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Big Picture: Detection under AWGN

Additive
Gaussian Sampler
noise at fp

Transmitter () Decoder
(a) (b)  x(t) x(to) (d)

b
€
\

1 1 1
2 2 2
e S I B
(a) (b) (c) (d)
Decoding of a noise-corrupted digital pulse by sampling and hard clipping.
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Additive White Gaussian Noise (AWGN)

0 Thermal noise is described by a zero-mean Gaussian random process,
n(t) that ADDS on to the signal => “additive”

0 Its PSD is flat, hence, it is called white noise.
0 Autocorrelation is a spike at 0: uncorrelated at any non-zero lag

_ 1 2
p(n) = —L-exp |25 N
| , . Gn(f) — 70 [w/HZz]
0.4:
0l Power spectral x
Density
0.2 o=1 (flat => “Whlte”)/ f
0.1 : Rp(7) = %5(7)
0 Autocorrelation 1
4 2 Y n ¢ Function
robability density function (uncorrelated) T
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Effect of Noise In Signal Space

0 The cloud falls off exponentially (gaussian).
0 Vector viewpoint can be used in signal space, with a random noise vector w

f2 fy

Noise cloud Noise
Received  vector
signal point w
Observation
vector Message

point
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Maximum Likelihood (ML) Detection: Scalar Case
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Assuming both symbols equally likely: u, is chosen if P {u = uA| b > Plu=ugly}

Log-Likelihood => |V — ta| < |y — ugl|.
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AWGN Detection for Binary PAM

S, —S,||/ 2
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Bigger Picture

General structure of a communication systems

Noise
Transmitted l Received Received

Info. _ signal signal _ info.
Source Transmitter » Channel Receiver User

1 | B

C Transmitter A

— Formatter — SIEITEE > Channel » Modulator —
encoder encoder
\_ J
4 Receiver )
«—— Formatter [« Source < Channel <—Demodulatone—
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Digital vs Analog Comm: Basics
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Digital versus analog

2 Advantages of digital communications:
1 Regenerator receiver

Original Regenerated
pulse ‘ ‘ /\ A /\ ‘ ‘ " pulse
/\

»
»

Propagation distance

2 Different kinds of digital signal are treated

Identically.
—
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Signal transmission through linear systems

Input

0 Deterministic signals:
0 Random signals:

2 ldeal distortion less transmission:

All the frequency components of the signal not only arrive with
an identical time delay, but also are amplified or attenuated

equally.

x(t)

X(H) | H)

h(t)

Linear system

" y(r) Output

y(t)

Y(f)=X(f)H(S)

Gy (f) = Gx(NHIH()I?

y(t) = Kz(t — tg) or H(f) = Ke 127 fto
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Signal transmission (cont’d)

a ldeal filters:

[H(f)]
Low-pass

L LI/ £)]

>f

—)

h(t) ,
/\ Non-causal!
ja yaNER
0 /ot

IU/f)|

Band-pass | Duality => similar problems occur w/ }
rectangular pulses in time domain.

> f I

O Realizable filters:

RC filters Butterworth filter
— 1
(I = tprrre V= g
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Bandwidth of signal

0 Baseband versus bandpass:

x(t) . » xo(t) = x(t) cos(27 fet)

Baseband Bandpass

signal cos(27 fot) signal

Local oscillator
X)) Xe(f)|
I I R

/O\ Tl /‘fﬂ\o./ - \Irf

Wssp " Wpsp

0 Bandwidth dilemma:
0 Bandlimited signals are not realizable!

O Realizable signals have infinite bandwidth!
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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0
a)
b)
C)

Bandwidth of signal: Approximations

Different definition of bandwidth:
d) Fractional power containment bandwidti

e) Bounded power spectral density
f)  Absolute bandwidth

Half-power bandwidth

Noise equivalent bandwidth

Null-to-null bandwidth

&

«— (b)) —

©)~

(d)
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Formatting and transmission of baseband signal

( Digital info.

Textual - oo oo ______] F omat. ...
gource{ info. E ! oyl
: ~ > ulse .
Analog - : Transmit ‘
nalog ;|| Sample |_,|Quantizel ,| Encode | ] modulate \
| info. . FA
---------------------------------------- Pulse
Bit stream Channel
____________ Format.___________ waveforms
(Analog ! | l
H 1 - 1 /
Info,_: | LOYV PasSl_| Decode | : Demodulate/ :
| filter : Receilve
sink 1 Textual: Detect
infos +___________________ :
| Digital info.
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Sampling of Analog Signals

Time domalin Frequency domain
X, (2) = x5(1) x x(¢) X (f)=X,(f)*X(f)

) x(n1 1

—fm 0 fm f ”
| XN ]

{:::} —f 0 fs f

| X, ()T

—chs 0 Ifs f:
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Aliasing effect & Nyquist Rate

4 Xo()] 1 N xO )
.’ 3 LP filter

\ — J
O\
Js =2fm Nyquist rate fs <2fm
ol
4 [ Xs(H ] A aliasing

NN X

—fs  —fm O fm fs  f
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Undersampling &Aliasing In
Time Domain

A high frequengr agnal

T Ty LT T —
T YT

||||H|||"|||H|I'-|||H |ooks like...

m ..o lower frequenay signal
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Nyquist Sampling & Reconstruction:
U

i
WWWH Jnll“U“Unlfn\'“UnVAUﬂk‘anﬂﬂ\WﬁWI

Note: correct reconstruction does not draw straight lines between samples.
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Key: use sinc() pulses for reconstruction/interpolation
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Nyquist Reconstruction: Frequency Domain

||||||||I||||||,., .,|II|||||I||||||||‘||“||‘||‘||||||||I||II|II|,. ) Asmpled sgna

| rrust be [ow pﬂzsfihered

to reconstrud the nrigincﬂ

sincix) = gin(mx) 7 e

The impulse response of the
reconstruction filter has a classic 'sin(x)/x
shape.

The stimulus fed to this filter is the series

of discrete impulses which are the u/’“\/\v
samples.
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Sampling theorem

Analog , Sampling , Pulse amplitude
signal process modulated (PAM) signal

0 Sampling theorem: A bandlimited signal with no spectral
components beyond fm , can be uniquely determined by

values sampled at uniform intervals of | 1 - 2}
_ m

0 The sampling rate, £, = TL = 2 fm
IS called Nyquist rate.

0 In practice need to sample faster than this because the receiving
filter will not be sharp.

Rensselaer Polytechnic Institute
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Quantization

0 Amplitude quantizing: Mapping samples of a continuous amplitude
waveform to a finite set of amplitudes.

Out _

J_ In

Vo e = Average quantization noise power
( Vp — q/2 A 1 1 2 2
— g
Vp — 3q/2 | q VOIts o° =15
e ., : =Signal peak power
g %< q/2 In | v V2 L2q2
© T evels = —=
S < —q/2 PP p 4
o ; =Signal power to average
—Vp + 3¢/2 quantization noise power
\ —Vp+4q/2 V2
et (8) Y g2
Rensselaer Polytechnic Institute 9 winv e odlyanaraman

29 Google : “shiv rpi”



a A uniform linear quantizer is called Pulse Code Modulation

(PCM).

0 Pulse code modulation (PCM): Encoding the quantized signals
Into a digital word (PCM word or codeword).

0 Each quantized sample is digitally encoded into an / bits
codeword where L in the number of quantization levels and

Rensselaer Polytechnic Institute

Encoding (PCM)
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Quantization error

0 Quantizing error: The difference between the input and output of a
quantizer — e(t) _ )'E(t) . X(t)

Process of quantizing noise

_———————y

I
| saunizer . [Model of quantizing noise
| Y =q{x) o : ,
| Lo ~ |
| AGC ) L x(f) s 3(0)
| 0 W, ”( |
| * | |
| | | e(?) !
| : b
I |
| |
| + I
I /" e(t) = :
| >
A ~ D)0
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Non-uniform quantization

a It is done by uniformly quantizing the “compressed” signal.

0O At the receiver, an inverse compression characteristic, called “expansion” is
employed to avoid signal distortion.

compression+expansion [> companding

y=Cl(x)
x(t) () —

& 3

L[

<)
~
-

=)

X Y
Compress Qauntize Expand
— —~— — ~ R
Transmitter Channel Recejyer
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Baseband transmission

Q To transmit information thru physical channels, PCM
sequences (codewords) are transformed to pulses (waveforms).
0 Each waveform carries a symbol from a set of size M.
0 Each transmit symbol represents | k=log M| bits of the PCM words.
0 PCM waveforms (line codes) are used for binary symbols (M=2).

a M-ary pulse modulation are used for non-binary symbols
(M>2). Eg: M-ary PAM.
0 For a given data rate, M-ary PAM (M>2) requires less bandwidth than
binary PCM.

0 For a given average pulse power, binary PCM is easier to detect than M-
ary PAM (M>2).

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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PAM example: Binary vs 8-ary

2 5 8 11 14 17 20 23
time
binary PAM
1.5
1 i
05+ i
2 oo- ]
o
05+ i
AL |
-1.5
0 25
time
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Example of M-ary PAM

Assuming real time Tx and equal energy per Tx data bit for

binary-PAM and 4-ary PAM.
* 4-ary: T=2T, and Binary: T=T,

« Energy per symbol in binary-PAM: 4° =10B°

[ Binary PAM J 4-ary PAM
(rectangular pulse) (rectangular pulse)
N 3B
A.
0 p AV
T I > I | ‘01’ >
1 ‘00" T T
T H 00
‘O’
4 3B
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Other PCM waveforms: Examples

2 PCM waveforms category:

" Nonreturn-to-zero (NRZ) " Phase encoded
= Return-to-zero (RZ) " Multilevel binary
+V.—].'— .O .1. .1 .O. +V.—1 | O. 1 1| (L
NRZ-L oy 0 {4+ v {1+ Manchesteray {0 ¢ o
Unipolar-Rz Y1 | o Miller *Vi
0 t=—t = = Vi bt ——
| Vi BV
Bipolar-RZ o Dicode NRZ O;
Vs H SRR R AR
O T 2T 3T 4T 5T O T 2T 3T 4T 5T
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PCM waveforms: Selection Criteria

2 Criteria for comparing and selecting PCM waveforms:

2 Spectral characteristics (power spectral density and
bandwidth efficiency)

2 Bit synchronization capability

2 Error detection capability

2 Interference and noise Immunity

2 Implementation cost and complexity

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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q

Summary: Baseband Formatting and transmission
[ Digital info. Bit stream Pulse waveforms
Textual -] Format. lData bits)  (baseband signals)
dource info. ; |
: - | Pulse
A_”é}'og | Sample |_,/Quantize|_,| Encode | i\ |,| modulate
| Info. . !
I - S_arﬁpﬂn?; atrate | Encoding each g. value to
l f,=1T, ' [ =log, L bits
! _(sampling time _Tg) (Data bit duration 76=Ts/])
Quantizing each sampled | Mapping every m =log, Mdatabitstoa |
value to one of the I symbol out of M symbols and transmitting
L levels in quantizer. | abaseband waveform with duration 7|

0 Information (data- or bit-) rate: R =1/T, [bits/sec]
Q Symbolrate: R =1/T [symbols/sec]

R, =mR
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Receiver Structure & Matched Filter
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Demodulation and detection

m, Pulse |£;(t) |Bandpass| s:(?) M-ary modulation
| Format | modulate modulate | i=1.... M
_ channel
transmitted symbol h.(t)
estimated symbol p— n()
1 Format :lA Detect [ Demod. | |
m, z(T) | & sample | »(¢)

QO Major sources of errors:
O Thermal noise (AWGN)
Q disturbs the signal in an additive fashion (Additive)
0 has flat spectral density for all frequencies of interest (White)
0 is modeled by Gaussian random process (Gaussian Noise)
a Inter-Symbol Interference (I1SI)
0 Due to the filtering effect of transmitter, channel and receiver, symbols

Rensselaer Polyte%rr-ﬂec Ingmtgared ' Shivkumar Kalyanaraman
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Impact of AWGN

transmitted signal

1.5
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Impact of AWGN & Channel Distortion

1.5

1

0.5

r(t)

0

0.5

h.(t)=0(1)r

-1.5
0

r(t)

-0.5

-1

-1.5
0

received signal distorted by non-ideal channel only

0 H
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Recelver job

2 Demodulation and sampling:

2 Waveform recovery and preparing the received signal for
detection:

aImproving the signal power to the noise power (SNR)
using matched filter (project to signal space)

2 Reducing ISI using equalizer (remove channel distortion)
aSampling the recovered waveform

2 Detection:
2 Estimate the transmitted symbol based on the received sample

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Recelver structure

Step 1 — waveform to sample transformation Step 2 — decision making
Demodulate & Sample Detect
2(T) i
Frequency Receiving Equalizing : Threshgld 7
down-conversion filter [, | filter | comparison |

Compensation for

For bandpass signals _
channel induced ISl

( Received waveform} Baseband pulse J
iblv di Baseband pulse Sample
[(possmly distorted) [ ] [ (test statistic)}
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Baseband vs Bandpass

0 Bandpass model of detection process is equivalent to baseband
model because:

2 The received bandpass waveform is first transformed to a
baseband waveform.

a Equivalence theorem:

2 Performing bandpass linear signal processing followed by
heterodying the signal to the baseband, ...

2 ... yields the same results as ...

a ... heterodying the bandpass signal to the baseband ,
followed by a baseband linear signal processing.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Steps In designing the receiver

O Find optimum solution for receiver design with the
following goals:

1. Maximize SNR: matched filter
2. Minimize ISI: equalizer

O  Steps in design:
O Model the received signal

0 Find separate solutions for each of the goals.

Q  First, we focus on designing a receiver which maximizes the
SNR: matched filter

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Receiver filter to maximize the SNR

2 Model the received signal

F(0) = 5,(6) #h, (1) + n(0)

() — k@) %P— (1)

n(t)

AWGN

a Simplify the model (ideal channel assumption):

2 Received signal in AWGN

o ) 0P

n(t)

AWGN

Rensselaer Polytechnic Institute

r(t) =s,(t) +n()
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Matched Filter Recelver

a Problem:
0 Design the receiver filter- such that the SNR is

maximized at the sampling time when _

IS transmitted.

Rensselaer Polytechnic Institute Snivkumar Kdlyanaraman |
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0 The matched filter output at the sampling time, can be realized

Re [fe Lo vy

Correlator Recelver

as the correlator output.

0 Matched filtering, i.e. convolution with s,"(7-t) simplifies to
Integration w/ s,”(t), i.e. correlation or inner product!

2(T)=h (T)*r(T)

opt

— j‘r(z')sl.*(r)df =< r(t),s(t) >

Recall: correlation operation is the projection of the received

signal onto the signal space!

Key idea: Reject the noise (N) outside this space as irrelevant:

=> maximize S/N

AN

LA®AV] I | Uly culr
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Irrelevance Theorem: Noise Outside Signal Space

@
I
| i
|

|

B,
LY
%
LY
I/./ ®

2 Noise PSD is flat (“white”) => total noise power
Infinite across the spectrum.

2 We care only about the noise projected in the finite
signal dimensions (eg: the bandwidth of interest).

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Aside: Correlation Effect

fl _;f}‘ ® If twa signals are similar and unshifted...

l - ® their product 13 dll positive.

4—*—“'4\4“:
Lo — ® parts of it became negative...

& and the correlotion funchon shows where

F the agnals are amilor and ungifted

¢ But asthe shift increases...

0 Correlation is a maximum when two signals are similar in shape, and are in phase (or
‘unshifted' with respect to each other).

O Correlation is a measure of the similarity between two signals as a function of time shift

(“lag”, T) between them
0 When the two signals are similar in shape and unshifted with respect to each other, their
product is all positive. This is like constructive interference,

Q The breadth of the correlation function - where it has significant value - shows for zow long
the signals remain similar.

Rensselaer Polytechnic Institute
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| Aside: Autocorrelation

‘ phase, only with no time shift ot all

® so ts correlohon funchion 15 o spike

AVAVAVAVAVAVAVAVAVAV AR

® peradic signals goin and oot of phose

WW\N\/W\/ T e
||'| ® s their correlotion funchions are penadic

® signals that last only o short while are
only similar while they [ast

_ Mv\,ﬁfww _ ¢ so their correlation funchions are shor

® Rondom noize 1z similar to itself, and 1n

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
45 Google : “shiv rpi”




Aside: Cross-Correlation &Radar

WW‘&W ® A radar or =onar 'chimp' signal...
W ® bounced off atarget may be buried in

il =

® but carrelating wath the 'chirp' reference

Wi 'l o P ® clearly reveals when the echo comes

Figure: shows how the signal can be located within the noise.
A copy of the known reference signal is correlated with the unknown signal.
The correlation will be high when the reference is similar to the unknown signal.

A large value for correlation shows the degree of confidence that the reference signal is
detected.

O The large value of the correlation indicates when the reference signal occurs.
Shivkumar Kalyanaraman
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¢ The chirp of anightingale... e J
N

k

@ but weokly with o dove ..

+ ¢ corredotes drongly with another nightingale... +
——r]

® o o heron...

» A copy of a known reference signal is correlated with the unknown signal.

» The correlation will be high if the reference is similar to the unknown signal.

* The unknown signal is correlated with a number of known reference functions.
* A large value for correlation shows the degree of similarity to the reference.

» The largest value for correlation is the most likely match.

« Same principle in communications: reference signals corresponding to

symbols

» The ideal communications channel may have attenuated, phase shifted the
reference signal, and added noise

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Matched Filter: back to cartoon...

1 1 [1] i b 1 1 1 1] 1 1
p Sampling i

' VA A LY T
AWGN Channel —] Matched W = Threshold WY LS —"11011"
i Filter | Decisor A

W

O Consider the received signal as a vector r, and the transmitted signal vector as s
O Matched filter “projects” the r onto signal space spanned by s (“matches” it)

Filtered signal can now be safely sampled by the receiver at the correct sampling instants,
resulting in a correct interpretation of the binary message

Matched filter is the filter that maximizes the signal-to-noise ratio it can be
shown that it also minimizes the BER: it is a simple projection operation

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Example of matched filter (real signals)
= (1) *h
5, (1)1 hop () ] yg)_ 5102 (0
A A4
JT JT
T t T t 0 IT 2T t
=g *h
10 ) i 0 (0
A4 A4
V2 T t V2 T t Tl/ IT IT/2 T t
-4 -4 _ A -
JT JT :
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Properties of the Matched Filter

1. The Fourier transform of a matched filter output with the matched signal as input
IS, except for a time delay factor, proportional to the ESD of the input signal.

Z(f)=S(f)I" exp(=j24T)

2. The output signal of a matched filter is proportional to a shifted version of the
autocorrelation function of the input signal to which the filter is matched.

2()=R (t-T)= z(T) = R.(0) = E.

3. The output SNR of a matched filter depends only on the ratio of the signal energy
to the PSD of the white noise at the filter input.

(), 7%
MaX| — | =
N), N,I2

4, Two matching conditions in the matched-filtering operation:
spectral phase matching that gives the desired output peak at time 7.
O spectral amplitude matching that gives optimum SNR to the peak value.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Implementation of matched filter receiver

Bank of M matched filters

z,=r(t)*s"i(T—t) i=1...M
2=(2y(T),z,(T)s, 2, (T)) = (2, 2511 2y)

Z  QObservation
—

Matched filter output:

vector

Note: we are projecting along the basis directions of the signal space

Rensselaer Polytechnic Institute
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Implementation of correlator receiver

Bank of M correlators

s 1(¢)
r\z(T). -
> ———»
: Io “ . _Correlators output:
r(1) : . ' Z  Observation
! . - | =Z
s u (¢) . i vector
T
>j —> | ZM_
0 12, (T)

2= (2,(1), 2,(T).es 2 (1)) = (21 Zgrees2)

z, :Tr(t)si(t)dt i=1...,.M

Note: In previous slide we “filter” i.e. convolute in the boxes shown. |man
52 Google : “shiv rpi”




Implementation example of matched filter receivers

Sl (t) A
Jr
0 T >
S2 (t)u
0 T ”
=4
JT

Rensselaer Polytechnic Institute

Bank of 2 matched filters

""""""""""""""""""""""""""""""""""

4 Zl(T)
0T T =Z L
— 1 _lo T X “2_
> z,(T
—4
T

_______________________________________________________
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Matched Fi

ter:

il

A squore wove hos sgna power

reo

il

uency domain View

i

time

.‘/’ alt dl the odd harmonics

N

L

|

JULULUUUUL

Simple Bandpass Filter:

excludes noise, but misses some signal power

A band poss ilter exdvdes noi=
byt msses som e =qgnal power

frequency

i ! i i
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Matched Filter: Frequency Domain View (Contd)

Multi-Bandpass Filter: includes more signal power, but adds more noise also!

A muli band filker indvdes more sgna power
bt som e alkko more noi=

Matched Filter: includes more signal power, weighted according to size
=> maximal noise rejection!

A matched filter indvdes sgna com ponenis
weighted according to their sze

Jrlh M A ! L ]

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman

55 Google : “shiv rpi”



Maximal Ratio Combining (MRC) viewpoint

2 Generalization of this f-domain picture, for combining
multi-tap signal

A matched filter indvdes sgna com ponenis
weighted according to their sze

Jrlh M A ! L ]

Weight each branch with a complex factor ¢; = |¢;|¢?* and then adding up the N, branches

N,
//h/v \‘ y(t) = x(t) Y |gillhel exp{j(d: +6:)}-
i=1

/ phase of the combining coefficient ©; = —#6;

maximizing combining values as |¢7|? = |h;|?/0?

each branch 1s multiplied by its SNR

N, 2 Ny
Er D i1 |hil . .
SNR: =aamhd Dyl
1= -
Shivkumar Kalyanaraman
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xamples of matched filter output for bandpass

modulation schemes

QPSK - Eb/NO=2 dB

>

X

2

8PSK - Eb/NO=2 dB

%3

araman
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Signal Space Concepts

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Signal space: Overview

2 What is a signal space?
O Vector representations of signals in an N-dimensional orthogonal space

2 Why do we need a signal space?
0 Itis a means to convert signals to vectors and vice versa.

0 It is a means to calculate signals energy and Euclidean distances
between signals.

2 Why are we interested in Euclidean distances between signals?

0O For detection purposes: The received signal is transformed to a received
vectors.

QO The signal which has the minimum distance to the received signal is
estimated as the transmitted signal.
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Schematic example of a signal space
v, ()

(

. . s, (1) = apy, (t) +auyw,(t) < s, = (ay, a,)
Transmitted signal
alternatives | 8,(8) = any, (1) + ayy,(t) < S, =(ay,a,,)
S4(t) = ayy, () + agw, (1) < S; = (a4, a5,)

eceived signal at  ° B B
mhiched fltpnautaihe ~ -\ - Wil Ea ) S z=(agy)

kumar Kalyanaraman
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2 To form a signal space, first we need to know the
Inner product between two signals (functions):

Signal space

2 Inner (scalar) product:

o0

<x(),y(t) >= [x(0)y"()at

—00

= cross-correlation between x(t) and y(t)

Rensse

2 Properties of inner product:

<ax(t), y(t) >=a < x(t), y(t) >
<x(t),ay(t) >=a < x(t), y(t) >
<x(t)+ (), z(¢) >=< x(t), z(t) >+ < »(¢), z(¢) >

Shivkumat

aer Polytechnic institute =

- Kalyanaraman
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Signal space ...

0 The distance in signal space is measure by calculating the norm.
0 What is norm?
a Norm of a signal.

|x(2)]| = /< x(2), x(2) > = \/ [ o) ar=AE,

= “length” of x(t)

Jax(®)] = al|x )]

0 Norm between two signals:

d,, =|x@®)—-y@)|

O We refer to the norm between two signals as the Euclidean distance between

two signals. _
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Example of distances in signal space
W, (1)

S, = (a21, azz)

The Euclidean distance between signals z(z) and s(z):

d, . =[s,(6)=20)| = /(@ — 2,)? +(a,, — 2,)?

i=12,3
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Orthogonal signal space

0 N-dimensional orthogonal signal space is characterized by N
linearly independent functions (", called basis functions.
The basis functions must satisfy the orthogonality condition

T
x 0<¢<T
<y (t)w.@)>=|y.(t)w.(t)dt=K.0,
Oy, 0 >= vy Odi=Ko, 7
where 1 sic i
@.={ -’
700

a Ifall K, =1 ,the signal space is orthonormal.
Q
Constructing Orthonormal basis from non-orthonormal set of vectors:
0 Gram-Schmidt procedure
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Example of an orthonormal bases

QO Example: 2-dimensional orthonormal signal space

W, (t) = \E cos(2m/T) 0<Lt<T W(1)

yxz(t):\gsin(zm‘/T) 0<t<T

T 0 > (1)
<y (6w, () >= [y (e, (1)de = 0
0
0] =2 ()] =1
QO Example: I-dimensional orthonornal signal space
Wl(t)“
L AOl=1
JT ) o > (1)
Rensselaer Pol)(/] echnic Instituz; t Shivkumar Kalyanaraman
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Sine/Cosine Bases: Note!
Q Approximately orthonormal! |, :\Em (2 1.0
| T

dha(t) = \/ = sin(27 fot).

%

1 2 [ sin(4 I.f }
& (t)dt = T / D1 4 cos(4m ft)|dt =1+
‘/ﬂ l 1( ) [ f ] '-1 C guuEEER,y

The numerator in the second term of (5.8) 1s bounded by one and tm fcl >> 1 the denominator of this term 1s
very large. Thus, this second term can be neglected. Similarly. ) -

T 2 T — cos(4m f.T
/D d1(t)ea(t)dt = [} Ssin(4r fot)dt = “;é};f ) ~0.

where the approximation 1s taken as an equality f01 f A >> 1

0 These are the in-phase & quadrature- phase dimensions of
complex baseband equivalent representations.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Example: BPSK

Example 5.1:
Binary phase shift keying (BPSK) modulation transmuits the signal s(f) = cvcos(2nf.t),0 < ¢ <" tosenda |
bit and the signal so(f) = —a cos(27f.£).0 <t < T, to send a 0 bit. Find the set of orthonormal basis functions

and coefficients {s;; } for this modulation.

Solution: There 1s only one basis function for s1(f) and sa(t), &(t) = \/2/1 cos(27 f.t), where the \/2/1 is
needed for normalization. The coefficients are then given by s1 = ay/1T/2 and sy = —a/1/2.

2 Note: two symbols, but only one dimension in BPSK.

Shivkumar Kalyanaraman
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Signal space ...
0 Any arbitrary finite set of waveforms {s, ()",

where each member of the set is of duration 7', can be expressed
as a linear combination of N orthogonal waveforms

where {l/jjl(t)}j]:l N<M

N
s=2ay, @  i=1..M
j=1 N<M

where

1t N |

I - _ = * J=4.. |

: a, = X <5, (1) >= X _([Si(t)wj(t)dt i1y OSt<T :

N
S; = (@, Aypeees Ay ) E, :ZK]' a,;
Vector representation of waveform Wa\‘;;%‘orm enerqy

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Signal space ...

N
Si(t)zzaljwj'(t) S, =(al.1,al.2,...,al.N)
j=1
Waveform to vector conversion Vector to waveform conversion

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Example of projecting signals to an

orthonormal signal space
726 St

> /1 (2)

S, = (a21, azz)

s, (1) = ay () +apw, (1) < s, =(ay,a,)
$,(1) = a,y, (1) + ay, (t) < s, =(ay,a,,)
| S5(2) = agy (1) + agzuy, (1) < S = (ay, a3)

Transmitted signal
alternatives

-

0 70 Google : “shiv rpi”



Matched filter receiver (revisited)

(note: we match to the basis directions)
Bank of N matched filters

___________________________________________________

: z |

— (T -0) AN £, ' Observation
. 1 ' vector

r(t) :

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Correlator receiver (revisited)

Bank of N correlators

w (1)
| % Tz, _ _
: ——
: j 4
. 0 1 |
r() | : 3 Z Observation
w (t) o vector
i T
L& b
i 0 | =W

Zj:fr(t)wj(t)dt j=1..,N

Rensselaer Polytechrfik Institute Shivkumar Kalyanaraman
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Example of matched filter receivers using
basic functions

Sy (f ) [ A (t )A V1 (t)ﬂ
L 1
= ) JT
) 0 T t
0 Tt -4 ° ro
JT
1 matched filter
A0
r (1) 7 ‘
| 7 A P
0 Tt

______________________________________________________

Q Number of matched filters (or correlators) is reduced by 1 compared to

using matched filters (correlators) to the transmitted signal!
Shivkumar Kalyanaraman
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White noise in Orthonormal Signal Space

2 AWGN n(t) can be expressed as
n(t) =n(t) +n(t)

Noise outside on the signal space
(irrelevant)

Noise projected on the signal space
(colored):impacts the detection process.

_______________________________________

(t) Zn l//] (t) . Vector representation of n(t)
n, =< n(t) v, (t)> j=1..N ::} n=(n,n,. 1)
< n(t), v, )>=0 j=L..,.N | {n]} independent zero-mean

Gausgsain random variables with |
variance var(n,)=N,/2

A

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Detection: Maximum Likelihood &
Performance Bounds

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Detection of signal in AWGN

0O Detection problem:

0 Given the observation vector Z , perform a mapping from Z
to an estimate m of the transmitted symbol, m, , such that
the average probability of error in the decision is
minimized.

S; Z N ~
M; ——— Modulator Decision rulef—— M
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Statistics of the observation Vector

a AWGN channel model: zZ=S;+n
2 Signal vector s. =(a,,a,,,...,a,) is deterministic.

0 Elements of noise vector n=(n,n,,...,n,) are i.i.d Gaussian
random variables with zero-mean and variance N,/2. The
noise vector pdf is

pa(y =g AL
n (7Z_NO)N/2 NO

Q The elements of observed vector z =(z,z,,...,z,) are
Independent Gaussian random variables. Its pdf is

sy =t el S
Z | (ﬂNo)N/2 N,

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Detection

O Optimum decision rule (maximum a posteriori probability):

Set m = m; if
Pr(m. sent|z) > Pr(m, sent|z),forall k£ =i
wherek =1,..., M.

O Applying Bayes’ rule gives:

Set m =m, if
Z\m ] i .
Dy P, (2| "),lsmaX|mumforaIIk:z
p,(2)
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Detection ...

2 Partition the signal space into M decision regions,
suchthat Z,,...,Z

M
Vector z liesinside region Z. if
Z|m . . ,
In[p, P. (2| ")], is maximum for all £ =1.
p,(2)
That means
m=m,
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Detection (ML rule)

Q For equal probable symbols, the optimum decision rule
(maximum posteriori probability) is simplified to:

Set m = m; if

p,(z|m,), 1Ismaximum forall k =i

or equivalently:

Set m = m; if
In[p, (z|m,)], is maximum forall k =i

which 1s known as maximum likelihood.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Detection (ML)...

a Partition the signal space into M decision regions, Z;,-.-,Z,,
0 Restate the maximum likelihood decision rule as follows:

Vector z lies inside region Z, if
In[p,(z|m,)], is maximum forall k =i
That means

m=m,

Vector z lies inside region Z, if
|z—s,| is minimum for all k =i

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Schematic example of ML decision regions

Rensselaer Polytechnic Instftute

4,

W, (1)
1
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/
/
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\\ 32 ,
\
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Probability of symbol error

O Erroneous decision: For the transmitted symbol S or equivalently signal

vector m. , an error in decision occurs if the observatlon vector 7 does not
fall inside region Z.

0O Probability of erroneous decision for a transmitted symbol

Pr(m = m.) = Pr(m, sent)Pr(z does not lie inside Zl.\ml. sent)

0O Probability of correct decision for a transmitted symbol

Pr(m = m,) = Pr(m, sent)Pr(z lies inside Zl.\ml. sent)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Example for binary PAM

P,(m)=P,(m,) = Q[

Is,—s,[/2

N, /2

Rensselaer Polytechnic Institute

Py :PE(2)2Q£

2F,
NO

J

Shivkumar Kalyanaraman
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Average prob. of symbol error ...

2 Average probability of symbol error :

PE(M):iPr(rfz #= m,)

2 For equally probable symbols:

1 & 1 &
P.(M)=—NP(m)=1-—"P(m)
E( ) MZZ:; e( z) Mi:1 c( I
1 M
=1-— I Z|m,)dz
M ; Zi pZ ( | z)
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Union bound

[

The probability of a finite union of events is upper bounded
_ by the sum of the probabilities of the individual events.

Union bound

~

J

k+#i

RIS Y A60s) | mup| BODSY S AES)

Rensselaer Polytechnic Institute

i=1 k=1
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£, V2307,

Union bognd:

v,

_4?':\ \\ #:

F(5,,8) = .[pr (r|my)dr

Rensselaer Polﬁ%chnic Institute

P.(m) <D B(s,S
k=2

P (m,) = Ipr(r | my)dr ‘

Example of union bound

z, r_ |2 z
-y T
L L ry tv

1)2(53151) = Ipr (r ml)dr
43

Py(s,,8,) = J.pr(r | m, )dr
Shivkumar Kalyanaraman
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Upper bound based on minimum distance

P,(s,,s;) =Pr(zisclosertos, thans,, whens, is sent)

:T exp(———)du {2{ dy /2 ]

NI

---------------------

P(M)<—ZZP(sk,s) (M - 1)Q[ ’2]

i=1 k-1 N, /2
e
: d_.. =mind
Minimum distance in the signal space: ™" i,kk k
[#
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Example of upper bound on av. Symbol error prob.
based on union bound

s|=+E =+E,, i=1..4 a9
'di,k — \/2Es

E

'dmin — 2Es

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Example 5.3:

Consider a signal constellation in R? defined by s7 = (A4.0), s2 = (0.4), s3 = (—A.,0) and s4 = (0, —A).
Assume A/+/Ny = 4. Find the minimum distance and the union bound (5.40). looser bound (5.43), closed form
bound (5.44), and nearest neighbor approximation (5.45) on /. for this constellation set.

Solution: The constellation 1s as depicted in Figure 5.3 with the radius of the circle equal to A. By symmetry, we
need only consider the error probability associated with one of the constellation points, since 1t will be the same
for the others. We focus on the error associated with transmitting constellation point s1. The minimum distance
to this constellation point is easily computed as d,,;,, = di2 = dag = dgy = dyy = VA2 + A2 = V2A2. The
distance to the other constellation points are d13 = dag = 2A. By symmetry, Pe(m; sent) = Pe(m; sent), j # i,
so the union bound simplifies to

aunt® 4 Tagy
------- 'i' . o .........
TP < d Q (Vf%ﬂ) =2Q(A/V No) + Q(V24/v/No) = 2Q(4) + Q(V/32) = 3.1679 % 107 .
............ J=2 -

.
un®
ans®
-----
-----
-------
--------
--------------------------------------------------------------------------

P, < 30Q(4) = 9.5014 % 107°

which 1s roughly a factor of 3 looser than the union bound. The closed-form bound yields

pf'{:

3 —.5A? ,
2 exp [ > ] — 3.2034 % 1074,

which differs from the union bound by about an order of magnitude. Finally. the nearest neighbor approximation
yields
P. = 20Q(4) = 3.1671 « 107°

which, as expected, 1s approximately equal to the union bound.
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Eb/No figure of merit in digital
communications

0 SNR or S/N is the average signal power to the average noise
power. SNR should be modified in terms of bit-energy In
digital communication, because:

0 Signals are transmitted within a symbol duration and hence,
are energy signal (zero power).

d A metric at the bit-level facilitates comparison of different
DCS transmitting different number of bits per symbol.

E, ST, SW - R, : Bitrate
N, NIW NR, W : Bandwidth

Note: S/N = Eb/No x spectral efficiency

Rensselaer Polytechnic Institute srrvkumar Kalyanaraman
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Example of Symbol error prob. For PAM signals

Symbol error perfromance of M-ary PAM

R S
gm '1—>V/1(t)
N ] \/Eb
&
E
®
L
=
o Sl
'-é o N ® >
: A0 L [E G [E v
0 N nglB LB c c
s N s s
=
m A
. " 15 20 0 Tt
E, /N, [dB
o/N, [dB] ilyanaraman
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Maximum Likelihood (ML) Detection: Vector Case

Nearest Neighbor Rule: [y —ual| < |ly —ug]l.

By the isotropic property of the Gaussian noise, we expect the error
probability to be the same for both the transmit symbols u,, Ug.

T v Jlua —ug?
Error probability: P {(us —up) w < — 5

i

" (uy — uB)t w ~ N (0, |[|luy — uB|\2f\-"D;’2},
\ ifyclUs
ifvelly

Project the received vector y along the
e = difference vector direction u,- ug is a
X “sufficient statistic” .

114

Noise outside these finite dimensions is
irrelevant for detection. (rotational
Invariance of detection problem)

ps: Vector norm is a natural extension of “magnitude” or length

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Extension to M-PAM (Multi-Level Modulation)

The above argument for binary detection generalizes naturally to the case when

LT
.....
-----

L5 "
tttt

''''''
L - - ~
----------------

T . T~ e M T T T 3

. *

]
....

----

projection onto the direction h provides a sufficient statistic.

0 Note: h refers to the constellation shape/direction

—& & & & & & & &

e Sm—

MPAM: vectors uy....,uys are collinear, i.e. u; = hr;

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Complex Vector Space Detection

..............
o® .
. .

v i=(uy —ug)/|luy —ugl.

N . 1
Y=V (y —3 (ug + uB)> = z|lug —ug|| +w

F 3
\ RIY) = wllua — upl + Ru]

Error probability: ¢ (”;‘%')

1y

0 Note: Instead of vT, use v* for complex vectors (“transpose and conjugate’)
for inner products...

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Binary Signals:
The transmit vector u 1s either uy or ug and we wish to detect u from received
vector
y=u+w, (A.52)

where w ~ CA (0, NoI). The ML detector picks the transmit vector closest to y
and the error probability is:

f(lua—usl) (A.53)
¢‘ 2 4’\0//2 0:

Collinear Signals:
CO m p I eX The transmit symbol x is equally likely to take one of a finite set of values in C

. _ (the constellation points) and the received vector is
Detection:
summary

v = hr +w, (A.54)

where h 1s a fixed vector.

Projecting y onto the unit vector v := h/||h|| vields a scalar sufficient statistic:
vy =|hlz+w’: (A.55)

Here w ~ CN(0, Np).

If further the constellation is real-valued. then

RIv*'y| = ||hl||lz + R[w] (A.56)
is sufficient. Here R[w] ~ N(0, Ny/2).
With antipodal signalling, * = 4a, the ML error probability is simply

:‘“““ “||h|| ...... '“
e : (A57)
No/2) .

LN 4

Rensselaer Polytechnic li

Via a translation, the binary signal detection problem in the first part of the
summary can be reduced to this antipodal signalling scenario.
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Detection Error => BER

0 If the bit error is i.i.d (discrete memoryless channel) over the sequence of bits,
then you can model it as a binary symmetric channel (BSC)

0 BER is modeled as a uniform probability /
0 As BER (f) increases, the effects become increasingly intolerable
O ftends to increase rapidly with lower SNR: “waterfall” curve (Q-function)

g+ u g — U g —u
Py < 4 B\u.z g p =P w > 1 l = () A = ]
2 2 2 J?\"l[jfg :

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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10-2 | o 1 | Need
ol e | diversity
- | techniques
1n—6 L - -
T to deal with
Pe )
I 7 | Rayleigh
i _ BPSK over i
10710 | awen | | (even 1-tap,
| Il'. _____ o1 -(.)1'9]1‘611- | .
10-12 \ ot | 1| flat-fading)!
10—14 __ III',I —_
10—10 _ | | | | | | _
-20 -10 0 10 20 30 40

SNR_(dB)

xl

Observe the “waterfall” like characteristic (essentially plotting the Q(x) function)!
Telephone lines: SNR = 37dB, but low b/w (3.7kHz)
Wireless: Low SNR = 5-10dB, higher bandwidth (upto 10 Mhz, MAN, and 20Mhz LAN)

Optical fiber comm: High SNR, high bandwidth ! But cant process w/ complicated codes,
signal processing etc _
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Better performance through diversity

Diversity <& the receiver is provided with multiple copies
of the transmitted signal. The multiple signal copies
should experience uncorrelated fading in the channel.

In this case the probability that all signal copies fade
simultaneously is reduced dramatically with respect to
the probability that a single copy experiences a fade.

As a rough rule:

P is proportional to — Diversity of
Te P 7/0L <— L:th order

BER Average SNR

Shivkumar Kalyanaraman
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BER vs. SNR (diversity effect)

Flat fading channel,
Rayleigh fading,
AWGN L=1
channel

: \
(no fading)

T \ > SNR (=7,)
L=4 L=3 L=2

We will explore this story later... slide set part |1

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Modulation Techniques

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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What i1s Modulation?

2 Encoding information in a manner suitable for
transmission.

2 Translate baseband source signal to bandpass signal
2 Bandpass signal: “modulated signal”

2 How?
2 Vary amplitude, phase or frequency of a carrier

2 Demodulation: extract baseband message from carrier

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Digital vs Analog Modulation

2 Cheaper, faster, more power efficient

2 Higher data rates, power error correction, impairment
resistance:

2 Using coding, modulation, diversity
a Equalization, multicarrier techniques for 1Sl
mitigation
2 More efficient multiple access strategies, better
security: CDMA, encryption etc

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Goals of Modulation Techniques

* High Bit Rate
* High Spectral Efficiency (max Bps/Hz)

* High Power Efficiency (min power to achieve a target BER)

* Low-Cost/Low-Power Implementation

* Robustness to Impairments

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Modulation: representation

* Any modulated signal can be represented as
s(t) = A(t) cos [@ct + ¢(t)]

amplitude phase or frequency

= A(t) cos §(t) cos act - A(t) sin d(t) Sin oct

~ ~\

in-phase guadrature

e Linear versus nonlinear modulation = impact on spectral efficiency
Linear: Amplitude or phase
Non-linear: frequency: spectral broadening

e Constant envelope versus non-constant envelope

= hardware implications with impact on power efficiency
(=> reliability: i.e. target BER at lower SNRs)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Complex Vector Spaces: Constellations
| | | |
b ® ®
. e
_ » | _
. .
‘e ® | n | _
“._$_,.a . .
MPSK o . = -
® n
] 4QAM and 16QAM Constellations.
Circular Square
0 Each signal is encoded (modulated) as a vector in a signal space
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear Modulation Techniques

s(t) = [%‘. an g (t-nT)]cos act - [%‘. bn g (t-nT)] sin ot

4

I(t), in-phase Q(t), quadrature

LINEAR MODULATIONS

Square — _M-ARY QUADRATURE  M-ARY PHASE = <—Circular
Constellations AMPLITUDE MOD. SHIFT KEYING Constellations
(M-QAM) (M-PSK)

< NS

(4-QAM = 4-PSK)

N

CONVENTIONAL OFFSET  DIFFERENTIAL
4-PSK 4-PSK 4-PSK
(QPSK) (OQPSK) (DQPSK, n/4-DQPSK)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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M-PSK and M-QAM

M-PSK (Circular Constellations) M-QAM (Square Constellations)
b

bn6/4—PSK "
° (] ) ) [ ] L] 16-QAM

. . 16-PSK o °

. . . T T—4-pSK
—@ ®— an an

. . O ®

° , ° [ ) [ ) [ ) [ ]
Tradeoffs

— Higher-order modulations (M large) are more spectrally
efficient but less power efficient (i.e. BER higher).

— M-QAM is more spectrally efficient than M-PSK but
also more sensitive to system nonlinearities.

| Rensselaer Polytechnic Institute Snivkumar Katyanaraman |
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Bandwidth vs. Power Efficiency

Bandwidth and Power Efficiency of M-ary PSK Signals

MPSK M 2 4 8 16 32 64
—_— nNg = R,/B" 0.5 1 1.5 2 2.5 3
105 105 14 185 234 285

E,/N, for BER=10°

** B: First null bandwidth of M-ary PSK signals

Bandwidth and Power Efficiency of QAM [Zie92]

MOAM: M 4 16 64 256 1024 4096

| 2 3 4 5 6

Ny

E,/N, for BER = 107° 10.5 15 18.5 24 28 33.5

Bandwidth and Power Efficiency of Coherent M-ary FSK [Zie92]

Source: Rappaport book, chap 6 109

. M 2 4 8 16 32 64
M' Ny 0.4 0.57 0.55 0.42 0.29 0.18
E,/N, for BER = 10°° 13.5 10.8 9.3 8.2 7.5 6.9
Rensselaer Polytechnic Institu iman
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MPAM & Symbol Mapping

0 Note: the average energy Binary pAML
per-bit Is constant N

2 Gray coding used for
mapping bits to symbols

@ @ i @ >

0 Why? Most likely error is to E .[E 0 _[E _[E w{
) ] ] 6.2t  _p = 2 |26 g 2D
confuse with neighboring 5 5 5 5

4-ary PAM

symbol. _
Q Make sure that the C031rav Co?lmq .
neighboring symbol has only % 4-ary PAM

S

1-bit difference (hamming L

Sy S3 52
] @ @ i ® »
distance = 1) A _2\/5 0 2\/5 NERR20
S 5 5 5

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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MPAM: Detalls

si(t) = REAfg (1) =idig(t) cos(2m fot), 0 <t < Ty >> 1/,

Unequal energiesisymbol:

T T y M
. 2 2 2 24 2 - 1
E,, = / sy (t)dt = / AZg=(t) cos™(2m fot)dt = A; Eg = - Z A2,
0 0 M &~
=1
Example 5.4:
Forg(t) = \/2/1%, 0 <t < 1§ arectangular pulse shape, find the average energy of 4PAM modulation.

Solution: For 4PAM the A; values are A; = {—3d, —d, d, 3d}, so the average energy is

& |
Esz‘fz(9+1+1+9):5d?.

Rensselaer Polytechnic Institute <ivkumar Kalyanaraman
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MPSK:

= R{Ag( @(ﬂﬂ* I/U(“J%f‘ft} 0<t<Ts

21(?—1)

2m(1 — 1
= Ag(t)cos [T] cos 27 fo.t — Ag(t) sin [(!‘—) 8

112

M-PSK (Circular Constellations)
.bn‘./4—PSK
. . 16-PSK
. o ar
]qnzﬁf,_, . . . )
¥ 3
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MPSK: Decision Regions &

Demod’In
/A
! Z2 Z4 \ i /o
L e, S
?24 Zg ;7 Rz
4PSK 8PSK
4PSK: 1 bit/complex dimension or 2 bits/symbol

s;(t) + n() Z:r>0
%?wav P

m=0orl

Z,yrs0
cos(2nf t)

m =0

Coherent Demodulator for BPSK.

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman
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M-OAM (Square Constellationsi

MQAM: o
e o | o  «—16-QAM
si(t) = R{_-4-;‘.f?jgf}j(i)(:jgﬂft} ® .\4—PSK
A; cos(0;)g(t) cos(2m fet) — Aqisin(6;)g(t) sin(2r fet), 0 <t < T, an
O o
T,
0 Unequal symbol energies: £s;, = /D si(t) = A
. . . . Zl ZZ ZB Z4
O MQAM with square constellations of size L2 is . . . .
equivalent to MPAM modulation with
constellations of size L on each of the in-phase > ~ > 7
and quadrature signal components > O Y o
0O For square constellations it takes approximately 7 7 7 7
6 dB more power to send an additional 1 . e
bit/dimension or 2 bits/symbol while
maintaining the same minimum distance Zys Zis | Zy | Zig
between constellation points . . . .
O Hard to find a Gray code mapping where all _ .. :
adjacent symbols differ by a single bit 16QAM: Decision Regions
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Non-Coherent Modulation: DPSK

O Information in MPSK, MQAM carried in signal phase.

0 Requires coherent demodulation: i.e. phase of the transmitted signal carrier ¢, must
be matched to the phase of the receiver carrier ¢

O More cost, susceptible to carrier phase drift.
O Harder to obtain in fading channels

0 Differential modulation: do not require phase reference.
O More general: modulation w/ memory: depends upon prior symbols transmitted.
O Use prev symbol as the a phase reference for current symbol
O Info bits encoded as the differential phase between current & previous symbol
0

Less sensitive to carrier phase drift (f-domain) ; more sensitive to doppler
effects: decorrelation of sianal nhase in time-domain

Example 5.5:
Find the sequence of symbols transmitted using DPSK for the bit sequence 101110 starting at the /th symbol time,
assuming the transmitted symbol at the (k& — 1)th symbol time was s(k — 1) = Ae’™.

Solution: The first bit, a 1, results i a phase transition of 7, so s(k) = A. The next bit, a 0, results in no transition,
so s(k + 1) = A. The next bit, a 1, results in another transition of 7, so s(k + 1) = Ae’", and so on. The full
symbol sequence corresponding to 101110 1s A, A, Ae?™, A, Ae!™, Ae!™.

115 Google : “shiv rpi”



0 DPSK: Differential BPSK

phase change of z.

0 phase: 6(k) = &% and...

Q phase 6(k) = @+,

Differential Modulation (Contd)

0 A0 bitis encoded by no change in phase, whereas a 1 bit is encoded as a

Q If symbol over time [(k—1)T, kT,) has phase 6(k — 1) = &%, 6. =0, =,
0 then to encode a 0 bit over [kTs, (k + 1)Ts), the symbol would have

0 ... to encode a 1 bit the symbol would have

0 DOPSK: gray coding: Bit Sequence

Phase Transition

00

0

01

/2

10

I
—7 /2

11

i

c 5.1: c . S 1= . 1 ITay l
Rensselaer Polytechnic Institute Table 5.1: Mapping for D-QPSK with Gray Encoding yanaraman
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Quadrature Offset

O Phase transitions of 180° can cause laree amplitude transitions (through
zero point).

0 Abrupt phase transitions and large amplitude variations can be distorted
by nonlinear amplifiers and filters

0 Avoided by offsetting the quadrature branch pulse g(z) by half a symbol
period

0 Usually abbreviated as O-MPSK, where the O indicates the offset
QPSK modulation with quadrature offset is referred to as O-QPSK

O-QPSK has the same spectral properties as QPSK for linear
amplification,..

Q ... but has higher spectral efficiency under nonlinear amplification,
O since the maximum phase transition of the signal is 90 degrees

U O

0 Another technique to mitigate the amplitude fluctuations of a 180 degree
phase shift used in the 1S-54 standard for digital cellular is z/4-QPSK

0 Maximum phase transition of 135 degrees, versus 90 degrees for offset
QPSK and 180 degrees for QPSK
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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foset QPSK waveforms

m, ()

Figure 6.30 The time offset waveforms that are applied to the in-phase and quadrature arms of

an OQPSK modulator. Notice that a half-symbol offset is used.

Rensselaer Polytechnic Inst

] 1.9&

My My W >
é my g g Mg myy
—:Tb 0 T, 31, 5T, 71T, 9T, 11T, 13T, 157,
n; ms mg My My .
s "7 s
L0 21, 4T, 6T, 8T, 10T, 12T, 147,

livkumar Kalyanaraman
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Frequency Shift Keying (FSK)

* Continuous Phase FSK (CPESK)
— digital data encoded in the frequency shift
—typically implemented with frequency
modulator to maintain continuous phase

s(t) = A cos [oct + 2 Tckf_];d(‘c) d]

— nonlinear modulation but constant-envelope
* Minimum Shift Keying (MSK)

— minimum bandwidth, sidelobes large

— can be implemented using I-Q receiver

* Gaussian Minimum Shift Keying (GMSK)
—reduces sidelobes of MSK using a premodulation filter
— used by RAM Mobile Data, CDPD, and HIPERLAN

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Minimum Shift Keying (MSK) spectra

10 +

dB

50 -

-60

-70

MSK
QPSK. OQPSK

1 1

fe

Figure 6.38 Power spectral density of MSK signals as compared to QPSK and OQPSK signals.

Rensselaer Polytechnic Institute

f+0.5R,

f.+R, f+1.5R,

Frequency

f.+2R,
—_—

}(t+2;‘Rh

Shivkumar Kalyanaraman
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Spectral Characteristics

10 T .

0 = = = QPSK/DQPSK
o GMSK

S
= £\ -
> -20 /7 \N| v \\
. — % i 3
c .40 3'\ N
QO V v \/ \
5 B
g ) BR-dRTh:O.l&} d
o J
" _gq 0.2 \\
) 1.0—’/
v I \
o -100 (MSK) \ \,
-120 \ 4
0 0.5 1.0 1.5 2.0 2.5

Rensselaer Polytechnic Institute

Normalized Frequency (f-fc)Tp.
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Bit Error Probability (BER): AWGN

101
5 -
2 - -
1072 1
d| For Py, = 107
2F DBPSK 7 BPSK 65 dB
10-3 BPSK, QPSK . QPSK 6.5dB
5| DBPSK ~8dB
DQPSK ~9dB
2 - -
104 DQPSK |
sl * QPSK is more spectrally efficient than BPSK
with the same performance.
2 L -
10 * M-PSK, for M>4, is more spectrally efficient
s | but requires more SNR per bit.
| | © Thereis ~3 dB power penalty for differential
106 detection.

0 2 4 6 8 10 12 14
Yb, SNR/bit, dB

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Bit Error Probability (BER): Fading Channel

« P, is inversely proportion to the average SNR per bit.

* Transmission in a fading environment requires about
18 dB more power for P, =10°.

0 5 10 15 20 25 30 35
b, SNR/bit, dB

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Bit Error Probability (BER): Doppler Effects

* Doppler causes an irreducible error floor when differential
detection is used = decorrelation of reference signal.

100 ;

101

[ * The irreducible I3b depends on the data rate and the Doppler.
1072 For fp = 80 Hz,
data rate T Brioor
p, 10° 10 kbps 104s 3x10™
100 kbps 105 3x10°
10-4 1 Mbps 1076 3x10°8
r The implication is that Doppler is not an issue for high-speed
wireless data.
10 [M. D. Yacoub, Foundations of Mobile Radio Engineering ,
CRC Press, 1993]
10-6 [s
0 10

20 30 40 50 ] 60
Yo, SNR/bit, dB

| Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman
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10-1 - 1 1 rrrrrr | | 1 I 1T TI1TL
C Coherent Detection
C +BPSK ]
- *@egglsgléK Modulation=
B X MSK i

X
- 107F ® E
| o b ,X,'* -
@ C O, .
o L -

.G - I'%' II*'+
S 'I:'Q' S -

I',' +
g B ')S', :'* "I T
: 'll:©l" A’_’
103 X 3
E O F :
I i
- +'," -
10‘4 [ | ] 1 1 1011l I| | ] 1 1 11ll
102 101

rms delay spread
symbol period

_T
=

D

Bit Error Probability (BER): Delay Spread

¢ |S] causes an irreducible error floor.

* The rms delay spread imposes a limit on the
maximum bit rate in a multipath environment.
For example, for QPSK,

T Maximum Bit Rate
Mobile (rural) 25 usec 8 kbps
Mobile (city) 2.5 psec 80 kbps
Microcells 500 nsec 400 kbps
Large Building 100 nsec 2 Mbps

[J. C.-l. Chuang, "The Effects of Time Delay Spread on Portable Radio

Communications Channels with Digital Modulation,"
IEEE JSAC, June 1987]

100

Shivkumar Kalyanaraman
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Summary of Modulation Issues

* Tradeoffs

— linear versus nonlinear modulation

— constant envelope versus non-constant
envelope
— coherent versus differential detection

— power efficiency versus spectral efficiency

e Limitations

— flat fading
— doppler
— delay spread

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Pulse Shaping

Shivkumar Kalyanaraman
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Renssel

s(t)

Recall: Impact of AWGN only

transmitted signal

1.5

0.5

received signal distorted by AWGN only

W

LN LW LN zan. .
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Impact of AWGN & Channel Distortion

received signal distorted by non-ideal channel only

1.5

1

0.5

r(t)

0

-0.5F

h (1) =5(0):

0 0.5 1

Multi-tap, ISI channel

1.2

r(t)

-0.5

-1.5
0

Rensselaer Polytechnic Institute

 wary wlaraman
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|S| Effects: Band-limited Filtering of Channel

2 ISI due to filtering effect of the communications

channel (e.g. wireless channels)

2 Channels behave like band-limited filters

H.(f)=|H. (e’

y

0. (f)

=

4 ) 4 _ )
Non-constant amplitude Non-linear phase
Amplitude distortion Phase distortion
\ J - J
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Inter-Symbol Interference (1SI)

2 IS In the detection process due to the filteri
of the system

2 Overall equivalent system transfer function

ng effects

H(f)=H,(f)H (f)H,.(f)

2 creates echoes and hence time dispersion
acauses ISI at sampling time

B s 7 +Zal.si

i#k

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Inter-symbol interference (1S1): Model

2 Baseband system model

X1 X,
i N\ /' Channel Rx. filt “ ]
YA T VAN (5 1 P 7l O
T V| ! \/ H,(f) T |aw |7
x3 T n(t)
2 Equivalent model
o Equivalent system NS (1) z
N S z(t k <
. t—j ( hi) L oy —— *D t{;'T IDetectoriCﬂ}
T l H(f) e I T -
k ! ()

H(f)=H,(f)H (f)H,.(f)

filtered noise

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman
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Nyquist bandwidth constraint

2 Nyquist bandwidth constraint (on equivalent system):

0 The theoretical minimum required system bandwidth to
detect R, [symbols/s] without ISl is R /2 [Hz].

a Equivalently, a system with bandwidth W=1/2T=R /2 [Hz]
can support a maximum transmission rate of 2W=1/T=Rs
[symbols/s] without ISI.

LR oK) [symbolisHz]
o7 2 w

0 Bandwidth efficiency, R/W [bits/s/Hz]

0 An important measure in DCs representing data
throughput per hertz of bandwidth.

a2 Showing how efficiently the bandwidth resources are used

by signaling techniques. .
Rensselaer Polyte%nic I%titute J q Shivkumar Kalyanaraman
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Equiv System: Ideal Nyquist pulse (filter)

[ Ideal Nyquist filter ] [ Ideal Nyquist pulse ]
Hﬁf) h(t) =sinc(¢/T)
.T. T T T T 1 | | | Il V' N
1 L, AN AN
0.8 —l'.l.ﬁ_—]-f.ﬁf -0.2 i) 0.2 U.llio.ﬁ 0.8 1 f N | - Zv 7\] qt
1
W=—
Rensselaer Polytechnic Institute ZT Shivkumar Kalyanaraman
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Nyquist pulses (filters)

2 Nyquist pulses (filters):
2 Pulses (filters) which result in no I1SI at the sampling time.
2 Nyquist filter:

Q Its transfer function in frequency domain is obtained by
convolving a rectangular function with any real even-
symmetric frequency function

2 Nyquist pulse:

2 Its shape can be represented by a sinc(t/T) function multiply
by another time function.

0 Example of Nyquist filters: Raised-Cosine filter

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Pulse shaping to reduce ISl

2 Goals and trade-off in pulse-shaping
2 Reduce IS
2 Efficient bandwidth utilization

2 Robustness to timing error (small side lobes)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman

136

Google : “shiv rpi”



Raised Cosine Filter: Nyquist Pulse Approximation

| H () HH e ()] h(t) = hac (2)

T -3 =1 o0l T, . -3 %] O 3
T AT 2T E E F 02}
RS
Baseband W 5= (1+7) Passband W o= (1+7)R
2 DSB s
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Raised Cosine Filter

Q Raised-Cosine Filter

2 A Nyquist pulse (No ISI at the sampling time)

-

' for| fl<2mW, —W
H(F) =" | | f|+W —2W, oW W .
(f)=-cos L v or 2W, —W <| f |<
0 for| £ |> W
- cos| 2 — W)t
h(t) = 2W, (sinc(2W,t)) [2x(W WO)Z]
1-[4(0W —W,)1]
w—W,
Excess bandwidth: W —W, Roll-off factor |7 = -
0<r<i1 0

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman
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Pulse Shaping and Equalization Principles

Hee(f)=H,(f)H (f)H,(f)H ()

Q Square-Root Raised Cosine (SRRC) filter and Equalizer

HRC (f) - Ht (f)Hr (f) Taking care of ISI

H.(f)=H,(f) :\/HRc(f) = H pne (f) | caused by tr. filter

H,(f) __ Lt Taking care of 1SI

H ¢ (f ) caused by channel

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman

139 Google : “shiv rpi”



Pulse Shaping & Orthogonal Bases

With the basis set ¢1(t) = /2/1 cos(2m f.t) and ¢9(t) = /2/1 sin(27 f.t) the basis function represen-
tation (5.3) corresponds to the complex baseband representation of s;(#) in terms of its in-phase and quadrature
components with an extra factor of \/2/1":

.
.
.
.
.
s

In this case the pulse shape ¢(#) must maintain the orthonormal properties (5.5) of basis functions, i.e. we must
have

T
/ g2 (t) cos® (2m ft)dt = 1 (5.12)
0

and

T
/ g2 (t) cos(2m fot) sin(27 fat) = 0. (5.13)
0

where the equalities may be approximations for f.1° >> 1 as in (5.8) and (5.9) above. If the bandwidth of g(?)



Virtue of pulse shaping

rcctamgu]'.;lr pulses

-0 j

with o =!0.5 raised
cosine filtering

-20r

~30H -

Normalized PSD (dB)

-40

-60

-60

-0

.........................

........................

............

.ll;l'_‘th

1-2R,

=R, I

f+R,

L+2R,

[ +3R,

PSD of a BPSK signal spivkumar Kalyanaraman
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Example of pulse shaping

quarf\ﬂo Raised-Cosine (SRRC) pulse shaping

1.5 T ! ! ! 5
5 5 : " Baseband tr. Waveform

T TR

t/T

Rensselaer anaraman
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O Raised Cosine pulse at the output of matched filter

Rensselaer P

Example of pulse shaping ...

. Baseband recel

ved waveform|at
ter output

t/T

naraman
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Eye pattern

d Eye pattern:Display on an oscilloscope which sweeps the system
response to a baseband signal at the rate //7 (T symbol duration)

Distortion Jt
due to ISI a '

Noise margin}

ampiitude scale

Sensitivity to |
timing error |

{Timing jitter} —

Rensselaer Polytechnic Institute
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0 Perfect channel (no noise and no 1ISI)

Rensselae

2

1.5r

1k

-1.5

-2

Example of eye pattern:
Binary-PAM, SRRC pulse

0(ge

-1 =_

1araman
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Example of eye pattern:
Binary-PAM, SRRC pulse ...

a AWGN (Eb/N0=20 dB) and no ISl

Rensselae

146
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Example of eye pattern:
Binary-PAM, SRRC pulse ...

0 AWGN (Eb/N0=10 dB) and no ISI

Rensselaer Folytecnnic Institute i viun

1\l

sy dNAFAMan
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2 Digital Basics

a Modulation & Detection, Performance, Bounds
a Modulation Schemes, Constellations

A Pulse Shaping

Rensselaer Polytechnic Institute

Summary

Shivkumar Kalyanaraman
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Bandpass Modulation: I, Q Representation

s(t) = a(r)cos(¢(r) + ¢, )cos(2f.t) — a(t) sin(¢(r) + ¢, ) sin(27f 1)
5(t) = s,(1) CDS(QJ'QCCI) N, sin(ZJg‘"ct)

5, (1) = a(r)cns(r,b( 1)+ ¢u) In-phase component

SQ(I) = o(t) Si]l((j)( 1)+ qﬁﬂ) Quadrature component

Equivalent lowpass representation:

s() =Re|u(De’>™ |, u(t)=s5,(t)+ js,(®)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Analog: Frequency Modulation (FM) vs
Amplitude Modulation (AM)

0 FM: all information in the phase or frequency of carrier

O Non-linear or rapid improvement in reception quality beyond a minimum
received signal threshold: “capture” effect.

O Better noise immunity & resistance to fading

O Tradeoff bandwidth (modulation index) for improved SNR: 6dB gain for 2x
bandwidth

O Constant envelope signal: efficient (70%) class C power amps ok.

0 AM: linear dependence on quality & power of rcvd signal

O Spectrally efficient but susceptible to noise & fading

O Fading improvement using in-band pilot tones & adapt receiver gain to
compensate

O Non-constant envelope: Power inefficient (30-40%) Class A or AB power amps
needed: % the talk time as FM!

Shivkumar Kalyanaraman
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Example Analog: Amplitude Modulation

m(t) /

Sam(t) |

time —»

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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