10

0/11

0/00

0/01

0/10

Input
Output

(Branch word)
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Trellis – cont’d
� Trellis diagram is an extension of the state diagram that 

shows the passage of time.
� Example of a section of trellis for the rate ½ code

Timeit 1+it

State

000 =S

011 =S

102 =S

113 =S

0/00

1/10

0/11

0/10

0/01

1/11

1/01

1/00

Branch
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Trellis –cont’d

� A trellis diagram for the example code

0/11

0/10

0/01

1/11

1/01

1/00

0/00

0/11

0/10

0/01

1/11

1/01

1/00

0/00

0/11

0/10

0/01

1/11

1/01

1/00

0/00

0/11

0/10

0/01

1/11

1/01

1/00

0/00

0/11

0/10

0/01

1/11

1/01

1/00

0/00

6t1t 2t 3t 4t 5t

1 0 1 0 0

11 10 00 10 11

Input bits

Output bits

Tail bits
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Trellis – cont’d

1/11

0/00

0/10

1/11

1/01

0/00

0/11

0/10

0/01

1/11

1/01

1/00

0/00

0/11

0/10

0/01

0/00

0/11

0/00

6t1t 2t 3t 4t 5t

1 0 1 0 0

11 10 00 10 11

Input bits

Output bits

Tail bits

Path through the trellis
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Optimum decoding
� If the input sequence messages are equally likely, the 

optimum decoder which minimizes the probability of error is 
the Maximum likelihood decoder.

� ML decoder, selects a codeword among all the possible 
codewords which maximizes the likelihood function                 
where         is the received sequence and         is one of the 
possible codewords:

)( )(mp ′U|Z
Z )(m′U

)(max)(  if    Choose )(

 allover 

)()( mmm pp
(m)

U|ZU|ZU
U

=′′

¾ML decoding rule:
codewords

to search!!!
L2
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ML decoding for memory-less channels
� Due to the independent channel statistics for memoryless channels, the 

likelihood function becomes  

and equivalently, the log-likelihood function becomes

� The path metric up to time index     , is called the partial path metric.

∏∏∏
∞

= =

∞

=

===
1 1

)(

1

)()(
21,...,...,,

)( )|()|()|,...,...,,()(
21

i

n

j

m
jiji

i

m
ii

m
izzz

m uzpUZpUZZZpp
i

U|Z

∑∑∑
∞

= =

∞

=

===
1 1

)(

1

)()( )|(log)|(log)(log)(
i

n

j

m
jiji

i

m
ii

m uzpUZppm U|ZUγ

Path metric Branch metric Bit metric

¾ML decoding rule:
Choose the path with maximum metric among  
all the paths in the trellis. 
This path is the “closest” path to the transmitted sequence.

""i
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AWGN channels

� For BPSK modulation the transmitted sequence 
corresponding to the codeword         is denoted by             
where                                and
and . 

� The log-likelihood function becomes

� Maximizing the correlation is equivalent to minimizing the 
Euclidean distance.

)(mU

cij Es ±=

>=<=∑∑
∞

= =

)(

1 1

)()( m

i

n

j

m
jiji szm SZ,Uγ

Inner product or correlation
between Z and S

¾ML decoding rule:
Choose the path which with minimum Euclidean distance 
to the received sequence. 

),...,,...,( )()()(
1

)( m
ni

m
ji

m
i

m
i sssS =,...),...,,( )()(

2
)(

1
)( m

i
mmm SSS=S
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The Viterbi algorithm
� The Viterbi algorithm performs Maximum likelihood decoding.
� It find a path through trellis with the largest metric (maximum 

correlation or minimum distance).
� It processes the demodulator outputs in an iterative manner. 
� At each step in the trellis, it compares the metric of all paths

entering each state, and keeps only the path with the largest 
metric, called the survivor, together with its metric.

� It proceeds in the trellis by eliminating the least likely paths.
� It reduces the decoding complexity to !12 −KL
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The Viterbi algorithm - cont’d
� Viterbi algorithm:
A. Do  the following set up:

� For a data block of L bits, form the trellis.  The trellis has 
L+K-1 sections or levels and starts at time      and ends up at 
time          .

� Label all the branches in the trellis with their corresponding 
branch metric. 

� For each state in the trellis at the time      which is  denoted by                      
, define a parameter (path metric)

B. Then, do the following:

it
}2,...,1,0{)( 1−∈ K

itS ( )ii ttS ),(Γ

1t
KLt +
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The Viterbi algorithm - cont’d
1. Set               and 
2. At time    , compute the partial path metrics for all the 

paths entering each state.
3. Set                   equal to the best partial path metric 

entering each state at time     . 
Keep the survivor path and delete the dead paths from the 
trellis.

4. If                  , increase    by 1 and return to step 2.  
C. Start at state zero at time        . Follow the surviving branches 

backwards through the trellis. The path thus defined is 
unique and correspond to the ML codeword.

0),0( 1 =Γ t .2=i

it

( )ii ttS ),(Γ
it

KLi +< i
KLt +
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Example of Viterbi decoding

1/11

0/00

0/10

1/11

1/01

0/00

0/11

0/10

0/01

1/11

1/01

1/00

0/00

0/11

0/10

0/01

0/00

0/11

0/00

6t1t 2t 3t 4t 5t

)101(=m
)1110001011(=U
)0110111011(=Z
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Viterbi decoding-cont’d
� Label al the branches with the branch metric (Hamming distance)

0

2

0

1

2

1

0

1

1

0

1

2

2

1

0

2

1

1

1

6t1t 2t 3t 4t 5t

1

0

( )ii ttS ),(Γ

)101(=m
)1110001011(=U
)0110111011(=Z
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Viterbi decoding-cont’d

� i=2

0

2

0

1

2

1

0

1

1

0

1

2

2

1

0

2

1

1

1

6t1t 2t 3t 4t 5t

1

0 2

0

)101(=m
)1110001011(=U
)0110111011(=Z
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Viterbi decoding-cont’d

� i=3

0

2

0

1

2

1

0

1

1

0

1

2

2

1

0

2

1

1

1

6t1t 2t 3t 4t 5t

1

0 2 3

0

2

30

)101(=m
)1110001011(=U
)0110111011(=Z
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Viterbi decoding-cont’d

� i=4

0

2

0

1

2

1

0
1

1

0

1

2

2

1

0

2

1

1

1

6t1t 2t 3t 4t 5t

1

0 2 3 0

3

2

3

0

2

30

)101(=m
)1110001011(=U
)0110111011(=Z
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Viterbi decoding-cont’d

� i=5

0

2

0

1

2

1

0
1

1

0

1

2

2

1

0

2

1

1

1

6t1t 2t 3t 4t 5t

1

2 3 1

3

2

3

2

2

3

)101(=m
)1110001011(=U
)0110111011(=Z

0

0

0

0
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Viterbi decoding-cont’d

� i=6
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Viterbi decoding-cont’d

� Trace back and then:
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Soft and hard decisions
� Hard decision: 

� The demodulator makes a firm or hard decision whether one or zero is 
transmitted and provides no other information reg. how reliable the decision is.

� Hence, its output is only zero or one (the output is quantized only to two level) 
which are called “hard-bits”.

� Soft decision:
� The demodulator provides the decoder with some side information together with 

the decision.
� The side information provides the decoder with a measure of confidence for the 

decision.
� The demodulator outputs which are called soft-bits, are quantized to more than 

two levels. (eg: 8-levels) 

� Decoding based on soft-bits, is called the “soft-decision decoding”.
� On AWGN channels, 2 dB and on fading channels 6 dB gain are obtained by 

using soft-decoding over hard-decoding!
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Performance bounds …

� Basic coding gain (dB) for soft-decision Viterbi
decoding
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Interleaving
� Convolutional codes are suitable for memoryless channels 

with random error events.

� Some errors have bursty nature:
� Statistical dependence among successive error events 

(time-correlation) due to the channel memory.
�Like errors in multipath fading channels in wireless 

communications, errors due to the switching noise, …

� “Interleaving” makes the channel looks like as a memoryless
channel at the decoder.
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Interleaving …
� Consider a code with t=1 and 3 coded bits.
� A burst error of length 3 can not be corrected.

� Let us use a block interleaver 3X3

A1 A2 A3 B1 B2 B3 C1 C2 C3

2 errors

A1 A2 A3 B1 B2 B3 C1 C2 C3

Interleaver

A1 B1 C1 A2 B2 C2 A3 B3 C3

A1 B1 C1 A2 B2 C2 A3 B3 C3

Deinterleaver

A1 A2 A3 B1 B2 B3 C1 C2 C3

1 error 1 error 1 error
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Concatenated Codes
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Concatenated codes
� A concatenated code uses two levels on coding, an inner code and an 

outer code (higher rate).
� Popular concatenated codes: Convolutional codes with Viterbi

decoding as the inner code and Reed-Solomon codes as the outer 
code

� The purpose is to reduce the overall complexity, yet achieving the 
required error performance.

Interleaver Modulate

Deinterleaver

Inner 
encoder

Inner 
decoder

Demodulate

C
hannel

Outer 
encoder

Outer 
decoder

Input 
data

Output 
data
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Concatenated Codes

� Encoder-channel-decoder 
system C → Q → D can be 
viewed as defining a super-
channel Q’ with a smaller 
probability of error, and with 
complex correlations among its 
errors. 

� We can create an encoder C’
and decoder D’ for this super-
channel Q’.
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Product/Rectangular Codes: Concatenation + 
Interleaving

� Some concatenated codes make use of the idea of interleaving. 

� Blocks of size larger than the block lengths of the constituent 
codes C and C’. 
� After encoding the data of one block using code C’,
� … the bits are reordered within the block in such a way that nearby bits 

are separated from each other once the block is fed to the second code C. 

� A simple example of an interleaver is a rectangular code or 
product code in which …
� … the data: K2 x K1 rectangular block, and …
� … encoded horizontally using an (N1,K1) linear code, 
� … then vertically using a (N2,K2) linear code.
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Product code Example

� (a) A string 1011 encoded using a concatenated code 
w/ two Hamming codes, H(3, 1) ≡ Repetition code 
(R3) and H(7,4).

� (b) a noise pattern that flips 5 bits. 
� (c) The received vector.



Shivkumar KalyanaramanRensselaer Polytechnic Institute

104 : “shiv rpi”

Product Codes (Contd)

� (d) After decoding using the horizontal (3, 1) 
decoder, and

� (e) after subsequently using the vertical (7; 4) 
decoder. 

� The decoded vector matches the original.
� Note: Decoding in the other order (weaker-code-

first) leads to residual error in this example:
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Practical example: Compact disc

� Channel in a CD playback system consists of a transmitting laser, a recorded 
disc and a photo-detector.

� Sources of errors are manufacturing damages, fingerprints or scratches
� Errors have bursty like nature.
� Error correction and concealment is done by using a concatenated error 

control scheme, called cross-interleaver Reed-Solomon code (CIRC). 
� Both the inner and outer codes are shortened RS codes

“Without error correcting codes, digital audio 
would not be technically feasible.”
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Compact disc – CIRC Encoder

interleave
Δ

encode interleave encode interleave2C *D 1C D

deinterleave
Δ

decode deinterleave decode deinterleave2C *D 1C D

Encoder

Decoder

� CIRC encoder and decoder:



Shivkumar KalyanaramanRensselaer Polytechnic Institute

107 : “shiv rpi”

Adaptive Modulation and Coding
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Adaptive Modulation

� Just vary the “M” in the MQAM constellation to the 
appropriate SNR

� Can be used in conjunction with spatial diversity
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Adaptive modulation/coding: Multi-User

� Exploit multi-user diversity. 
�Users with high SNR: use MQAM (large M) + 

high code rates
�Users with low SNR: use BPSK + low code 

rates (i.e. heavy error protection)

� In any WiMAX frame, different users (assigned to 
time-frequency slots within a frame) would be 
getting a different rate!
� i.e. be using different code/modulation combos..
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Basis for Adaptive Modulation/Coding (AMC)
� K-user system: the subcarrier of 

interest experiences i.i.d. 
Rayleigh fading: each user’s 
channel gain is independent of 
the others, and is denoted by hk.
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Wimax: Uses Feedback & Burst Profiles

� Lower data rates are achieved by using a small constellation – such as QPSK – and 
low rate error correcting codes such as rate 1/2 convolutional or turbo codes. 

� The higher data rates are achieved with large constellations – such as 64QAM – and 
less robust error correcting codes, for example rate 3/4 convolutional, turbo, or 
LDPC codes.

� Wimax burst profiles: 52 different possible configurations of modulation order and 
coding types and rates. 

� WiMAX systems heavily protect the feedback channel with error correction, so 
usually the main source of degradation is due to mobility, which causes channel 
estimates to rapidly become obsolete.
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AMC Considerations
� BLER and Received SINR: In adaptive modulation theory, the transmitter 

needs only to know the statistics and instantaneous channel SINR. From the 
channel SINR, it can determine the optimum coding/modulation strategy 
and transmit power. 
� In practice however, the BLER should be carefully monitored as the 

final word on whether the data rate should be increased (if the BLER is 
low) or decreased to a more robust setting.

� Automatic Repeat Request (ARQ): ARQ allows rapid retransmissions, 
and Hybrid ARQ generally increases the ideal BLER operating point by 
about a factor of 10, e.g. from 1% to 10%. 
� For delay-tolerant applications, it may be possible to accept a BLER 

approaching even 70%, if Chase combining is used in conjunction with 
HARQ to make use of unsuccessful packets.

� Power control vs. Waterfilling: In theory, the best power control policy 
from a capacity standpoint is the so-called waterfilling strategy, in which 
more power is allocated to strong channels, and less power allocated to 
weak channels. In practice, the opposite may be true in some cases. 
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AMC vs Shannon Limit

� Optionally turbo-codes or LDPC codes can be used instead of simple 
block/convolutional codes in these schemes
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Main Points

� Adaptive MQAM uses capacity-achieving power and rate 
adaptation, with power penalty K.

� Adaptive MQAM comes within 5-6 dB of capacity 

� Discretizing the constellation size results in negligible 
performance loss.

� Constellations cannot be updated faster than 10s to 100s of 
symbol times: OK for most dopplers.

� Estimation error and delay lead to irreducible error floors.
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Hybrid ARQ/FEC



Shivkumar KalyanaramanRensselaer Polytechnic Institute

116 : “shiv rpi”

Type I HARQ: Chase Combining
� In Type I HARQ, also referred to as Chase Combining, the redundancy 

version of the encoded bits is not changed from one transmission to the 
next, i.e. the puncturing patterns remains same. 

� The receiver uses the current and all previous HARQ transmissions of the 
data block in order to decode it. 

� With each new transmission the reliability of the encoded bits improve thus 
reducing the probability of error during the decoding stage. 

� This process continues until either the block is decoded without error 
(passes the CRC check) or the maximum number of allowable HARQ 
transmissions is reached.

� When the data block cannot be decoded without error and the maximum 
number of HARQ transmissions is reached, it is left up to a higher layer 
such as MAC or TCP/IP to retransmit the data block. 

� In that case all previous transmissions are cleared and the HARQ process 
start from the beginning.

� Used in WiMAX implementations: can provide range extension (especially 
at cell-edge).
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Type II ARQ: Incremental Redundancy

� Type II HARQ is also referred to as Incremental Redundancy
� The redundancy version of the encoded bits is changed from one transmission to the 

next. (Rate-compatible Punctured Convolutional codes (RCPC)) used.
� Thus the puncturing pattern changes from one transmission to the next. 
� This not only improves the log likelihood estimates (LLR) of parity bits but also 

reduces the code rate with each additional transmission.
� Incremental redundancy leads to lower bit error rate (BER) and block error rate 

(BLER) compared to chase combining. 
� Wimax uses only Type I HARQ (Chase) and not Type II for complexity reasons
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Hybrid ARQ/FEC: Combining Coding w/ Feedback

Packets • Sequence Numbers
• CRC or Checksum
• Proactive FEC

Status Reports • ACKs
• NAKs, 
• SACKs
• Bitmaps

• Packets
• Reactive FEC

Retransmissions

Timeout
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Hybrid ARQ/FEC For TCP over Lossy Networks

PROACTIVE
FEC (PFEC)
Pfec= f(μ,σ)

REACTIVE
FEC (RFEC)
Y = g(p,σ,X)
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Loss-Tolerant TCP (LT-TCP) vs TCP-SACK

Missing 
Goodput!

Maximum 
Goodput
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Tradeoffs in Hybrid ARQ/FEC
Analysis : (10 Mbps, p = 50%)

Goodput = 3.61 Mbps vs 5 Mbps (max)

PFEC waste: 1.0 Mbps = 10%
RFEC waste: 0.39 Mbps = 3.9%

Residual Loss : 0.0%

Weighted Avg # Rounds: 1.13

1.4Mbps goodput sacrificed 
(FEC waste) to reduce 
latency, residual loss 

Goodput

Block 
recovery
latency

Residual
Loss Rate

Tradeoffs

PFEC: μ + σ of loss process
Upfront PFEC waste (10%)

dominates RFEC waste
Residual Loss can be negligible

even for high loss rates (50%), even 
with a limit of just 1 ARQ attempt.
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Towards the Shannon Limit!
LDPC, Turbo Codes, Digital Fountains
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Recall: Coding Gain Potential

� With convolutional code alone, @BER of 10-5, we require Eb/No of 4.5dB or get a 
gain of 5.1 dB.

� With concatenated RS-Convolutional code, BER curve ~ vertical cliff at an Eb/No 
of about 2.5-2.6 dB, i.e a gain of 7.1dB. 

� We are still 11.2 – 7.1 = 4.1 dB away from the Shannon limit /
� Turbo codes and LDPC codes get us within 0.1dB of the Shannon limit !! ☺

Gap-from-Shannon-limit:  
@BER=10-5

9.6 + 1.59 = 11.2 dB
(about 7.8 dB if you maintain
spectral efficiency)
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Low-Density Parity Check (LDPC) Codes
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LDPC
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Example LDPC Code

� A low-density parity-check matrix and the corresponding (bipartite) graph 
of a rate-1/4 low-density parity-check code with blocklength N =16, and M 
=12 constraints. 

� Each white circle represents a transmitted bit.
� Each bit participates in j = 3 constraints, represented by squares.
� Each constraint forces the sum of the k = 4 bits to which it is connected to 

be even. 
� This code is a (16; 4) code. Outstanding performance is obtained when the 

blocklength is increased to N ≈ 10,000.
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Tanner Graph
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A.k.a Factor Graph Notation
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Factor Graphs
� A factor graph shows how a function of several variables can be factored into a 

product of "smaller" functions. 
� For example, the function g defined by g(x,y)=xy+x can be factored into 

g(x,y)=f1(x)f2(y) where f1(x)=x and f2(y)=y+1. 
� The factor graph depicting this factorization: 

� Graph for function g(x,y,z) = f1(x,y) f2(y,z) f3(x,z). 

� Why Factor graphs?
� 1. Very general: variables and functions are arbitrary
� 2. Factorization => Sum-Product Algorithm can be applied
� 3. Third, many efficient algorithms are special cases of the Sum-Product Algorithm 

applied to factor graphs:
� FFT (Fast Fourier Transform), Viterbi Algorithm, Forward-Backward 

Algorithm, Kalman Filter and Bayesian Network Belief Propagation. 
� Brings many good algorithms together in a common framework. 
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LDPC Coding Constructions
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LDPC Decoding: Iterative
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Regular vs Irregular LDPC Codes
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Irregular LDPC Codes
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Turbo Codes
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Turbo Codes



Shivkumar KalyanaramanRensselaer Polytechnic Institute

136 : “shiv rpi”

Turbo Encoder

� The encoder of a turbo code. 
� Each box C1, C2, contains a convolutional code. 
� The source bits are reordered using a permutation π before they are fed to 

C2. 
� The transmitted codeword is obtained by concatenating or interleaving the
� outputs of the two convolutional codes. 
� The random permutation is chosen when the code is designed, and fixed 

thereafter.
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Turbo: MAP Decoding
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Turbo Codes: Performance…
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UMTS Turbo Encoder
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WiMAX: Convolutional Turbo Codes (CTC)
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Digital Fountain Erasure Codes
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What is a Digital Fountain?
� A digital fountain is an ideal/paradigm for data 

transmission.
�Vs. the standard (TCP) paradigm:  data is an 

ordered finite sequence of bytes.

� Instead, with a digital fountain, a k symbol file yields 
an infinite data stream (“fountain”);  once you have 
received any k symbols from this stream, you can 
quickly reconstruct the original file.     
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How Do We Build a Digital Fountain?

� We can construct (approximate) digital fountains using erasure 
codes.
� Including Reed-Solomon, Tornado, LT, fountain codes.

� Generally, we only come close to the ideal of the paradigm.
� Streams not truly infinite;  encoding or decoding times;  

coding overhead.
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Forward Error Correction (FEC): 
Eg: Reed-Solomon RS(N,K)

Data = K

FEC (N-K)

Block 
Size 
(N)

RS(N,K) >= K of N
received

Lossy Network

Recover K 
data packets!

High Encode/Decode times: O{K(N-K) log2 N}.
Hard to do @ very fast line rates (eg: 1Gbps+). 
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Digital Fountain Codes (Eg: Raptor codes)

Data = K

>= K+ε
received

Lossy Network

Recover K 
data packets!

Rateless: No Block Size !
“Fountain of encoded pkts”

Compute on demand!

…
…

Low Encode/Decode times: O{K ln(K/δ)} 
w/ probability 1- δ. Overhead ε ~ 5%.

Can be done by software & @ very fast (eg: 1Gbps+). 
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Raptor/Rateless Codes
� Properties: Approximately MDS

� “Infinite” supply of packets possible.
� Need k(1+ε) symbols to decode, for some ε > 0.
� Decoding time proportional to k ln (1/ε).
� On average, ln (1/ε) (constant) time to produce an encoding 

symbol.

� Key: Very fast encode/decode time compared to RS codes
� Compute new check packets on demand!

� Bottomline:  these codes can be made very efficient and deliver 
on the promise of the digital fountain paradigm.
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Digital Fountain Encoder/Decoder
� Encoder:

� Decoder:
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Digital Fountain decoding (example)
� Received bits: 1011

� t1 is of degree 1, s1 = t1 = 1

� t2 & t3 XOR’ed w/  s1 = 1. 
Remove s1’s edges

� s2 set to  t4 = 0 {degree = 1}

� Repeat as before; s3 = 1

First such code 
called “Tornado” code.
Later: LT-codes; 
Concatenated version:
“Raptor code”
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Esoterics: Robust Soliton Degree Distribution
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Applications: Reliable Multicast
� Many potential problems when multicasting to large audience. 

� Feedback explosion of lost packets.
� Start time heterogeneity.
� Loss/bandwidth heterogeneity.

� A digital fountain solves these problems.
� Each user gets what they can, and stops when they have enough: doesn’t 

matter which packets they’ve lost
� Different paths could have diff. loss rates
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Applications: Downloading in Parallel
� Can collect data from multiple digital fountains for the same 

source seamlessly.
� Since each fountain has an “infinite” collection of packets, no 

duplicates.
� Relative fountain speeds unimportant;  just need to get enough. 
� Combined multicast/multi-gather possible.

� Can be used for BitTorrent-like applications.
� Microsoft’s “Avalanche” product uses randomized linear codes to 

do “network coding”

� http://research.microsoft.com/~pablo/avalanche.aspx
� Used to deliver patches to security flaws rapidly; Microsoft Update 

dissemination etc

http://research.microsoft.com/~pablo/avalanche.aspx
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Time

Lossy

Low 
Capacity

High Delay/Jitter

Network paths usually have:
• low e2e capacity, 
• high latencies and 
• high/variable loss rates.

Single path: limited capacity, delay, loss…
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Idea: Aggregate Capacity, Use Route Diversity!

Low Perceived Delay/Jitter

Low Perceived
Loss

High Perceived
Capacity

Scalable Performance Boost with ↑
Paths
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Multi-path LT-TCP (ML-TCP): Structure

Reliability @ aggregate, across paths
(FEC block = weighted sum of windows,

PFEC based upon weighted average loss rate)

Socket 
Buffer

Map pkts→paths intelligently
based upon Rank(pi, RTTi, wi)

Per-path congestion control
(like TCP)

Note: these ideas can be applied to other link-level multi-homing, 
Network-level virtual paths, non-TCP transport protocols (including video-streaming)
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Summary
� Coding: allows better use of degrees of freedom

� Greater reliability (BER) for a given Eb/No, or
� Coding gain (power gain) for a given BER.
� Eg: @ BER = 10-5: 

� 5.1 dB (Convolutional), 7.1dB (concatenated RS/Convolutional)
� Near (0.1-1dB from) Shannon limit (LDPC, Turbo Codes)

� Magic achieved through iterative decoding (belief propagation) in both 
LDPC/Turbo codes
� Concatenation, interleaving used in turbo codes

� Digital fountain erasure codes use randomized LDPC constructions as 
well. 

� Coding can be combined with modulation adaptively in response to SNR 
feedback

� Coding can also be combined with ARQ to form Hybrid ARQ/FEC 
� Efficient coding schemes now possible in software/high line rates => they 

are influencing protocol design at higher layers also: 
� LT-TCP, ML-TCP, multicast, storage (RAID, CD/DVDs), Bittorrent, 

Network coding in Avalanche (Microsoft Updates) etc
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