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The Basics 
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Big Picture: Detection under AWGN
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Additive White Gaussian Noise (AWGN)

Thermal noise is described by a zero-mean Gaussian random process, 
n(t) that ADDS on to the signal => “additive”

Probability density function
(gaussian)

[w/Hz]

Power spectral 
Density 

(flat => “white”)

Autocorrelation 
Function

(uncorrelated)

Its PSD is flat, hence, it is called white noise.
Autocorrelation is a spike at 0: uncorrelated at any non-zero lag
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Effect of Noise in Signal Space
The cloud falls off exponentially (gaussian). 
Vector viewpoint can be used in signal space, with a random noise vector w
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Maximum Likelihood (ML) Detection: Scalar Case

Assuming both symbols equally likely: uA is chosen if

“likelihoods”

Log-Likelihood => A simple distance criterion!
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AWGN Detection for Binary PAM
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Bigger Picture
General structure of a communication systems

Formatter Source 
encoder

Channel 
encoder Modulator

Formatter Source 
decoder

Channel 
decoder Demodulator

Transmitter

Receiver

SOURCE
Info.

Transmitter

Transmitted
signal

Received
signal

Receiver

Received
info.

Noise

ChannelSource User
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Digital vs Analog Comm: Basics
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Digital versus analog

Advantages of digital communications:
Regenerator receiver

Different kinds of digital signal are treated 
identically.

Data
Voice

Media

Propagation distance

Original
pulse

Regenerated
pulse

A bit is a bit!
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Signal transmission through linear systems

Deterministic signals:
Random signals:

Ideal distortion less transmission:
All the frequency components of the signal not only arrive with 
an identical time delay, but also are amplified or attenuated 
equally. 

Input Output
Linear system
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Signal transmission (cont’d)
Ideal filters:

Realizable filters:
RC filters                             Butterworth filter

High-pass

Low-pass

Band-pass

Non-causal!

Duality => similar problems occur w/ 
rectangular pulses in time domain.
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Bandwidth of signal

Baseband versus bandpass:

Bandwidth dilemma:
Bandlimited signals are not realizable!
Realizable signals have infinite bandwidth!

Baseband 
signal

Bandpass 
signal

Local oscillator
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Bandwidth of signal: Approximations
Different definition of bandwidth:

a) Half-power bandwidth
b) Noise equivalent bandwidth
c) Null-to-null bandwidth

d) Fractional power containment bandwidth
e) Bounded power spectral density
f) Absolute bandwidth

(a)
(b)

(c)
(d)

(e)50dB
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Encode
TransmitPulse

modulateSample Quantize

Demodulate/
Detect

Channel

Receive
Low-pass

filter Decode

Pulse
waveformsBit stream

Format

Format

Digital info.

Textual 
info.

Analog 
info.

Textual 
info.

Analog 
info.

Digital info.

source

sink

Formatting and transmission of baseband signal
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Sampling of Analog Signals
Time domain

)()()( txtxtxs ×= δ

)(tx

Frequency domain

)()()( fXfXfX s ∗= δ

|)(| fX

|)(| fXδ

|)(| fX s
)(txs

)(txδ
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Aliasing effect & Nyquist Rate

LP filter

Nyquist rate

aliasing
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Undersampling &Aliasing in 
Time Domain
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Note: correct reconstruction does not draw straight lines between samples. 
Key: use sinc() pulses for reconstruction/interpolation

Nyquist Sampling & Reconstruction: 
Time Domain
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The impulse response of the 
reconstruction filter has a classic 'sin(x)/x
shape. 

The stimulus fed to this filter is the series 
of discrete impulses which are the 
samples. 

Nyquist Reconstruction: Frequency Domain
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Sampling theorem

Sampling theorem: A bandlimited signal with no spectral 
components beyond        , can be uniquely determined by 
values sampled at uniform intervals of 

The sampling rate,                   

is called Nyquist rate. 

In practice need to sample faster than this because the receiving 
filter will not be sharp. 

Sampling 
process

Analog 
signal

Pulse amplitude
modulated (PAM) signal



Shivkumar KalyanaramanRensselaer Polytechnic Institute

22 : “shiv rpi”

Quantization

Amplitude quantizing: Mapping samples of a continuous amplitude 
waveform to a finite set of amplitudes.

In

Out

Q
ua

nt
iz

ed
va

lu
es

Average quantization noise power

Signal peak power

Signal power to average 
quantization noise power
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Encoding (PCM)

A uniform linear quantizer is called Pulse Code Modulation
(PCM).
Pulse code modulation (PCM): Encoding the quantized signals 
into a digital word (PCM word or codeword).

Each quantized sample is digitally encoded into an l bits 
codeword where L in the number of quantization levels and 
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Quantization error
Quantizing error: The difference between the input and output of a 
quantizer )()(ˆ)( txtxte −=

+

)(tx )(ˆ tx

)()(ˆ
)(

txtx
te

−
=

AGC

x

)(xqy =
Qauntizer

Process of quantizing noise

)(tx )(ˆ tx

)(te

Model of quantizing noise
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Non-uniform quantization
It is done by uniformly quantizing the “compressed” signal. 
At the receiver, an inverse compression characteristic, called “expansion” is 
employed to avoid signal distortion. 

compression+expansion        companding

)(ty)(tx )(ˆ ty )(ˆ tx

x

)(xCy = x̂

ŷ
Compress Qauntize

Transmitter Channel
Expand

Receiver
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Baseband transmission

To transmit information thru physical channels, PCM 
sequences (codewords) are transformed to pulses (waveforms).

Each waveform carries a symbol from a set of size M.
Each transmit symbol represents                      bits of the PCM words.
PCM waveforms (line codes) are used for binary symbols (M=2).

M-ary pulse modulation are used for non-binary symbols 
(M>2). Eg: M-ary PAM.

For a given data rate, M-ary PAM (M>2) requires less bandwidth than 
binary PCM.
For a given average pulse power, binary PCM is easier to detect than M-
ary PAM (M>2).

Mk 2log=
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PAM example: Binary vs 8-ary
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Example of M-ary PAM

-B

B

T
‘01’

3B

T
T

-3B

T
‘00’

‘10’

‘1’
A.

T

‘0’

T

-A.

Assuming real time Tx and equal energy per Tx data bit for 
binary-PAM and 4-ary PAM:

• 4-ary: T=2Tb and Binary: T=Tb

• Energy per symbol in binary-PAM:
4-ary PAM

(rectangular pulse)
Binary PAM

(rectangular pulse)

‘11’

22 10BA =
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Other PCM waveforms: Examples

PCM waveforms category:

Phase encoded
Multilevel binary

Nonreturn-to-zero (NRZ)
Return-to-zero (RZ)

1     0    1    1    0

0      T     2T    3T    4T   5T

+V
-V

+V
0

+V
0

-V

1     0    1    1    0

0      T     2T    3T    4T   5T

+V
-V

+V
-V
+V

0
-V

NRZ-L

Unipolar-RZ

Bipolar-RZ

Manchester

Miller

Dicode NRZ
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PCM waveforms: Selection Criteria

Criteria for comparing and selecting PCM waveforms:
Spectral characteristics (power spectral density and 
bandwidth efficiency)
Bit synchronization capability
Error detection capability
Interference and noise immunity
Implementation cost and complexity  
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Summary: Baseband Formatting and transmission

Information (data- or bit-) rate:
Symbol rate :

Sampling at rate

(sampling time=Ts)

Quantizing each sampled
value to one of the 

L levels in quantizer.

Encoding each q. value to 
bits

(Data bit duration Tb=Ts/l)

Encode
Pulse

modulateSample Quantize

Pulse waveforms
(baseband signals)

Bit stream
(Data bits)Format

Digital info.

Textual 
info.

Analog 
info.

source

Mapping every                     data bits to a 
symbol out of M symbols and transmitting

a baseband waveform with duration T

ss Tf /1= Ll 2log=

Mm 2log=

[bits/sec]  /1 bb TR =
ec][symbols/s  /1 TR =

mRRb =
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Receiver Structure & Matched Filter
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Demodulation and detection

Major sources of errors:
Thermal noise (AWGN)

disturbs the signal in an additive fashion (Additive)
has flat spectral density for all frequencies of interest (White)
is modeled by Gaussian random process (Gaussian Noise) 

Inter-Symbol Interference (ISI)
Due to the filtering effect of transmitter, channel and receiver, symbols 
are “smeared”. 

Format Pulse 
modulate

Bandpass
modulate

Format Detect Demod.
& sample

)(tsi)(tgiim

im̂ )(tr)(Tz

channel
)(thc

)(tn

transmitted symbol

estimated symbol

Mi ,,1K=
M-ary modulation
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Impact of AWGN
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Impact of AWGN & Channel Distortion

)75.0(5.0)()( Tttthc −−= δδ
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Receiver job
Demodulation and sampling: 

Waveform recovery and preparing the received signal for 
detection:

Improving the signal power to the noise power (SNR) 
using matched filter (project to signal space)
Reducing ISI using equalizer (remove channel distortion)
Sampling the recovered waveform 

Detection:
Estimate the transmitted symbol based on the received sample
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Receiver structure

Frequency
down-conversion

Receiving 
filter

Equalizing
filter

Threshold 
comparison

For bandpass signals Compensation for 
channel induced ISI

Baseband pulse
(possibly distorted) Sample

(test statistic)
Baseband pulseReceived waveform

Step 1 – waveform to sample transformation Step 2 – decision making

)(tr
)(Tz

im̂

Demodulate & Sample Detect
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Baseband vs Bandpass
Bandpass model of detection process is equivalent to baseband 
model because:

The received bandpass waveform is first transformed to a 
baseband waveform.

Equivalence theorem:
Performing bandpass linear signal processing followed by 
heterodying the signal to the baseband, …
… yields the same results as …
… heterodying the bandpass signal to the baseband , 
followed by a baseband linear signal processing.
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Steps in designing the receiver

Find optimum solution for receiver design with the 
following goals: 
1. Maximize SNR: matched filter
2. Minimize ISI: equalizer

Steps in design:
Model the received signal
Find separate solutions for each of the goals.

First, we focus on designing a receiver which maximizes the 
SNR: matched filter
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Receiver filter to maximize the SNR

Model the received signal

Simplify the model (ideal channel assumption):
Received signal in AWGN

)(thc
)(tsi

)(tn

)(tr

)(tn

)(tr)(tsi
Ideal channels

)()( tthc δ=

AWGN

AWGN

)()()()( tnthtstr ci +∗=

)()()( tntstr i +=
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Matched Filter Receiver Problem:
Design the receiver filter        such that the SNR is 
maximized at the sampling time when        
is transmitted.

Solution:
The optimum filter, is the Matched filter, given by

which is the time-reversed and delayed version of the conjugate of the 
transmitted signal

)(th
Mitsi ,...,1 ),( =

T0 t T0 t

)()()( * tTsthth iopt −==
)2exp()()()( * fTjfSfHfH iopt π−==

)(tsi )()( thth opt=
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Correlator Receiver
The matched filter output at the sampling time, can be realized 
as the correlator output.

Matched filtering, i.e. convolution with si
*(T-τ) simplifies to 

integration w/ si
*(τ), i.e. correlation or inner product!

>=<=

∗=

∫ )(),()()(

)()()(

*

0

tstrdsr

TrThTz

i

T

opt

τττ

Recall: correlation operation is the projection of the received 
signal onto the signal space! 

Key idea: Reject the noise (N) outside this space as irrelevant: 
=> maximize S/N



Shivkumar KalyanaramanRensselaer Polytechnic Institute

43 : “shiv rpi”

Irrelevance Theorem: Noise Outside Signal Space

Noise PSD is flat (“white”) => total noise power 
infinite across the spectrum.
We care only about the noise projected in the finite 
signal dimensions (eg: the bandwidth of interest). 
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Correlation is a maximum when two signals are similar in shape, and are in phase (or 
'unshifted' with respect to each other).
Correlation is a measure of the similarity between two signals as a function of time shift 
(“lag”, τ ) between them
When the two signals are similar in shape and unshifted with respect to each other, their 
product is all positive. This is like constructive interference, 
The breadth of the correlation function - where it has significant value - shows for how long
the signals remain similar.

Aside: Correlation Effect
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Aside: Autocorrelation
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Aside: Cross-Correlation &Radar

Figure: shows how the signal can be located within the noise.
A copy of the known reference signal is correlated with the unknown signal. 
The correlation will be high when the reference is similar to the unknown signal. 
A large value for correlation shows the degree of confidence that the reference signal is 
detected. 
The large value of the correlation indicates when the reference signal occurs. 
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• A copy of a known reference signal is correlated with the unknown signal. 
• The correlation will be high if the reference is similar to the unknown signal. 
• The unknown signal is correlated with a number of known reference functions. 
• A large value for correlation shows the degree of similarity to the reference. 
• The largest value for correlation is the most likely match. 

• Same principle in communications: reference signals corresponding to 
symbols
• The ideal communications channel may have attenuated, phase shifted the 
reference signal, and added noise

Source: Bores Signal Processing
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Matched Filter: back to cartoon…

Consider the received signal as a vector r, and the transmitted signal vector as s
Matched filter “projects” the r onto signal space spanned by s (“matches” it)

Filtered signal can now be safely sampled by the receiver at the correct sampling instants,
resulting in a correct interpretation of the binary message 

Matched filter is the filter that maximizes the  signal-to-noise ratio it can be 
shown that it also  minimizes the BER: it is a simple projection operation
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Example of matched filter (real signals)

T t T t T t0 2T

)()()( thtsty opti ∗=
2A)(tsi )(thopt

T t T t T t0 2T

)()()( thtsty opti ∗=
2A)(tsi )(thopt

T/2 3T/2T/2 TT/2

2
2A−

T
A

T
A

T
A

T
A−

T
A−

T
A
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Properties of the Matched Filter
1. The Fourier transform of a matched filter output with the matched signal as input 

is, except for a time delay factor, proportional to the ESD of the input signal.

2. The output signal of a matched filter is proportional to a shifted version of the 
autocorrelation function of the input signal to which the filter is matched.

3. The output SNR of a matched filter depends only on the ratio of the signal energy 
to the PSD of the white noise at the filter input.

4. Two matching conditions in the matched-filtering operation:
spectral phase matching that gives the desired output peak at time T.
spectral amplitude matching that gives optimum SNR to the peak value.

)2exp(|)(|)( 2 fTjfSfZ π−=

sss ERTzTtRtz ==⇒−= )0()()()(

2/
max

0N
E

N
S s

T

=⎟
⎠
⎞

⎜
⎝
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Implementation of matched filter receiver

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Mz

z
M
1

z=
)(tr

)(1 Tz
)(*

1 tTs −

)(* tTsM − )(TzM

z
Matched filter output:

Observation
vector

Bank of M matched filters

)()( tTstrz ii −∗= ∗ Mi ,...,1=

),...,,())(),...,(),(( 2121 MM zzzTzTzTz ==z

Note: we are projecting along the basis directions of the signal space
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Implementation of correlator receiver

dttstrz i

T

i )()(
0
∫=

∫
T

0

)(1 ts∗

∫
T

0

)(ts M
∗

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Mz

z
M
1

z=
)(tr

)(1 Tz

)(TzM

z
Correlators output:

Observation
vector

Bank of M correlators

),...,,())(),...,(),(( 2121 MM zzzTzTzTz ==z

Mi ,...,1=

Note: In previous slide we “filter” i.e. convolute in the boxes shown.
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Implementation example of matched filter receivers

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2

1

z

z
z=

)(tr

)(1 Tz

)(2 Tz

z

Bank of 2 matched filters

T t

)(1 ts

T t

)(2 ts
T

T0

0

T
A

T
A−

T
A−

T
A

0

0
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Matched Filter: Frequency domain View

Simple Bandpass Filter:
excludes noise, but misses some signal power
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Multi-Bandpass Filter: includes more signal power, but adds more noise also!

Matched Filter: includes more signal power, weighted according to size 
=> maximal noise rejection! 

Matched Filter: Frequency Domain View (Contd)
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Maximal Ratio Combining (MRC) viewpoint

Generalization of this f-domain picture, for combining 
multi-tap signal

Weight each branch

SNR:
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Examples of matched filter output for bandpass
modulation schemes
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Signal Space Concepts
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Signal space: Overview
What is a signal space?

Vector representations of signals in an N-dimensional orthogonal space

Why do we need a signal space?
It is a means to convert signals to vectors and vice versa.
It is a means to calculate signals energy and Euclidean distances 
between signals.

Why are we interested in Euclidean distances between signals?
For detection purposes: The received signal is transformed to a received 
vectors. 
The signal which has the minimum distance to the received signal is 
estimated as the transmitted signal.
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Schematic example of a signal space

),()()()(
),()()()(
),()()()(

),()()()(

212211

323132321313

222122221212

121112121111

zztztztz
aatatats
aatatats

aatatats

=⇔+=
=⇔+=
=⇔+=
=⇔+=

z
s
s
s

ψψ
ψψ
ψψ
ψψ

)(1 tψ

)(2 tψ
),( 12111 aa=s

),( 22212 aa=s

),( 32313 aa=s

),( 21 zz=z

Transmitted signal 
alternatives

Received signal at 
matched filter output
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Signal space

To form a signal space, first we need to know the 
inner product between two signals (functions):

Inner (scalar) product:

Properties of inner product:

∫
∞

∞−

>=< dttytxtytx )()()(),( *

= cross-correlation between x(t) and y(t) 

><>=< )(),()(),( tytxatytax

><>=< )(),()(),( * tytxataytx

><+>>=<+< )(),()(),()(),()( tztytztxtztytx
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Signal space …
The distance in signal space is measure by calculating the norm.
What is norm?

Norm of a signal:

Norm between two signals:

We refer to the norm between two signals as the Euclidean distance between 
two signals.

xEdttxtxtxtx ==><= ∫
∞

∞−

2)()(),()(

)()( txatax =

)()(, tytxd yx −=

= “length” of x(t)
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Example of distances in signal space

)(1 tψ

)(2 tψ
),( 12111 aa=s

),( 22212 aa=s

),( 32313 aa=s

),( 21 zz=z

zsd ,1

zsd ,2
zsd ,3

The Euclidean distance between signals z(t) and s(t):

3,2,1

)()()()( 2
22

2
11,

=

−+−=−=

i

zazatztsd iiizsi

1E

3E

2E
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Orthogonal signal space
N-dimensional orthogonal signal space is characterized by N 
linearly independent functions                called basis functions. 
The basis functions must satisfy the orthogonality condition

where

If all          , the signal space is orthonormal. 

Constructing Orthonormal basis from non-orthonormal set of vectors:
Gram-Schmidt procedure 

{ }N
jj t

1
)(

=
ψ

jiij

T

iji Kdttttt δψψψψ =>=< ∫ )()()(),( *

0

Tt ≤≤0
Nij ,...,1, =

⎩
⎨
⎧

≠→
=→

=
ji
ji

ij 0
1

δ

1=iK
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Example of an orthonormal bases
Example: 2-dimensional orthonormal signal space

Example: 1-dimensional orthonornal signal space
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Sine/Cosine Bases: Note!
Approximately orthonormal!

These are the in-phase & quadrature-phase dimensions of 
complex baseband equivalent representations.
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Example: BPSK

Note: two symbols, but only one dimension in BPSK.
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Signal space …
Any arbitrary finite set of waveforms 
where each member of the set is of duration T, can be expressed 
as a linear combination of N orthogonal waveforms            
where         .

where

{ }M
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*∫>=<= ψψ Tt ≤≤0
Mi ,...,1=
Nj ,...,1=

),...,,( 21 iNiii aaa=s
2

1
ij

N

j
ji aKE ∑

=

=
Vector representation of waveform Waveform energy
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Signal space …
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Example of projecting signals to an 
orthonormal signal space

),()()()(
),()()()(
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Transmitted signal 
alternatives
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Matched filter receiver (revisited)

)(tr

1z
)(1 tT −∗ψ

)( tTN −∗ψ
Nz

Observation
vector

Bank of N matched filters
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(note: we match to the basis directions)
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Correlator receiver (revisited)
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Example of matched filter receivers using 
basic functions

Number of matched filters (or correlators) is reduced by 1 compared to 
using matched filters (correlators) to the transmitted signal!

T t

)(1 ts

T t

)(2 ts

T t

)(1 tψ

T
1

0

[ ]1z z=)(tr z

1 matched filter

T t

)(1 tψ

T
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T
A

T
A−
0

0
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White noise in Orthonormal Signal Space

AWGN n(t) can be expressed as

)(~)(ˆ)( tntntn +=

Noise projected on the signal space 
(colored):impacts the detection process.

Noise outside on the signal space 
(irrelevant)

>=< )(),( ttnn jj ψ
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j
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=
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),...,,( 21 Nnnn=n
)(ˆ tn

independent zero-mean 
Gaussain random variables with 
variance
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2/)var( 0Nn j =



Shivkumar KalyanaramanRensselaer Polytechnic Institute

75 : “shiv rpi”

Detection: Maximum Likelihood & 
Performance Bounds
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Detection of signal in AWGN
Detection problem:

Given the observation vector      , perform a mapping from    
to an estimate       of the transmitted symbol,     , such that 
the average probability of error in the decision is 
minimized.

m̂ im

Modulator Decision rule m̂im zis
n

z z
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Statistics of the observation Vector  
AWGN channel model:

Signal vector is deterministic.
Elements of noise vector                     are i.i.d Gaussian
random variables with zero-mean and variance           .  The 
noise vector pdf is

The elements of observed vector are 
independent Gaussian random variables. Its pdf is

),...,,( 21 iNiii aaa=s

),...,,( 21 Nzzz=z
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Detection

Optimum decision rule (maximum a posteriori probability):

Applying Bayes’ rule gives:

.,...,1 where
 allfor  ,)|sent Pr()|sent Pr(

if ˆSet 

Mk
ikmm

mm

ki

i

=
≠≥

=
zz

ik
p

mpp

mm

k
k

i

=

=

 allfor  maximum is ,
)(

)|(
if ˆSet 

z
z

z

z



Shivkumar KalyanaramanRensselaer Polytechnic Institute

79 : “shiv rpi”

Detection …

Partition the signal space into M decision regions,            
such that MZZ ,...,1

i

k
k

i
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Detection (ML rule)
For equal probable symbols, the optimum decision rule 
(maximum posteriori probability) is simplified to:

or equivalently:

which is known as maximum likelihood.
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Detection (ML)…
Partition the signal space into M decision regions, 
Restate the maximum likelihood decision rule as follows:

MZZ ,...,1
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Schematic example of ML decision regions

)(1 tψ

)(2 tψ
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Probability of symbol error
Erroneous decision: For the transmitted symbol         or equivalently signal 
vector         , an error in decision occurs if the observation vector       does not 
fall inside region      .

Probability of erroneous decision for a transmitted symbol

Probability of correct decision for a transmitted symbol

sent)  inside lienot  does sent)Pr( Pr()ˆPr( iiii mZmmm z=≠

sent)  inside liessent)Pr( Pr()ˆPr( iiii mZmmm  z==

∫==
iZ
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)(1)( icie mPmP −=

im
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Example for binary PAM
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Average prob. of symbol error …
Average probability of symbol error :

For equally probable symbols:
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Union bound

Union bound
The probability of a finite union of events is upper bounded 

by the sum of the probabilities of the individual events.
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Union bound:

Example of union bound
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Upper bound based on minimum distance
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Example of upper bound on av. Symbol error prob. 
based on union bound
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Eb/No figure of merit in digital 
communications

SNR or S/N is the average signal power to the average noise 
power. SNR should be modified in terms of bit-energy in 
digital communication, because: 

Signals are transmitted within a symbol duration and hence, 
are energy signal (zero power).

A metric at the  bit-level facilitates comparison of different 
DCS transmitting different number of bits per symbol.

b

bb

R
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WN
ST

N
E

==
/0

bR
W

:  Bit rate

:  Bandwidth

Note: S/N = Eb/No  x spectral efficiency
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Example of Symbol error prob. For PAM signals
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Maximum Likelihood (ML) Detection: Vector Case

ps: Vector norm is a natural extension of “magnitude” or length

Nearest Neighbor Rule:

Project the received vector y along the 
difference vector direction uA- uB is a 
“sufficient statistic”. 

Noise outside these finite dimensions is 
irrelevant for detection. (rotational 
invariance of detection problem)

By the isotropic property of the Gaussian noise, we expect the error 
probability to be the same for both the transmit symbols uA, uB.

Error probability:
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Extension to M-PAM (Multi-Level Modulation)

Note: h refers to the constellation shape/direction

MPAM:
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Complex Vector Space Detection

Error probability: 

Note: Instead of vT, use v* for complex vectors (“transpose and conjugate”) 
for inner products…
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Complex 
Detection: 
Summary
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Detection Error => BER

If the bit error is i.i.d (discrete memoryless channel) over the sequence of bits, 
then you can model it as a binary symmetric channel (BSC)

BER is modeled as a uniform probability f
As BER (f) increases, the effects become increasingly intolerable
f tends to increase rapidly with lower SNR: “waterfall” curve (Q-function)
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SNR vs BER: AWGN vs Rayleigh

Observe the “waterfall” like characteristic (essentially plotting the Q(x) function)!
Telephone lines: SNR = 37dB, but low b/w (3.7kHz)
Wireless: Low SNR = 5-10dB, higher bandwidth (upto 10 Mhz, MAN, and 20Mhz LAN)
Optical fiber comm: High SNR, high bandwidth ! But cant process w/ complicated codes, 
signal processing etc

Need 
diversity
techniques
to deal with 
Rayleigh 
(even 1-tap, 
flat-fading)!
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Better performance through diversity

Diversity the receiver is provided with multiple copies 
of the transmitted signal. The multiple signal copies 
should experience uncorrelated fading in the channel. 

In this case the probability that all signal copies fade 
simultaneously is reduced dramatically with respect to 
the probability that a single copy experiences a fade.

As a rough rule:

0

1
e LP

γ
is proportional to 

BERBER Average SNRAverage SNR

Diversity of 
L:th order

Diversity of 
L:th order
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SNR

BER

Flat fading channel,
Rayleigh fading, 

L = 1AWGN 
channel 

(no fading)

( )eP=

0( )γ=

BER vs. SNR (diversity effect)

L = 2L = 4 L = 3

We will explore this story later… slide set part II 
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Modulation Techniques



Shivkumar KalyanaramanRensselaer Polytechnic Institute

102 : “shiv rpi”

What is Modulation?

Encoding information in a manner suitable for 
transmission.

Translate baseband source signal to bandpass signal
Bandpass signal: “modulated signal”

How? 
Vary amplitude, phase or frequency of a carrier

Demodulation: extract baseband message from carrier
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Digital vs Analog Modulation

Cheaper, faster, more power efficient
Higher data rates, power error correction, impairment 
resistance: 

Using coding, modulation, diversity 
Equalization, multicarrier techniques for ISI 
mitigation

More efficient multiple access  strategies, better 
security: CDMA, encryption etc
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Goals of Modulation Techniques

• High Bit Rate 

• High Spectral Efficiency 

• High Power Efficiency 

• Low-Cost/Low-Power Implementation 

• Robustness to Impairments

(min power to achieve a target BER)

(max Bps/Hz)
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Modulation: representation
• Any modulated signal can be represented as

s(t) = A(t) cos [ωct + φ(t)]

amplitude phase or frequency

s(t) = A(t) cos φ(t) cos ωct - A(t) sin φ(t) sin ωct

in-phase quadrature

• Linear versus nonlinear modulation ⇒ impact on spectral efficiency 

• Constant envelope versus non-constant envelope
⇒ hardware implications with impact on power efficiency

Linear: Amplitude or phase
Non-linear: frequency: spectral broadening

(=> reliability: i.e. target BER at lower SNRs)
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Complex Vector Spaces: Constellations

Each signal is encoded (modulated) as a vector in a signal space

MPSK

Circular Square
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Linear Modulation Techniques
s(t) = [ Σ an g (t-nT)]cos ωct - [ Σ bn g (t-nT)] sin ωct

I(t), in-phase Q(t), quadrature

LINEAR MODULATIONS

CONVENTIONAL 
4-PSK 

(QPSK)

OFFSET 
4-PSK 

(OQPSK)

DIFFERENTIAL 
4-PSK 

(DQPSK, π/4-DQPSK)

M-ARY QUADRATURE 
AMPLITUDE MOD. 

(M-QAM)

M-ARY PHASE 
SHIFT KEYING 

(M-PSK)

M ≠ 4 M ≠ 4M=4 
(4-QAM = 4-PSK)

Square 
Constellations

Circular
Constellations

n n
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M-PSK and M-QAM

M-PSK (Circular Constellations)

16-PSK

an

bn 4-PSK

M-QAM (Square Constellations)

16-QAM

4-PSK

an

bn

Tradeoffs 
– Higher-order modulations (M large) are more spectrally

efficient but less power efficient (i.e. BER higher). 
– M-QAM is more spectrally efficient than M-PSK but 

also more sensitive to system nonlinearities.



Shivkumar KalyanaramanRensselaer Polytechnic Institute

109 : “shiv rpi”

Bandwidth vs. Power Efficiency

Source: Rappaport book, chap 6

MPSK:

MQAM:

MFSK:
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MPAM & Symbol Mapping

Note: the average energy 
per-bit is constant
Gray coding used for 
mapping bits to symbols

Why? Most likely error is to 
confuse with neighboring 
symbol. 
Make sure that the 
neighboring symbol has only 
1-bit difference (hamming 
distance = 1)

)(1 tψ
0

1s2s

bEbE−

Binary PAM

)(1 tψ0
2s3s

5
2 bE

5
6 bE

5
6 bE

−
5

2 bE
−

4s 1s
4-ary PAM

)(1 tψ0
2s3s

5
2 bE

5
6 bE

5
6 bE

−
5

2 bE
−

4s 1s
4-ary PAM

Gray coding
00 01 11 10
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MPAM: Details

Decision Regions

Unequal energies/symbol:
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MPSK:

Constellation points:

Equal energy in all signals:

Gray coding  
00

01

11

10

0001

11 10

M-PSK (Circular Constellations)

16-PSK

an

bn 4-PSK
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MPSK: Decision Regions & Demod’ln

4PSK 8PSK

Coherent Demodulator for BPSK.

si(t) + n(t)

cos(2πfct)

g(Tb - t)X
Z1: r > 0

Z2: r ≤ 0

m = 1

m = 0

m = 0 or 1

Z1

Z2

Z3

Z4

Z1

Z2

Z3Z4

Z5

Z6 Z7

Z8

4PSK: 1 bit/complex dimension or 2 bits/symbol
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MQAM:

Unequal symbol energies:

MQAM with square constellations of size L2 is 
equivalent to MPAM modulation with 
constellations of size L on each of the in-phase 
and quadrature signal components

For square constellations it takes approximately 
6 dB more power to send an additional 1 
bit/dimension or 2 bits/symbol while 
maintaining the same minimum distance 
between constellation points

Hard to find a Gray code mapping where all 
adjacent symbols differ by a single bit

M-QAM (Square Constellations)

16-QAM

4-PSK

an

bn

16QAM: Decision Regions

Z1 Z2 Z3 Z4

Z5 Z6 Z7 Z8

Z9 Z10 Z11 Z12

Z13 Z14 Z15 Z16
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Non-Coherent Modulation: DPSK
Information in MPSK, MQAM carried in signal phase. 
Requires coherent demodulation: i.e. phase of the transmitted signal carrier φ0 must 
be matched to the phase of the receiver carrier φ
More cost, susceptible to carrier phase drift.
Harder to obtain in fading channels

Differential modulation: do not require phase reference.
More general: modulation w/ memory: depends upon prior symbols transmitted. 
Use prev symbol as the a phase reference for current symbol
Info bits encoded as the differential phase between current & previous symbol
Less sensitive to carrier phase drift (f-domain) ; more sensitive to doppler
effects: decorrelation of signal phase in time-domain
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Differential Modulation (Contd)
DPSK: Differential BPSK 
A 0 bit is encoded by no change in phase, whereas a 1 bit is encoded as a 
phase change of π.

If symbol over time [(k−1)Ts, kTs) has phase θ(k − 1) = ejθi , θi = 0, π, 
then to encode a 0 bit over [kTs, (k + 1)Ts), the symbol would have 

phase: θ(k) = ejθi and…
… to encode a 1 bit the symbol would have 

phase θ(k) = ej(θi+π). 

DQPSK: gray coding:
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Quadrature Offset
Phase transitions of 180o can cause large amplitude transitions (through 
zero point).

Abrupt phase transitions and large amplitude variations can be distorted 
by nonlinear amplifiers and filters

Avoided by offsetting the quadrature branch pulse g(t) by half a symbol 
period

Usually abbreviated as O-MPSK, where the O indicates the offset
QPSK modulation with quadrature offset is referred to as O-QPSK
O-QPSK has the same spectral properties as QPSK for linear 
amplification,..

… but has higher spectral efficiency under nonlinear amplification, 
since the maximum phase transition of the signal is 90 degrees

Another technique to mitigate the amplitude fluctuations of a 180 degree 
phase shift used in the IS-54 standard for digital cellular is π/4-QPSK

Maximum phase transition of 135 degrees, versus 90 degrees for offset 
QPSK and 180 degrees for QPSK
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Offset QPSK waveforms
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Frequency Shift Keying (FSK)
• Continuous Phase FSK (CPFSK) 

– digital data encoded in the frequency shift 
– typically implemented with frequency 

modulator to maintain continuous phase 

– nonlinear modulation but constant-envelope 
• Minimum Shift Keying (MSK)

– minimum bandwidth, sidelobes large 
– can be implemented using I-Q receiver 

• Gaussian Minimum Shift Keying (GMSK) 

– reduces sidelobes of MSK using a premodulation filter

– used by RAM Mobile Data, CDPD, and HIPERLAN 

s(t) = A cos [ωct + 2 πkf ∫ d(τ) dτ]
−∞

t
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Minimum Shift Keying (MSK) spectra
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Spectral Characteristics
QPSK/DQPSK
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Bit Error Probability (BER): AWGN

Pb

BPSK, QPSK
DBPSK

DQPSK

0
10-6
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2
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2

5
10-1

10-3

10-4

10-5

10-2

2 4 6 8 10 12 14

For Pb = 10-3

BPSK   6.5 dB 
QPSK  6.5 dB 

DBPSK   ~8 dB 
DQPSK  ~9 dB

γb, SNR/bit, dB

• QPSK is more spectrally efficient than BPSK 
with the same performance.

• M-PSK, for M>4, is more spectrally efficient 
but requires more SNR per bit.

• There is ~3 dB power penalty for differential 
detection.
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Bit Error Probability (BER): Fading Channel

DBPSK

AWGN
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Pb

γb, SNR/bit, dB

• Pb is inversely proportion to the average SNR per bit. 

• Transmission in a fading environment requires about
18 dB more power for Pb = 10-3.
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Bit Error Probability (BER): Doppler Effects

0

0 605040302010
10-6

10-5

10-4

10-3

10-2

10-1

10

DQPSK

Rayleigh Fading

No Fading
fDT=0.003

0.002
0.001

0

QPSK

Pb

γb, SNR/bit, dB

• Doppler causes an irreducible error floor when differential   
detection is used ⇒ decorrelation of reference signal.

The implication is that Doppler is not an issue for high-speed 
wireless data.

data rate T Pbfloor

10 kbps 10-4s 3x10-4

100 kbps 10-5s 3x10-6

1 Mbps 10-6s 3x10-8

• The irreducible Pb depends on the data rate and the Doppler. 
For fD = 80 Hz,

[M. D. Yacoub, Foundations of Mobile Radio Engineering , 
CRC Press, 1993]
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Bit Error Probability (BER): Delay Spread
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• ISI causes an irreducible error floor.

• The rms delay spread imposes a limit on the 
maximum bit rate in a multipath environment. 

For example, for QPSK,
τ Maximum Bit Rate 

Mobile (rural) 25 μsec 8 kbps 
Mobile (city) 2.5 μsec 80 kbps 
Microcells 500 nsec 400 kbps 
Large Building 100 nsec 2 Mbps

[J. C.-I. Chuang, "The Effects of Time Delay Spread on Portable Radio 
Communications Channels with Digital Modulation," 
IEEE JSAC, June 1987]
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Summary of Modulation Issues
• Tradeoffs

– linear versus nonlinear modulation
– constant envelope versus non-constant

envelope
– coherent versus differential detection
– power efficiency versus spectral efficiency

• Limitations

– flat fading
– doppler
– delay spread
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Pulse Shaping
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Recall: Impact of AWGN only
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Impact of AWGN & Channel Distortion

)75.0(5.0)()( Tttthc −−= δδ

Multi-tap, ISI channel
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ISI Effects: Band-limited Filtering of Channel

ISI due to filtering effect of the communications 
channel (e.g. wireless channels)

Channels behave like band-limited filters

)()()( fj
cc

cefHfH θ=

Non-constant amplitude

Amplitude distortion

Non-linear phase 

Phase distortion
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Inter-Symbol Interference (ISI)
ISI in the detection process due to the filtering effects 
of the system
Overall equivalent system transfer function

creates echoes and hence time dispersion
causes ISI at sampling time

)()()()( fHfHfHfH rct=

i
ki

ikkk snsz ∑
≠

++= α

ISI effect
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Inter-symbol interference (ISI): Model

Baseband system model

Equivalent model

Tx filter Channel
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Nyquist bandwidth constraint
Nyquist bandwidth constraint (on equivalent system):

The theoretical minimum required system bandwidth to 
detect Rs [symbols/s] without ISI is Rs/2 [Hz]. 
Equivalently, a system with bandwidth W=1/2T=Rs/2 [Hz] 
can support a maximum transmission rate of 2W=1/T=Rs
[symbols/s] without ISI.

Bandwidth efficiency, R/W [bits/s/Hz] : 
An important measure in DCs representing data 
throughput per hertz of bandwidth.
Showing how efficiently the bandwidth resources are used 
by signaling techniques.

Hz][symbol/s/   2
22

1
≥⇒≤=

W
RWR

T
ss
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Equiv System: Ideal Nyquist pulse (filter)
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Nyquist pulses (filters)
Nyquist pulses (filters):

Pulses (filters) which result in no ISI at the sampling time.
Nyquist filter: 

Its transfer function in frequency domain is obtained by 
convolving a rectangular function with any real even-
symmetric frequency function

Nyquist pulse: 
Its shape can be represented by a sinc(t/T) function multiply 
by another time function.

Example of Nyquist filters: Raised-Cosine filter
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Pulse shaping to reduce ISI

Goals and trade-off in pulse-shaping
Reduce ISI
Efficient bandwidth utilization
Robustness to timing error (small side lobes)
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Raised Cosine Filter: Nyquist Pulse Approximation
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Raised Cosine Filter
Raised-Cosine Filter

A Nyquist pulse (No ISI at the sampling time)
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Pulse Shaping and Equalization Principles

Square-Root Raised Cosine (SRRC) filter and Equalizer

)()()()()(RC fHfHfHfHfH erct=
No ISI at the sampling time

)()()()(

)()()(
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fHfHfHfH
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===
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Taking care of ISI 
caused by tr. filter
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fH
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c
e = Taking care of ISI 

caused by channel
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Pulse Shaping & Orthogonal Bases
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Virtue of pulse shaping

PSD of a BPSK signal
Source: Rappaport book, chap 6
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Example of pulse shaping
Square-root Raised-Cosine (SRRC) pulse shaping

t/T

Amp. [V]

Baseband tr. Waveform

Data symbol

First pulse
Second pulse

Third pulse
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Example of pulse shaping …
Raised Cosine pulse at the output of matched filter

t/T

Amp. [V]

Baseband received waveform at 
the matched filter output
(zero ISI)
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Eye pattern

Eye pattern:Display on an oscilloscope which sweeps the system 
response to a baseband signal at the rate 1/T (T symbol duration) 

time scale

am
pl

itu
de

 sc
al

e Noise margin

Sensitivity to 
timing error

Distortion
due to ISI

Timing jitter
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Example of eye pattern:
Binary-PAM, SRRC pulse

Perfect channel (no noise and no ISI)
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Example of eye pattern:
Binary-PAM, SRRC pulse …

AWGN (Eb/N0=20 dB) and no ISI
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Example of eye pattern:
Binary-PAM, SRRC pulse …

AWGN (Eb/N0=10 dB) and no ISI
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Summary

Digital Basics
Modulation & Detection, Performance, Bounds
Modulation Schemes, Constellations
Pulse Shaping
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Extra Slides
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Bandpass Modulation: I, Q Representation
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Analog: Frequency Modulation (FM) vs
Amplitude Modulation (AM)

FM: all information in the phase or frequency of carrier
Non-linear or rapid improvement in reception quality beyond a minimum 
received signal threshold: “capture” effect. 
Better noise immunity & resistance to fading
Tradeoff bandwidth (modulation index) for improved SNR: 6dB gain for 2x 
bandwidth
Constant envelope signal: efficient (70%) class C power amps ok.

AM: linear dependence on quality & power of rcvd signal
Spectrally efficient but susceptible to noise & fading
Fading improvement using in-band pilot tones & adapt receiver gain to 
compensate
Non-constant envelope: Power inefficient (30-40%) Class A or AB power amps 
needed: ½ the talk time as FM!
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Example Analog: Amplitude Modulation
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