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Outline

O Please see my experimental networking class for a longer video/audio primer on
probability (not stochastic processes):

Q

O Focus on Gaussian, Rayleigh/Ricean/Nakagami, Exponential, Chi-Squared
distributions:

O Q-function, erfc(),

O Complex Gaussian r.v.s,

O Random vectors: covariance matrix, gaussian vectors

a ...which we will encounter in wireless communications

O Some key bounds are also covered: Union Bound, Jensen’s inequality etc

O Elementary ideas in stochastic processes:
O LI.D, Auto-correlation function, Power Spectral Density (PSD)
O Stationarity, Weak-Sense-Stationarity (w.s.s), Ergodicity
O Gaussian processes & AWGN (“white”)
O Random processes operated on by linear systems
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http://www.ecse.rpi.edu/Homepages/shivkuma/teaching/fall2006/index.html

Elementary Probability Concepts
(self-study)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman

3 Google : “shiv rpi”



Probability

a Think of probability as modeling an experiment

a Eg: tossing a coin!
a The set of all possible outcomes 1s the sample
space: S

a Classic “Experiment”:
Q Tossingadie: S=1{1,2,3,4,5,6}
d Any subset A of S 1s an event:
QA = {the outcome is even} = {2,4,6}

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman

4 Google : “shiv rpi”



Probability of Events: Axioms

*P 1s the Probability Mass function if it maps each
event A, into a real number P(A), and:

DM P (A) >0 for every event Ac S

ii.) P(S)=1

i11.)If A and B are mutually exclusive events then,

000

AN B =¢
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Probability of Events

...In fact for any sequence of pair-wise-mutually-
exclusive events, we have

(le. AA =0foranyi # |)

Al.ﬂAj=¢, and UAi:S

i=l
y
4, 4
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Detour:
Approximations/Bounds/Inequalities

Why? A large part of information theory consists in finding
bounds on certain performance measures

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Approximations/Bounds: Union Bound

D

P(A U B) <= P(A) + P(B)
. PAVA,U LAY <F2o N PAY
O Applications:
O Getting bounds on BER (bit-error rates),
O In general, bounding the tails of prob. distributions

O We will use this in the analysis of error probabilities with various coding
schemes

(see chap 3, Tse/Viswanath)
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Approximations/Bounds: log(1+x)

alog,(1+x) = x for small x

a Application: Shannon capacity w/ AWGN noise:
A Bits-per-Hz = C/B = log,(1+ y)

a If we can increase SNR (y) linearly when vy is small
(1.e. very poor, eg: cell-edge)...

... we get a linear increase 1n capacity.

a When v 1s large, of course increase 1in y gives only a
diminishing return in terms of capacity: log (1+ )
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Approximations/Bounds: Jensen’s Inequality

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman

10 Google : “shiv rpi”



Schwartz Inequality & Matched Filter

0O Inner Product (aTx) <= Product of Norms (i.e. |a||x])
O Projection length <= Product of Individual Lengths
Q This is the Schwartz Inequality!

O Equality happens when a and x are in the same direction (i.e. cos =1,
when 0 =0)

O Application: “matched” filter

O Received vectory = x + w (zero-mean AWGN)

O Note: w is infinite dimensional

O Project y to the subspace formed by the finite set of transmitted symbols
Xy’

O y’ is said to be a “sufficient statistic” for detection, i.e. reject the noise
dimensions outside the signal space.

O This operation is called “matching” to the signal space (projecting)

O Now, pick the x which is closest to y’ in distance (ML detection =
nearest neighbor)
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Back to Probability...
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Conditional Probability

: (conditional) probability that the
outcome Is In A given that we know the
outcome in B

5 A=)
~ P(B)

Example: Toss one die.

‘Note that: B EG EHNEEEOEERN

What is the value of knowledge that B occurred ?
How does it reduce uncertainty about A?
Rensselaer Polytecy HHOW does it change P(A) ? kumar Kalyanaraman

P(A|B)

P(B)=0
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Independence

0 Events 4 and B are independent if P(AB) = P(A)P(B).

WS P (A|B)=P(A)EmP((B|A)=P(B)

O Example: A card 1s selected at random from an ordinary
deck of cards.

O A=event that the card is an ace.

O B=event that the card 1s a diamond.

P(AB) =

P(A) =

P(A)P(B) =

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Random Variable as a Measurement

O Thus a random variable can be thought of as a
measurement (yielding a real number) on an experiment

Q Maps “events” to “real numbers”

O We can then talk about the pdf, define the
mean/variance and other moments

;F# ..____'.r- L X

\ SampleSpace § ' < X(s)

B Measurement Space
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Histogram: Plotting Frequencies

Class Freq.
Count 15 but < 25 3
5 T 25 but < 35 5
35 but < 45 2
Crequency . 47
Relative 3T
Frequency 27 _'?Z‘LSC i
Percent 17
0 /\
\Y;

0 15 25 35 45 55

Lower Boundary
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f histogram
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FIGURE 2.4. Probability distribution for a conceptual population of yield values.

a.k.a. frequency histogram, p.m.f (for discrete r.v.)
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Continuous Probability Density Function

O 1. Mathematical Formula
Frequency

a 2. Shows All Values, x, &
Frequencies, f(x) (Value, Frequency)

a f(X) Is Not Probability

a 3. Properties

[f(x)dx =1

All X (Area Under Curve)

f(x)>0,a<x <b

Rensselaer Polytechnic Institute

Value
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Cumulative Distribution Function

O The cumulative distribution function (CDF) for a random

variable X 1s

F,.(x)=P(X<x)=P({se S| X(s)<x})

O Note that 1s non-decreasing in X, 1.€.
X <x, = F (%)< F(x,)

SRR [im F (x) =0 S lim ' (x) =1

X—>—00

X—>0

Shivkumar Kalyanaraman
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Probability density functions (pdf)

15 T T T T T T T T T
— Lognormal(0,1)
—— Gamma(.53,3)
—— Exponential(1.6)
— Weibull(.7,.9)
— Pareto(1,1.5)

f(x)

0.5

Rensselae

Emphasizes main body of distribution, frequencies,
various modes (peaks), variability, skews

yanaraman
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Renss

Cumulative Distribution Function (CDF)

— Lognormal(0,1)
—— Gamma(.53,3)
—— Exponential(1.6) 7
— Weibull(.7,.9)
— Pareto(1,1.5) —

median

0 2 4 6 8 10 12 14 16 18 20
X

Emphasizes skews, easy 1dentification of median/quartiles,
converting uniform rvs to other distribution rvs

nan
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Complementary CDFs (CCDF)
10°
10|
~ 10-25
T
= 10-3: —— Lognormal(0,1)
—— Gamma(.53,3)
—— Exponential(1.6)
.| | — Weibull(.7,.9)
10 L | —— Paretoll(1,1.5)
—— Paretol(0.1,1.5)
10" 10° 10" 10°
log(x)
Useful for focussing on “tails of distributions:
Rensselaer Polytec Llne ln a 10 g_lo g pl ot => “h eavy” tall yanaraman
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Numerical Data Properties

Central Tendency
(Location)

Variation
(Dispersion)

Google : “shiv rpi”



Numerical Data
Properties & Measures

peelfiefs SKew,
Nterguartiie Range
Valance

StaRdarar Deviation
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Expectation of a Random Variable: E[X]

O The expectation (average) of a (discrete-valued) random variable X 1s

E(X)= % xP(X =x)= 2 xP (x)

X=—00

.10

.08

ply)

.02

et

00 | | ! —— ]
5 10 15 20 25 30

mean -e—-l
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Continuous-valued Random Variables

Q Thus, for a continuous random variable X, we can
define its probability density function (pdf)

dF, (x)
dx

0 Note that since J@M@@] is non-decreasing in X we

have
fX (x) > 0 for all X.

Shivkumar Kalyanaraman

f(x) = F x(x)=
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Expectation of a Continuous Random
Variable

O The expectation (average) of a continuous random variable X is given by

E(X)= T xf . (x)dx

0O Note that this 1s just the continuous equivalent of the discrete expectation

E(X)= % xP,(x)

X=—00

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Other Measures: Median, Mode

O Median = F-! (0.5), where F = CDF
0 Aka 50% percentile element
a I.e. Order the values and pick the middle element
0O Used when distribution is skewed
0 Considered a “robust” measure

O Mode: Most frequent or highest probability value
QO Multiple modes are possible
QO Need not be the “central” element
0 Mode may not exist (eg: uniform distribution)
0 Used with categorical variables

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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FIGURE 121 Five distributions showing relationships among mean, median, and :alyanaraman
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Indices/Measures of Spread/Dispersion: Why Care?

s (n)Low variahility i

Frequency Frequency

(bYHigh varisbility

Mean

FIGURE 12.3 Histograms of response times of two systems,

Response time

You can drown In a river of average depth 6 inches!

Lesson: The measure of uncertainty or dispersion may

matter more than the index of central tendency

ensselacr Folytechnic Institute TVISOILIIONT

30

Google : “shiv rpi”



Standard Deviation, Coeff. Of Variation,
SIQR
0 Variance: second moment around the mean:
Qo= E[(X-p)’]
a Standard deviation = G

stdv(z) = o = \/{2%) — (©)2 = /1§ — 2.

a Coefficient of Variation (C.0.V.)= c/u

a SIQR= Semi-Inter-Quartile Range (used with median
= 50t percentile)

3 (75% percentile — 25™ percentile)/2

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman

31 Google : “shiv rpi”



Covariance and Correlation: Measures of
Dependence

Q Covariance:  {(z; — pi)(x; — p;)) = {mix;) — (x4} (x5},

O Fori=j, covariance = variance!
O Independence => covariance = 0 (not vice-versa!)

O Correlation (coefficient) is a normalized (or scaleless) form of
covariance:

cor(z;, ;) = cov (@i, ;) .

H:_ll'-.r;r

O Between —1 and +1.
QZero => no correlation (uncorrelated).
O Note: uncorrelated DOES NOT mean independent!

Shivkumar Kalyanaraman
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Random Vectors & Sum of R.V.s

A Random Vector = [X,, ..., X, ], where X1 =r.v.
a Covariance Matrix:

d K 1s an nxn matrix...
A K, = Cov|[X,,X;] = Var[ X]

Q Sum of independent R.v.s

Q/Z=X+Y
QA PDF of Z is the convolution of PDFs of X and Y
pz(2) = px(x)* py(y). Can use transforms!

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Characteristic Functions & Transforms

A Characteristic function: a special kind of expectation

The distribution of a random variable X' can be determined from its characteristic function, defined as
[ w]

Ox (V) = E[e/VX] = / px (x)eldx. (B.10)

—_

QCaptures all the moments, and 1s related to the IFT of pdf}

We see from (B.10) that the characteristic function ¢ x () of X () is the inverse Fourier transform of the distribu-
tion px () evaluated at f = v//(27). Thus we can obtain px () from ¢y (/) as

px(x) = / Ox (v)e " dx. (B.11)

27 J_

This will become significant in finding the distribution for sums of random variables.

Shivkumar Kalyanaraman
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Important (Discrete) Random Variable:
Bernoulli

Q The simplest possible measurement on an experiment:
0 Success (X =1) or failure (X =0).

O Usual notation:

P()=P(X=D)=p P, (0)=P(X=0)=1-p

0 E(X)=

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Binomial Distribution

Mean
pu=E(X)=np

Standard Deviation

o =./np (1-p)

Rensselaer Polytechnic Institute
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Binomial can be skewed or normal

Pr (y)—

.......... 1

0 1 23 4 5 6 7 8 91011121314 1516 1718 19 20
y —

(c) Binomial distribution with mean p = 0.8 and n = 20.

n = 10.0

Pr (y) —

Yy —

(d) Binomial distribution withmean p = 0.5 and n = 20.

Rensselaer Polytechnic Institute FIGURE 5.4. (continued)

-~ 1

i
01 2 3 45 6 7 8 91011121314 15 16 17 18 19 20

Depends upon
pandn!

Shivkumar Kalyanaraman
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Binomials for different p, N =20

30.00%

Distribution of Blocks Experiencing k losses out of N

25.00%

Distribution of Blocks Experiencing k losses out of N

25.00% + —

20.00% -+

15.00% +

Number of Blocks

10.00% -

5.00% -

0.00% -

20.00% -

15.00% -

Number of Blocks

10.00% -

5.00% -

0.00% +

01 2 3

distribution (esp) near the mean:
—=symmetric, sharp peak at mean, exponential-
square (e*?) decay of tails
(pmf concentrated near mean)

Rensselaer Polytechnic Institute

6.00% -

4.00% -

2.00% -

0.00% -

012 3 45 6 7 8 9 101112 1314 1516 17 18 19 20

Number of Losses out of N=20

Shivkumar Kalyanaraman
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Important Random Variable:
Poisson

A Poisson random variable X is defined by its PMF: (limit of binomial)

Poisson random variables are good for counting frequency of occurrence:
like the number of customers that arrive to a bank in one hour, or the
number of packets that arrive to a router in one second.
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Important Continuous Random
Variable: Exponential

a Used to represent time, e€.g. until the next arrival

a Has PDF o ; - o
% or X >
fX(x):{O forx <0

for some > 0

a Properties:

]?fX(x)dx=1 and E(X)=

3 Need to use integration by Parts!

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Gaussian/Normal Distribution

References:
Appendix A.1 (Tse/Viswanath)
Appendix B (Goldsmith)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Gaussian/Normal

fx(x)
O Normal Distribution: SuE}
Completely characterized by e
mean (1) and variance (6?) |
O Q-function: one-sided tail of
normal pdf
Q(z) = ple > z2) = _/x' Lf‘-f_yzfgdu.
2, )= | |

0O erfc(): two-sided tail.

erf(x)
0.5

0.4+

0.3+

0.2+

0.1

a So:

Q(z) = %erfc (:j)

Rensselaer Polytechnic Institute

man
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Normal Distribution: Why?

Uniform distribution
L e looks nothing like
1 | '

bell shaped (gaussian)!
' I | |, Large spread (o)!

(b) Two dic

e I CENTRAL LIMIT TENDENCY!

1 2 3 4 5 6

(c) Three dice
I | I l l | |

R B :  Sum of r.v.s from a uniform
«— distribution after very few samples

’ | looks remarkably normal

..’ © °  BONUS: it has decreasin

Re FIGURE 2.10. Distribution of average scores from throwing various numbers of dice. Shleumar %alyanaraman
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Gaussian: Rapidly Dropping Tail Probability!

area = 0.1687 =~ ———

1
6
ply)

- 1
area = 0.0228 =~ n —

7 - 3o n— 20 n—o n nto n+ 20 n + 30
FIGURE 2.12. Tail areas of the normal distribution.

Why? Doubly exponential PDF (e#* term...)
A.k.a: “Light tailed” (not heavy-tailed).
No skew or tail => don’t have two worry
about > 2" order parameters (mean, variance)

Fully specified with just mean and variance (2"¢ order)
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Height & Spread of Gaussian Can Vary!

N(30, 6.25)

p(y)
|

N{-5, 25)

N(5, 100) N{30, 25}
| \ \ 1 |
=20 0 20 40 60

FIGURE 2.11. Normal distributions with different means and variances.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman |
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Gaussian R.V.

o - N , 1 w2
0 Standard Gaussian\' (0.1)  f(w) = —=exp (—%) we R,

4 Tall !2! X! Qla) =P{w > a}.
A tail decays exponentially!

a Gaussian property preservedé

w/ linear transtformations:

T

T n
E c;r; ~ N E Cilli, E (?U? '
i=1 i=1

i=1

5 Shivkumar Kalyanaraman
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ormal
IStribution

0)

Standardize the

Normal Distribution

Standardizeﬂ

Normal Distributio

.u.

c=1

Rensselaer Polytechnic Institute
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Standardized Normal
Probability Table (Portion)

.0000|.0040

0z

003

Ord.0398(.0438

.0793|.0832|.0871

1179|.1217

1265\

Rensselaer Polytechnic Institute

Obtaining the Probability

™ Probabilities,,,, 239

. o=1
0478
/
u=0 .12 Z
Shaded area

gerated

hivkumar I%alyanaraman
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Example
P(X > 8)
X — _
Z = “=85=34
o 10
EJ@ rmal Standardized
I)ijs,*ltrri]buti]@n Normal Distribution
0 — 10 c=1
.5000
2 3821
| 1179 :
u=>5 8 X n=0 .30 Z
Rensselaer Polytechnic Institute S ]'@_dl'%dl‘@[r 28 Jg J@,‘r _l_,,llbanKumm
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Q-function:
Tail of Normal
Distribution

Q@2)=P(Z>2)=1-P|Z<17z]

Rensselaer Polytechnic Institute

1. Areas under the Normal Distribution
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The table gives the cumulative probability

up to the standardised normal value z

z
]‘ 1 exp(-427) dZ
Pli<z]=]/um

i.e.

0.00

0.5000
0.5398
0.5793
0.6179
0.6554

0.6915
0.7257
0.7580
0.7881
0.8159

0.8413
0.8643
0.8849
0.9032
0.8192

0.9332
0.9452
0.9554
0.9641
0.9713

0.9773
0.9821
0.9861
0.9893
0.9918

0.9938
0.9953
0.9965
0.9974
0.9981

3.00
0.9986

=

0.01 0.02

0.5040  0.5080
0.5438  0.5478
0.5832 0.5871
0.6217  0.6255
0.6591 0.6628

0.6950  0.6985
0.7291 0.7324
0.7611  0.7642
0.7910  0.7939
0.8186 0.8212

0.8438 0.8461
0.8665 0.3686
0.8869 0.8888
0.904%  0.9066
0.9207 0.9222

0.9345  0.9357
0.9463 0.9474
0.9564 0.9573
0.964%  0.9656
0.9719 0.9726

0.9778  0.9783
0.9826  0.9830
0.9865 0.9868
0.9896  0.9898
0.9920 0.9922

0.9940  0.9941
0.9955 0.9956
0.9%66  0.9967
0.9975  0.9976
0.9982 0.9982

3.10 3.20
0.9990 0.9993

0.03

0.5120
0.5517
0.5910
0.6293
0.6664

0.701%
0.7357
0.7673
0.7967
0.8238

0.8485
0.8708
0.8907
0.9082
0.9236

0.9370
0.9484
0.9582
0.9664
0.9732

0.9788
0.9834
0.9871
0.9901
0.9924

0.9943
0.9957
0.9968
0.9977
0.9983

3.30
0.9995

S

PlI<t]

/

0.04

0.5158
0.5557
0.5948
0.6331
0.6700

0.7054
0.7389
0.7704
0.7995
0.8264

0.8508
0.8729
0.8925
0.5099
0.9251

0.9382
0.9495
0.9591
0.9671
0.9738

0.9793
0.9838
0.9874
0.9904
0.9927

0.9945
0.9959
0.9969
0.9977
0.9984

3.40
0.9997

0.05

0.5199
0.5596
0.5987
0.6368
0.6736

0.7088
0.7422
0.7734
0.8023
0.8289

0.8531
0.8749
0.8944
0.9115
0.9265

0.9394
0.9505
0.9599
0.9678
0.9744

0.9798
0.9842
0.9878
0.9906
0.9929

0.9946
0.9960
0.9970
0.9978
0.9984

3.50
0.9998

0.06

0.5239
0.5636
0.6026
0.6406
0.6772

0.7123
0,7454
0.7764
0.8051
0.8315

0.8554
0.8770
0.8962
0.9131
0.9279

0.9406
0.9515
0.9608
0.9686
0.9750

0.9803
0.9846
0.9881
0.9%09
0.9931

0.9948
0.9961
0.9971
0.9979
0.9985

3.60
0.9998

0.07

0.5279
0.5675
0.6064
0.6443
0.6808

0.7157
0.7486
0.7794
0.8078
0.8340

0.8577
0.8790
0.8980
0.9147
0.9292

0.9418
0.9525
0.9616
0.9693
0.9756

0.9808
0.,9850
0.9884
0,9911
0.9932

0.9949
0.9962
0.9972
0.9980
0.9985

3.70
0.9999

z
0.08

0.5319
0.5714
0.6103
0.6480
0.6844

0.7190
0.7517
0.7823
0.8106
0.8365

0.8599
0.8804
0.8997
0.9162
0.9306

0.9429
0.9535
0.9625
0.9699
0.9761

0.9812
0.9854
0.9887
0.9913
0.9934

0.9951
0.9963
0.9973
0.9980
0.9986

3.50
0.9999

0.09

0.5359
0.5753
0.6141
0.6517
0.6879

0.7224
0.7549
0.7854
0.8133
0.8389

0.8621
0.8830
0.9015
0.9177
0.9319

0.9441
0.9545
0.9633
0.9706
0.9767

0.9817
0.9857
0.939%0
0.9916
0.9936

0.9952
0.9964
0.9974
0.9981
0.9986

3.90
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Sampling from Non-Normal Populations

QCentral Tendency
Population Distribution

Hx = H
° ° G = 10
aDispersion
o — o ]
X — = : |
Q Sampling with Sampling Distribution
replacement
n=4 ~—n =30
C %= 5 N\ O \ = 1.8

\\_

u>'<= 50 X

Rensselaer Polytechnic Institute raman
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Central Limit Theorem (CLT)

As
sample
Size gets
large
enough
(n > 30) ...

¢ 3

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Central Limit Theorem (CLT)

AS Oy = 2

sample J/n sampling
size gets / distribution
large becomes
enough almost

(n > 30) ... normal.

Rensselaer Polytechnic Institute u X u‘ Shivkumar Kalyanaraman
53 Google : “shiv rpi”




Aside: Caveat about CLT

a Central limit theorem works 1f original distribution are not
heavy tailed

a Need to have enough samples. Eg: with multipaths, 1f there
1S not rich enough scattering, the convergence to normal
may have not happened yet

a Moments converge to limits
a Trouble with aggregates of “heavy tailed” distribution samples

O Rate of convergence to normal also varies with distributional
skew, and dependence 1n samples

a Non-classical version of CLT for some cases (heavy tailed)...

a Sum converges to stable Levy-noise (heavy tailed and long-
range dependent auto-correlations)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Gaussian Vectors &
Other Distributions

References:
Appendix A.1 (Tse/Viswanath)
Appendix B (Goldsmith)

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

55

Google : “shiv rpi”



Gaussian Vectors (Real-Valued)

0 Collection of i.i.d. gaussian r.vs: w = (wr.....w,)’

, 1 w|? .
flw)= (vﬂ_«—)”{mp (—| QH ) . w € R,

Wi = v/ 2y wi

Euclidean distance from the origin to w

The density f(w) depends only on the magnitude of w, i.e. ||w||?
Orthogonal transformation O (i.e., OO = OO! = I) preserves the

magnitude of a vector

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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2-d Gaussian Random Vector

.ﬂ'2
F 3
fla)y= f(a’)

o

« w has the same distribution in any orthonormal basis.

« Distribution of w is invariant to rotations and reflections i.e. Qw ~w

* w does not prefer any specific direction (“isotropic”)

Rensselaer Polytechnic Institute

Level sets (isobars) are circles

Shivkumar Kalyanaraman
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Gaussian Random Vectors (Contd)

O Linear transformations of the standard gaussian vector: x=Aw + p.

c'x ~ N (c'u, c’AA'c):

Rensselaer POlthChnlC Institute AL VARG ARl ) s e
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[ ] !o\
Gaussian Random /i
fl% llh'.
Vectors £/
7Y
) %ﬁﬁﬁ:‘““a“}
(uncorrelated vs
correlated)

4 _

2L _

o |

2O % *

3 i

-2 L _

_4 | ]

t | J | |
—4 -2 0 2 4
X-axis
(b)
| Re (a) Gaussian pdf with X=Y=0,0x=0y=2and P=0.9;(b)Contours of constant density. -

59 Google: “shiv rpi”



Complex Gaussian R.V: Circular Symmetry

O A complex Gaussian random variable X whose real and
imaginary components are 1.1.d. gaussian X = Xp + JX;
Q ... satisfies a circular symmetry property:

0O e¢X has the same distribution as X for any ¢.
O e multiplication: rotation in the complex plane.

O We shall call such a random variable circularly symmetric
complex Gaussian,
Q ...denoted by CN(0, 62), where o2 = E[|X|?].

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Complex Gaussian & Circular Symmetry (Contd)
For a circular symmetric complex random vector x,
Elx] =E [¢!'x] = ¢’E[x]
for any €; hence the mean p = 0. Moreover
E [xxﬂ =K [r%jax ({ejgx)t} — 'K [xxﬂ
for any #; hence the pseudo-covariance matrix J is also zero

Covariance matrix: K fully specifies the first and second order statistics

A collection of n 1.i.d. CN (0, 1) random variables forms a standard circular sym-

metric Gaussian random vector w and is denoted by CN (0,I). The density
function of w can be explicitly written as, following from (A.7),

; ' 1 2 7L '

f(w) = —exp (—wl?). weC". (A.21)

I

Uw has the same distribution as w. for any complex orthogonal matrix U

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Complex Gaussian: Summary (I)

Summary A.1 | Complex Gaussian Random Vectors
e An n-dimensional complex Gaussian random vector x has real and 1maginary com-
ponents which form a 2n-dimensional real Gaussian random vector.

e X is circular symmetric if for any 6.
%% ~ x. (A.24)

e A circular svmmetric Gaussian X has zero mean and its statistics are fully specified
by the covariance matrix K := E[xx*]. It is denoted by CN (0, K).

e The scalar complex random variable w ~ CN (0. 1) has ii.d. real and imaginary

components each distributed as N (0,1/2). The phase of w is uniformly distributed
in [0, 27| and independent of its magnitude |w|, which is Rayleigh distributed:

.,
f(r) = rexp —’? >0 (A.25)

[w|? is exponentially distributed.
| Rensselaer Polytechnic Institute Shivkumar Kalyanaraman |
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Complex Gaussian Vectors: Summary

e If the random vector w ~ CN(0.I). then its real and imaginary components are
all 1.1.d. and w 1s isotropic, 1.e.. for any unitary matrix U,

Uw ~ W, (A.26)

Equivalently, the projections of w onto orthogonal directions are i.i.d. CA (0. 1).
The squared magnitude ||w||? is distributed as y3 with mean n.

e If x ~CN(0.K) and K is invertible, then the density of x is
g 1 4 . .
f(x)= exp (—x*K™'x) . X EC". (A.27)

T det K
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Related Distributions

fx(X)

1 Exponential

v

/_ ______ / Rayleigh
0.606 Uniform
' /
N L\
b-a | |
| | |
0 o a b X

The rayleigh, exponential, and uniform pdf ’s.

X=[Xy ..., X,] 1s Normal
|X]| 1s Rayleigh { eg: magnitude of a complex gaussian channel X, +jX, }
|1X[]> is Chi-Squared w/ n-degrees of freedom
When n = 2, chi-squared becomes exponential. {eg: power in
complex gaussian channel: sum of squares...}

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Chi-Squared Distribution

The chi-square density for n = 2, 4, 10 The chi-square density for n = 30, 40, 50
0.35 | — i L Eee e e e e e e )
0.3 |- - 0.05 .
0.25 0.04 _
[+4]
= =
=1 _ -
5 02 g 0.03 .
> 5
S 0.15 a
. 0.02 il
0.1
* 0.01 =
0.05 * B oo
* ~
- **** 0 -+
0+ =T Wi . RS VVOUURI VIO RSV NROROR v | 0 1D 20 30 40 B0 60 70 80 90 100
0 5 10 15 20 25 30 35 40 45 50 AT Ument vk

Argument value
The Chi-square pdf for three large values for the parameter n: n = 30 (solid); n =40

The Chi-square probability density function for n = 2 (solid), n = 4 (dashed), and (dashed); n = 50 (stars). For large values of n, the Chi-square pdf can be approximated by a normal

1 =10 (stars). Note that for larger values of n, the shape approaches that of a Normal pdf % 1) for computing probabilities not too far from the mean. For example, for n = 30, P =0
<X <pt+o] = 0.6827 assuming X : N (30, 60). The value computed, using single-precision arithmetic,

ositive mean-parameter y.
P P H using the Chi-square pdf, yields 0.6892.

Sum of squares of n normal variables: Chi-squared
For n =2, it becomes an exponential distribution.

Becomes bell-shaped for larger n

Rensselaer Polytechnic Institute
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Maximum Likelihood (ML) Detection:
Concepts

Reference:

Mackay, Information Theory,
http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html
(chap 3, online book)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Likelihood Principle

0 000

a Experiment:
A Pick Urn A or Urn B at random
3 Select a ball from that Urn.
a The ball is black.
a What 1s the probability that the selected Urn 1s A?

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Likelihood Principle (Contd)

A B

eCO [ 1 1@

Write out what you know!
P(Black | UrnA) =1/3
P(Black | UrnB) = 2/3
P(Urn A)=P(Urn B) =1/2
We want P(Urn A | Black).

Gut feeling: Urn B 1s more likely than Urn A (given that the ball is black).
But by how much?

This 1s an mverse probability problem.

O Make sure you understand the inverse nature of the conditional
probabilities!

a Solution technique: Use Bayes Theorem.
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Likelihood Principle (Contd)

O Baves manipulations:
O P(Urn A | Black) =

O P(Urn A and Black) /P(Black)
O Decompose the numerator and denomenator in terms of the probabilities we know.

U

P(Urn A and Black) = P(Black | UrnA)*P(Urn A)
P(Black) = P(Black| Urn A)*P(Urn A) + P(Black| UrnB)*P(UrnB)

U

We know all these values (see prev page)! Plug in and crank.

P(Urn A and Black) =1/3 * 1/2

P(Black)=1/3 % 1/2+2/3*1/2 =1/2

P(Urn A and Black) /P(Black) =1/3 =0.333

Notice that it matches our gut feeling that Urn A is less likely, once we have seen black.

O 0000

The information that the ball is black has CHANGED !
O From P(Urn A) = 0.5 to P(Urn A | Black) =0.333

U

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Likelihood Principle

A B

eCO

Way of thinking...
Hypotheses: Urn A or Urn B ?
Observation: “Black”
Prior probabilities: P(Urn A) and P(Urn B)
Likelihood of Black given choice of Urn: {aka forward probability}
O P(Black | Urn A) and P(Black | Urn B)
Posterior Probability: of each hypothesis given evidence
aQ P(Urn A | Black) {aka inverse probability}
a Likelihood Principle (informal): All inferences depend ONLY on
O The likelihoods P(Black | Urn A) and P(Black | Urn B), and
Q The priors P(Urn A) and P(Urn B)
O Result is a probability (or distribution) model over the space of possible hypotheses.

(I N W W N

U

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Maximum Likelihood (intuition)

O Recall:
O P(Urn A | Black) = P(Urn A and Black) /P(Black) =
P(Black | UrnA)*P(Urn A) / P(Black)

O P(Urn? | Black) is maximized when P(Black | Urn?) is maximized.

O Maximization over the hypotheses space (Urn A or Urn B)

a P(Black | Urn?) = “likelihood”

Q => “Maximum Likelihood” approach to maximizing posterior probability

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Maximum Likelihood: intuition

-~ Max likelthood

likelihood function

00 02 04 06 08 1.0

This hypothesis has the highest (maximum) ,,,,

Rensselaer Polytechnic Institute
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Maximum Likelihood (ML): mechanics

O Independent Observations (like Black): X, ..., X_

O Hypothesis 0

0O Likelihood Function: L(0) =P(X,, ..., X | 0) =IL P(X. | 0)
a {Independence => multiply individual likelihoods}

0 Log Likelihood LL(0) = X. log P(X; | 0)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Back to Urn example

O In our urn example, we are asking:
a Given the observed data “ball 1s black™...

Q ...which hypothesis (Urn A or Urn B) has the highest likelihood of
explaining this observed data?

O Ans from above analysis: Urn B

O Note: this does not give the posterior probability P(Urn A | Black),

but quickly helps us choose the best hypothesis (Urn B) that would explain
the data...

More examples: (biased coin etc)

(chap 3)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Not Just Urns and Balls:
Detection of signal in AWGN

O Detection problem:

a Given the observation vector Z , perform a mapping from Z
to an estimate m of the transmitted symbol, 7. , such that
the average probability of error in the decision is
minimized.

ml- — Modulator Decision rule—— 7

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman

75 Google : “shiv rpi”



Binary PAM + AWGN Noise

S, IS

Signal sl or s2 1s sent. z 1s received
Additive white gaussian noise (AWGN) => the likelihoods are
p,(z|m) p,(z|m,) bell-shaped pdfs around sl and s2

MLE => at any point on the x-axis, see which curve (blue or red)
has a higher (maximum) value and select the corresponding

signal (s1 or s2) : simplifies into a “nearest-neighbor” rule
Shivkumar Kalyanaraman
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AWGN Nearest Neighbor Detection

o

Fy
ifyelp
choose g
fvely
choose 1y u.B
e
1,

O Projection onto the signal directions (subspace) is called matched filtering to

get the “sufficient statistic”

O Error probability is the tail of the normal distribution (Q-function), based

> i

114

upon the mid-point between the two signals

Rensselaer Polytechnic Institute

Uy — u
Q(| 4= ug|

2/ No/2

) |

Shivkumar Kalyanaraman
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Detection in AWGN: Summary

Summary A.2 | Vector Detection in Complex Gaussian Noise

Binary Signals:
The transmit vector u is either uy or ug and we wish to detect u from received
vector
V=u+w, (A.52)

where w ~ CN (0, NoI). The ML detector picks the transmit vector closest to y
and the error probability is:

| |Jug —up|| A £3

Shivkumar Kalyanaraman
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Vector detection (contd)

Collinear Signals:
The transmit svimbol z is equally likely to take one of a finite set of values in C
(the constellation points) and the received vector is

v = hr +w, (A.54)

where h is a fixed vector.
Projecting y onto the unit vector v := h/||h|| vields a scalar sufficient statistic:

vy = ||h||z 4+ w. (A.55)

Here w ~ CN (0, Ny).

If further the constellation 1s real-valued. then

Riv*'y] = ||hllz + R[w] (A.56)

is sufficient. Here R[w] ~ N(0, Ny/2).
With antipodal signalling, # = 4a, the ML error probability is simply

| al|h| A 5T
) (—\/T/Q) . (AST

r Via a translation, the binary signal detection problem in the first part of the
— summary can be reduced to this antipodal signalling scenario.

an
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Estimation

References:

» Appendix A.3 (Tse/Viswanath)

e Stark & Woods, Probability and Random Processes with Applications to
Signal Processing, Prentice Hall, 2001

e Schaum's Outline of Probability, Random Variables, and Random Processes

 Popoulis, Pillai, Probability, Random Variables and Stochastic Processes,
McGraw-Hill, 2002.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Detection vs Estimation

QO In detection we have to decide which symbol was transmitted
S, O S

Q This 1s a binary (0/1, or yes/no) type answer, with an
associated error probability

QO In estimation, we have to output an estimate h’ of a transmitted
signal h.

0 This estimate 1s a complex number, not a binary answer.

a Typically, we try to estimate the complex channel h, so that
we can use it in coherent combining (matched filtering)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Q

Q

a

Q

Rensselaer Polytechnic Institute

Estimation in AWGN: MMSE

Y=+ w. Need: estimate © of x

Performance criterion: mean-squared error (MSE)

MSE := E [(v — 1)°]

Optimal estimator is the “conditional mean” of x given the observation y
a Gives Minimum Mean-Square Error (MMSE) = E[2]y]

Satisfies orthogonality property:
0 Error independent of observation: E[(&—x)y] =0

But, the conditional mean is a non-linear operator
Q It becomes linear 1f x 1s also gaussian.
O Else, we need to find the best linear approximation (LMMSE)!

Shivkumar Kalyanaraman
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LMMSE

a We are looking for a linear estimate: X = cy

0 The best linear estimator, 1.e. weighting coefficient c 1s:

E [;3:2]
C = .
E [;irg] + No/2

Q We are weighting the received signal y by the transmit
signal energy as a fraction of the received signal energy.

a The corresponding error (MMSE) 1s:

E [:I-’g] f\"r(} J,-’{Q
E [;'1’72] + j\-‘TDJ,-"IQ '

MMSE =

Rensselaer Polytechnic Institute
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LMMSE: Generalization & Summary

Summary A.3 | Mean Square Estimation in a Complex Vector Space
The linear estimate with the smallest mean squared error of = from

Yy =1+ w, (A.80)

with w ~ CN (0, Ng), is

-
e

E [|«[] |
i = y. A81
E [l + No” (A-8D)

To estimate = from
v = hr +w, (A.82)

where w ~ CN (0, NoI),
- (A.83)

Is a sufficient statistic, reducing the vector estimation problem to the scalar one.
The best linear estimator 1s

.
A

E [|z|?] _
T — — h'y. A.84)
E ([P [ + No (A4

The corresponding minimum mean squared error (MMSE) is:

E[|z|*] No
E [|z|2] ||b|2 + No
In the special case when = ~ CN (p.0%), this estimator yields the minimunipngraman

mean squared error among all estimators, linear or non-linear. OEE—— o
34 \.Juugl(f . “shiv rpl

MMSE = (A.85)
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Random Processes

References:

» Appendix B (Goldsmith)

e Stark & Woods, Probability and Random Processes with Applications to
Signal Processing, Prentice Hall, 2001

e Schaum's Outline of Probability, Random Variables, and Random Processes

 Popoulis, Pillai, Probability, Random Variables and Stochastic Processes,
McGraw-Hill, 2002.
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Random Sequences and Random Processes

50

()

,

80
60
40

0 20 Timne 0" "

X(n¢g)
o

Illustration of the concept of random sequence X (n, {) where the { domain (i.e., the
sample space (1) consists of just 10 values. (Samples connected for plot.)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Random process

O A random process is a collection of time functions, or signals,
corresponding to various outcomes of a random experiment. For each
outcome, there exists a deterministic function, which is called a sample

function or a realization.

Real number

Xn(t) (deterministic
. function)

Random

N
X () Y21 variables

>Sample functions
or realizations

7%

Rensselaer Polytechnic Institute

time (t)
Shivkumar Kalyanaraman
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Specifying a Random Process

O A random process 1s defined by all its joint CDFs

p(X(to) < 20, X(11) < x1,..., X(ty) < ).

X(ng)

Shivkumar Kalyanaraman
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Stationarity
Q If time-shifts (any value T) do not affect its joint CDF

-

p(X(tg) < 9, X(t1) < xq,..... X(t,) < x,) =

Ax(t,t+T1) =
E[X(0)] = px. E[X(t—t)X(t+7—1)] = E[X(0)X(7)]

X(ng)




Weak Sense Stationarity (wss)

AX (f A ’T) =
E[X(1)] = E[X(t — )] = E[X(0)] = ;i x. E[X (t—1) X (t+7 —1)] = B[X(0)X ()]

0 Keep only above two properties (2™ order stationarity). ..

O Don’t insist that higher-order moments or higher order joint CDFs be
unaffected by lag T

O With LTI systems, we will see that WSS inputs lead to WSS outputs,

QO In particular, if a WSS process with PSD S (f) 1s passed through a linear time-
invariant filter with frequency response H(f), then the filter output is also a WSS
process with power spectral density |H(f)|2S (/).

0 Gaussian w.s.s. = Gaussian stationary process (since it only has 2" order
moments)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman

90 Google : “shiv rpi”



Stationarity: Summary

O Strictly stationary: If none of the statistics of the random process are affected by a shift
in the time origin.

O Wide sense stationary (WSS): If the mean and autocorrelation function do not change
with a shift in the origin time.

QO Cyclostationary: If the mean and autocorrelation function are periodic in time.

Shivkumar Kalyanaraman
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X(ng)

Ergodicity

O Time averages = Ensemble averages
[i.e. “ensemble” averages like mean/autocorrelation can be computed as “time-

averages” over a single realization of the random process]
O A random process: ergodic in mean and autocorrelation (like w.s.s.) if

myv = lim
- T—o00

T—ooT

L [7/2 R
= and , — lim = *(q _
Tf_'r,fzx(t)di Rx(r) = lim /__TKEX@)X (t —7)dt

100

10(



Autocorrelation: Summary

O Autocorrelation of an energy signal

Ry(r) = (1) *x2*(—7) = [0 z(t)z*(t — 7)dt

O Autocorrelation of a power signal
Ro(r) = 1im £ [17? 2)a* (¢ — myat
T) = — x(t)x — T
* T—oo 1" J-T/2
O For a periodic signal:

Ro(r) = 7 J19%, a()a* (t — )t

O Autocorrelation of a random signal

Rx(ti,t;) = E[X () X" (¢;)]

O For a WSS process:

Rx(7) = E[X()X*(t — 7)]

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Power Spectral Density (PSD)

The power spectral density (PSD) of a WSS process 1s defined as the Fourier transform of its autocorrelation |
function with respect to 7:

o0
Sx(f) = / Ax (T)e 27 dr. (B.26)
oo
The autocorrelation can be obtained from the PSD through the inverse transform:
X0 .
Ax(r) = [ sx(peas (B.27)
.

The PSD takes its name from the fact that the expected power of a random process X (7) is the integral of its PSD:

BIX2(0)] = Ax(0) = [ Sx()if. (B.28)

—

1. Sy(f) 1s real and Sy(f) >0
2. Sx(-B) = Sx(D
3. A (0) =] Sy(0) dw

Shivkumar Kalyanaraman
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Power Spectrum

For a deterministic signal x(t), the spectrum 1s well defined: If X (w)
represents its Fourier transform, 1.e., if

X(w)=[ " x(t)e’dt,

then | X(w)[> represents its energy spectrum. This follows from
Parseval’s theorem since the signal energy 1s given by

[ "X@dt= [ | X(w)] do=E.

Thus | X(w) |2 A@ represents the signal energy in the band (0, 0+ Aw)

t1X (@)
A X(1) Energy in(o,0+Aw)

/ \\/M y /\/

>

0

o o+ Ao
Shivkumar Kalyanaraman
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Spectral density: Summary

0O Energy signaIS'
Er = [ |z(t)|2dt = [ |X(H)|2df X(f) = Flz(t)]

0 Energy spectral density (ESD): W (f) = |X(f)|?

O Power signals:

A2 0Pt = 52 o lenl? fen} = Fle(0)]

0 Power spectral density (PSD):

Py =

o0

Go(f) = Y |enl?6(f —nfo)  fo=1/To

n——0oo

O Random process:
O Power spectral density (PSD):

Gx(f) = FlRx(7)]

Shivkumar Kalyanaraman

Rensselaer Polytechnic Institute
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Properties of an autocorrelation function

a For real-valued (and WSS for random signals):
1.

2. Autocorrelation 1s symmetric around zero. Ry (-t) = Ry(1)
3. Its maximum value occurs at the origin. |Ry(1)| < R(0)
4. Its value at the origin 1s equal to the average power or
CNCIEY.  BIx2(1)] = Ax(0) = / Sx(f)df.
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman

Autocorrelation and spectral density form a Fourier
transform pair. Ry(t) < Sy ()
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Noise in communication systems

O Thermal noise is described by a zero-mean Gaussian random process,

n(t).

a Its PSD is flat, hence, it is called white noise. IID gaussian.

1 n?
p(n) = exp [— 2]
oV 2T 20 N
, — Y0 [w/H
0.4 Gn(f) = 2 [wiHz]
Power spectral
0.3 :
density
0.2 =1 f
N
Ra(7) = 205(7)
0 Autocorrelation 1
'4 2 t n ° function
Probability density function _ T
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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White Gaussian Noise

O White:

Q Power spectral density (PSD) is the same, i.¢. flat, for all frequencies of
interest (from dc to 10'? Hz)

O Autocorrelation 1s a delta function => two samples no matter however
close are uncorrelated.

a N,/2 to indicate two-sided PSD
0 Zero-mean gaussian completely characterized by its variance (G?)
0 Variance of filtered noise 1s finite = N/2

O Similar to “white light” contains equal amounts of all frequencies in the
visible band of EM spectrum

O Gaussian + uncorrelated => 1.1.d.
O Affects each symbol independently: memoryless channel

O Practically: if b/w of noise is much larger than that of the system: good
enough

O Colored noise: exhibits correlations at positive lags

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Signal transmission w/ linear systems (filters)

x(t)

h(t)

nput v ™1 1)

y(t)
vy (f) Output

—

Linear system

Q Deterministic signals:

0 Random signals:

Ideal distortion less transmission:

Y(f)=X(f)H()

Gy (f) = Gx(NHIH()I?

* All the frequency components of the signal not only arrive
with an identical time delay, but also amplified or attenuated

equally.

y(t) = Kz(t — tg) or H(f) = Ke 127 fto

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman
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(Deterministic) Systems with Stochastic Inputs
A deterministic system' transforms each input waveform X (¢,&,) intp
an output waveform Y (¢,5;) =T[X(¢,&,)] by operating only on the
time variable ¢. Thus a set of realizations at the input corresponding
to a process X(¢) generates a new set of realizations {Y (¢,$)} at the
output associated with a new process Y(?).

A

| X(t,¢)

\ X(2) N T[] Y (1)

W o1

\7\‘

A 4

»

Fig. 14.3

Our goal 1s to study the output process statistics in terms of the input
process statistics and the system function.

A stochastic system on the other hand operates on both the Varg}lla lgs £an Ig I
Rensselaer Polytechnic Institute umar Kalyanaraman
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Deterministic Systems

T

Memoryless Systems Systems with Memory

Y (1) = g[X (1) / / \

Time-varying  Time-Invariant  Linear systems
systems systems Y (¢) = L[X ()]

-------------------------
-----
------
-----
sunt®
ne®
nn®
we®
s
s
---
.®
.
.
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.
.
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.
.
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*

b
.
G
G
G
5
.
G
.,
C

g (LTI) systems
X k) | YO =[ h(t-0)X(r)dr
+00
......... LTI system =|_ h(r)X(t-r1)dr.
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LTI Systems: WSS input good enough

X (1) Y (1)

W.ldC-SCIlSC LTI system wide-sense
tationary process h(t) stationary process.
(a)

X (1)

strict-sense LTI system | strilc/t(—ts)ense
tationary process h(?) stationary process
(b)

X(1) Y(?)
Gaussian Linear system — Gaussian process
process (also (also stationary)
stationary) (¢)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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White Noise Process & LTI Systems

W(¢) 1s said to be a white noise process 1f

R, (t,t,)=q(t)o(t —t,),

i.e., E[W(t) W'(t))] =0 unless t,=t..
W(¢) 1s said to be wide-sense stationary (w.s.s) white noise
if E[W(t)] = constant, and

R, (t,t,)=q0o(t —t,) =qo(7).

—

If W(¢) 1s also a Gaussian process (white Gaussian process), then al
of 1ts samples are independent random variables

. . LTI Colored noise
White noise — —

Shivkumar Kalyanaraman
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Summary

Q Probability, union bound, bayes rule, maximum likelithood
a Expectation, variance, Characteristic functions

a Distributions: Normal/gaussian, Rayleigh, Chi-squared,
Exponential

a Gaussian Vectors, Complex Gaussian
A Circular symmetry vs isotropy
a Random processes:
a stationarity, w.s.s., ergodicity
3 Autocorrelation, PSD, white gaussian noise
a Random signals through LTI systems:
Qgaussian & wss useful properties that are preserved.
a Frequency domain analysis possible

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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