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Outline
Please see my experimental networking class for a longer video/audio primer on 
probability (not stochastic processes): 

http://www.ecse.rpi.edu/Homepages/shivkuma/teaching/fall2006/index.html

Focus on Gaussian, Rayleigh/Ricean/Nakagami, Exponential, Chi-Squared 
distributions: 

Q-function, erfc(), 
Complex Gaussian r.v.s, 
Random vectors: covariance matrix, gaussian vectors
…which we will encounter in wireless communications

Some key bounds are also covered: Union Bound, Jensen’s inequality etc

Elementary ideas in stochastic processes: 
I.I.D, Auto-correlation function, Power Spectral Density (PSD) 
Stationarity, Weak-Sense-Stationarity (w.s.s), Ergodicity
Gaussian processes & AWGN (“white”)
Random processes operated on by linear systems

http://www.ecse.rpi.edu/Homepages/shivkuma/teaching/fall2006/index.html
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Elementary Probability Concepts
(self-study)
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Probability
Think of probability as modeling an experiment

Eg: tossing a coin!
The set of all possible outcomes is the sample 
space: S

Classic “Experiment”: 
Tossing a die: S = {1,2,3,4,5,6}

Any subset A of S is an event:  
A = {the outcome is even} = {2,4,6}
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Probability of Events: Axioms
•P is the Probability Mass function if it maps each 

event A, into a real number P(A), and:
i.)

ii.)  P(S) = 1

iii.)If A and B are mutually exclusive events then,                        

( ) 0 for every event P A A S≥ ⊆

( ) ( ) ( )P A B P A P B∪ = +BA

φ=∩ BA
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Probability of Events

…In fact for any sequence of pair-wise-mutually-
exclusive events,  we have                
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Detour: 
Approximations/Bounds/Inequalities

Why? A large part of information theory consists in finding
bounds on certain performance measures 
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Approximations/Bounds: Union Bound

Applications: 
Getting bounds on BER (bit-error rates), 
In general, bounding the tails of prob. distributions

We will use this in the analysis of error probabilities with various coding 
schemes
(see chap 3, Tse/Viswanath)

A B

P(A ∪ B) <= P(A) + P(B) 
P(A1 ∪ A2 ∪ … AN) <= Σi= 1..N P(Ai)
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Approximations/Bounds: log(1+x)

log2(1+x) ≈ x for small x

Application: Shannon capacity w/ AWGN noise: 
Bits-per-Hz = C/B = log2(1+ γ)
If we can increase SNR (γ) linearly when γ is small 

(i.e. very poor, eg: cell-edge)…
… we get a linear increase in capacity. 

When γ is large, of course increase in γ gives only a 
diminishing return in terms of capacity: log (1+ γ)
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Approximations/Bounds: Jensen’s Inequality

Second derivative > 0
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Schwartz Inequality & Matched Filter
Inner Product (aTx) <= Product of Norms (i.e. |a||x|)

Projection length <= Product of Individual Lengths
This is the Schwartz Inequality!

Equality happens when a and x are in the same direction (i.e. cosθ = 1, 
when θ = 0)

Application: “matched” filter
Received vector y = x + w (zero-mean AWGN)
Note: w is infinite dimensional
Project y to the subspace formed by the finite set of transmitted symbols
x: y’
y’ is said to be a “sufficient statistic” for detection, i.e. reject the noise 
dimensions outside the signal space. 
This operation is called “matching” to the signal space (projecting)
Now, pick the x which is closest to y’ in distance (ML detection = 
nearest neighbor)
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Back to Probability…
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Conditional Probability
( | )P A B• = (conditional) probability that the 

outcome is in A given that we know the 
outcome in B

•Example: Toss one die.

•Note that:

( )( | )          ( ) 0
( )

P ABP A B P B
P B

= ≠

( 3 | i is odd)=P i =

( ) ( ) ( | ) ( ) ( | )P AB P B P A B P A P B A= =
What is the value of knowledge that B occurred ?
How does it reduce uncertainty about A? 
How does it change P(A) ?
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Independence
Events A and B are independent if P(AB) = P(A)P(B).
Also: and 
Example: A card is selected at random from an ordinary 
deck of cards. 

A=event that the card is an ace. 
B=event that the card is a diamond.

( )P AB =

( )P A =

( ) ( )P A P B =

( )P B =

( | ) ( )P A B P A= ( | ) ( )P B A P B=
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Random Variable as a Measurement
Thus a random variable can be thought of as a 
measurement (yielding a real number) on an experiment

Maps “events” to “real numbers”
We can then talk about the pdf, define the 
mean/variance and other moments 



Shivkumar KalyanaramanRensselaer Polytechnic Institute

16 : “shiv rpi”

00
11
22
33
44
55

Histogram: Plotting Frequencies
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Probability Distribution Function (pdf): 
continuous version of histogram 

a.k.a. frequency histogram, p.m.f (for discrete r.v.)
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Continuous Probability Density Function

1. Mathematical Formula

2. Shows All Values, x, & 
Frequencies, f(x)

f(X) Is Not Probability

3. Properties

(Area Under Curve)(Area Under Curve)
ValueValue

(Value, Frequency)(Value, Frequency)

FrequencyFrequency

f(x)f(x)

aa bb
xxff xx dxdx(( ))

All All XX
∫ == 11

ff ((xx )) ≥≥ aa ≤≤ x x ≤≤ bb0,0,
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Cumulative Distribution Function

The cumulative distribution function (CDF) for a random 
variable X is 

Note that            is non-decreasing in x, i.e.

Also and 

( ) ( ) ({ | ( ) })XF x P X x P s S X s x= ≤ = ∈ ≤
( )XF x

1 2 1 2( ) ( )x xx x F x F x≤ ⇒ ≤

lim ( ) 1xx
F x

→∞
=lim ( ) 0xx

F x
→−∞

=
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Probability density functions (pdf)
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Lognorm al(0 ,1)
G am m a(.53 ,3)
E x pone ntia l(1 .6 )
W e ibu ll(.7 ,.9 )
P are to (1 ,1 .5)

Emphasizes main body of distribution, frequencies, 
various modes (peaks), variability, skews
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Cumulative Distribution Function (CDF)
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Emphasizes skews, easy identification of median/quartiles, 
converting uniform rvs to other distribution rvs

median
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Complementary CDFs (CCDF)

10 -1 10 0 10 1 10 2
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lo
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P are to II(1 ,1 .5 )
P are to I(0 .1 ,1 .5)

Useful for focussing on “tails” of distributions: 
Line in a log-log plot => “heavy” tail
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Numerical Data Properties

Central Tendency Central Tendency 
(Location)(Location)

Variation Variation 
(Dispersion)(Dispersion)

ShapeShape
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Numerical Data
Properties & Measures

Numerical Data
Properties

MeanMean

MedianMedian

ModeMode

Central
Tendency

RangeRange

VarianceVariance

Standard DeviationStandard Deviation

Variation

SkewSkew

Shape

InterquartileInterquartile RangeRange
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Expectation of a Random Variable: E[X]
The expectation (average) of a (discrete-valued) random variable X is

( ) ( ) ( )Xx
X E X xP X x xP x

∞ ∞

=−∞ −∞
= = Σ = = Σ
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Continuous-valued Random Variables

Thus, for a continuous random variable X, we can 
define its probability density function (pdf)

Note that since is non-decreasing in x we 
have 

for all x.

' ( )( ) ( ) X
Xx

dF xf x F x
dx

= =

( )XF x

( ) 0Xf x ≥
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Expectation of a Continuous Random 
Variable

The expectation (average) of a continuous random variable X is given by

Note that this is just the continuous equivalent of the discrete expectation

( ) ( )XE X xf x dx
∞

−∞

= ∫

( ) ( )Xx
E X xP x

∞

=−∞
= Σ
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Other Measures: Median, Mode
Median = F-1 (0.5), where F = CDF

Aka 50% percentile element
I.e. Order the values and pick the middle element
Used when distribution is skewed
Considered a “robust” measure

Mode: Most frequent or highest probability value
Multiple modes are possible
Need not be the “central” element
Mode may not exist (eg: uniform distribution)
Used with categorical variables
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Indices/Measures of Spread/Dispersion: Why Care?

You can drown in a river of average depth 6 inches!

Lesson: The measure of uncertainty or dispersion may 
matter more than the index of central tendency
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Variance: second moment around the mean: 
σ2 = E[(X-μ)2]

Standard deviation = σ

Coefficient of Variation (C.o.V.)= σ/μ
SIQR= Semi-Inter-Quartile Range (used with median 
= 50th percentile)

(75th percentile – 25th percentile)/2

Standard Deviation, Coeff. Of Variation, 
SIQR
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Covariance and Correlation: Measures of 
Dependence

Covariance: = 

For i = j, covariance = variance!
Independence => covariance = 0 (not vice-versa!)

Correlation (coefficient) is a normalized (or scaleless) form of 
covariance:

Between –1 and +1. 
Zero => no correlation (uncorrelated). 
Note: uncorrelated DOES NOT mean independent!



Shivkumar KalyanaramanRensselaer Polytechnic Institute

33 : “shiv rpi”

Random Vectors & Sum of R.V.s
Random Vector = [X1, …, Xn], where Xi = r.v.
Covariance Matrix:

K is an nxn matrix…
Kij = Cov[Xi,Xj]
Kii = Cov[Xi,Xi] = Var[Xi] 

Sum of independent R.v.s
Z = X + Y
PDF of Z is the convolution of PDFs of X and Y

Can use transforms!
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Characteristic Functions & Transforms

Characteristic function: a special kind of expectation

Captures all the moments, and is related to the IFT of pdf:



Shivkumar KalyanaramanRensselaer Polytechnic Institute

35 : “shiv rpi”

Important (Discrete) Random Variable: 
Bernoulli

The simplest possible measurement on an experiment: 
Success (X = 1) or failure (X = 0).

Usual notation:

E(X)=

(1) ( 1)         (0) ( 0) 1X XP P X p P P X p= = = = = = −
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Binomial Distribution
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X

P(X) n = 5  p = 0.5

n = 5  p = 0.1

μ

σ

= =

= −

E x np

np p

( )

( )1

MeanMean

Standard DeviationStandard Deviation
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Binomial can be skewed or normal

Depends upon
p and n !
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Binomials for different p, N =20
Distribution of Blocks Experiencing k losses out of N
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10% PER 30% PER

50% PER

Npq = 1.8 Npq = 4.2

Npq = 5

As Npq >> 1, better approximated by normal 
distribution (esp) near the mean: 

⇒symmetric, sharp peak at mean, exponential-
square (e-x^2) decay of tails 

(pmf concentrated near mean)
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Important Random Variable:
Poisson

A Poisson random variable X is defined by its PMF: (limit of binomial)

Where > 0 is a constant
Exercise: Show that

and E(X) = 

Poisson random variables are good for counting frequency of occurrence:
like the number of customers that arrive to a bank in one hour, or the 
number of packets that arrive to a router in one second.

0
( ) 1 Xx

P x
∞

=
Σ =

( )             0,1,2,...
!

x

P X x e x
x

λλ −= = =

λ

λ
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Important Continuous Random 
Variable: Exponential

Used to represent time, e.g. until the next arrival
Has PDF

for some    > 0
Properties:

Need to use integration by Parts!
0

1( ) 1   and    ( )Xf x dx E X
λ

∞

= =∫

for x  0
0 for x < 0( ) {         

xe
Xf x

λλ − ≥=

λ
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Gaussian/Normal Distribution

References:
Appendix A.1 (Tse/Viswanath)
Appendix B (Goldsmith)
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Gaussian/Normal

Normal Distribution:
Completely characterized by 
mean (μ) and variance (σ2)

Q-function: one-sided tail of 
normal pdf

erfc(): two-sided tail. 
So: 
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Normal Distribution: Why?

Uniform distribution
looks nothing like 
bell shaped (gaussian)!
Large spread (σ)!

Sum of r.v.s from a uniform 
distribution after very few samples 
looks remarkably normal
BONUS: it has decreasing σ !

CENTRAL LIMIT TENDENCY!
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Gaussian: Rapidly Dropping Tail Probability!

Why? Doubly exponential PDF (e-z^2 term…)
A.k.a: “Light tailed” (not heavy-tailed). 
No skew or tail => don’t have two worry 

about > 2nd order parameters (mean, variance)
Fully specified with just mean and variance (2nd order)
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Height & Spread of Gaussian Can Vary!
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Gaussian R.V.

Standard Gaussian :

Tail: Q(x)
tail decays exponentially!

Gaussian property preserved
w/ linear transformations:
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Standardize the
Normal Distribution

Xμ

σ

One table!One table!

Normal 
Distribution
Normal 
Distribution

μ = 0

σ = 1

Z

Z X
=

− μ
σ Standardized 

Normal Distribution
Standardized 

Normal Distribution
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Zμ= 0

σ = 1

.12

Z .00 .01

0.0 .0000 .0040 .0080

.0398 .0438

0.2 .0793 .0832 .0871

0.3 .1179 .1217 .1255

.0478.0478.0478

Obtaining the Probability

.02.02

0.10.1 .0478

Standardized Normal 
Probability Table (Portion)
Standardized Normal Standardized Normal 
Probability Table (Portion)Probability Table (Portion)

ProbabilitiesProbabilitiesProbabilities
Shaded area 
exaggerated
Shaded area Shaded area 
exaggeratedexaggerated
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Example
P(X ≥ 8)

Xμ = 5

σ = 10

8

Normal 
Distribution
Normal Normal 
DistributionDistribution

Standardized 
Normal Distribution

Standardized Standardized 
Normal DistributionNormal Distribution

Z X
=

−
=

−
=

μ
σ

8 5
10

30.

Zμ = 0

σ = 1

.30
.1179.1179.1179

.5000.5000
.3821.3821.3821

Shaded area exaggeratedShaded area exaggeratedShaded area exaggerated
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Q-function: 
Tail of Normal 

Distribution

Q(z) = P(Z > z) = 1 – P[Z < z]
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μ  = 50

σ = 10

X

Central Tendency

Dispersion

Sampling with 
replacement

Central Tendency

Dispersion

Sampling with 
replacement

Population DistributionPopulation Distribution

Sampling DistributionSampling Distribution

Sampling from Non-Normal Populations

σ
σ

x n
=

μ μx =

μX = 50- X

n =30
σ⎯X = 1.8

n = 4
σ⎯X = 5
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XX

Central Limit Theorem (CLT)

As As 
sample sample 
size gets size gets 
large large 
enough enough 
(n (n ≥≥ 30) ...30) ...
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XX

Central Limit Theorem (CLT)

As As 
sample sample 
size gets size gets 
large large 
enough enough 
(n (n ≥≥ 30) ...30) ...

sampling sampling 
distribution distribution 
becomes becomes 
almostalmost
normal.normal.

σ
σ

x n
=

μ μx =
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Aside: Caveat about CLT
Central limit theorem works if original distribution are not
heavy tailed

Need to have enough samples. Eg: with multipaths, if there 
is not rich enough scattering, the convergence to normal 
may have not happened yet

Moments converge to limits
Trouble with aggregates of “heavy tailed” distribution samples
Rate of convergence to normal also varies with distributional 
skew, and dependence in samples 

Non-classical version of CLT for some cases (heavy tailed)…
Sum converges to stable Levy-noise (heavy tailed and long-
range dependent auto-correlations)
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Gaussian Vectors &
Other Distributions

References:
Appendix A.1 (Tse/Viswanath)
Appendix B (Goldsmith)
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Gaussian Vectors (Real-Valued)

Collection of i.i.d. gaussian r.vs:

Euclidean distance from the origin to w

The density f(w) depends only on the magnitude of w, i.e. ||w||2

Orthogonal transformation O (i.e., OtO = OOt = I) preserves the 
magnitude of a vector
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2-d Gaussian Random Vector 

Level sets (isobars) are circles

• w has the same distribution in any orthonormal basis.
• Distribution of w is invariant to rotations and reflections i.e. Qw ~ w 

• w does not prefer any specific direction (“isotropic”)
• Projections of the standard Gaussian random vector in orthogonal directions 
are independent.
• sum of squares of n i.i.d. gaussian r.v.s => , exponential 
for n = 2 
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Gaussian Random Vectors (Contd)
Linear transformations of the standard gaussian vector:

pdf: has covariance matrix K = AAt in the quadratic form instead of σ2

When the covariance matrix K is diagonal, i.e., the component random 
variables are uncorrelated. Uncorrelated + gaussian => independence. 

“White” gaussian vector => uncorrelated, or K is diagonal
Whitening filter => convert K to become diagonal (using eigen-

decomposition)

Note: normally AWGN noise has infinite components, but it is projected onto 
a finite signal space to become a gaussian vector
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Gaussian Random 
Vectors 

(uncorrelated vs
correlated)
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Complex Gaussian R.V: Circular Symmetry

A complex Gaussian random variable X whose real and 
imaginary components are i.i.d. gaussian
… satisfies a circular symmetry property: 

ejφX has the same distribution as X for any φ.
ejφ multiplication: rotation in the complex plane.

We shall call such a random variable circularly symmetric 
complex Gaussian, 

…denoted by CN(0, σ2), where σ2 = E[|X|2].
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Complex Gaussian & Circular Symmetry (Contd)

Covariance matrix:
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Complex Gaussian: Summary (I)
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Complex Gaussian Vectors: Summary

We will often see equations like: 
Here, we will make use of the fact 

that projections of w are complex gaussian, i.e.:
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Related Distributions

X = [X1, …, Xn] is Normal
||X|| is Rayleigh { eg: magnitude of a complex gaussian channel X1 + jX2 }
||X||2 is Chi-Squared w/ n-degrees of freedom

When n = 2, chi-squared becomes exponential. {eg: power in 
complex gaussian channel: sum of squares…}
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Chi-Squared Distribution

Sum of squares of n normal variables: Chi-squared
For n =2, it becomes an exponential distribution. 
Becomes bell-shaped for larger n 
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Maximum Likelihood (ML) Detection: 
Concepts

Reference:
Mackay, Information Theory, 
http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html
(chap 3, online book)

http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html


Shivkumar KalyanaramanRensselaer Polytechnic Institute

67 : “shiv rpi”

Likelihood Principle

Experiment:
Pick Urn A or Urn B at random
Select a ball from that Urn. 

The ball is black. 
What is the probability that the selected Urn is A?
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Likelihood Principle (Contd)

Write out what you know!
P(Black | UrnA) = 1/3
P(Black | UrnB) = 2/3
P(Urn A) = P(Urn B) = 1/2
We want P(Urn A | Black).
Gut feeling: Urn B is more likely than Urn A (given that the ball is black). 
But by how much? 
This is an inverse probability problem.

Make sure you understand the inverse nature of the conditional 
probabilities!

Solution technique: Use Bayes Theorem.
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Likelihood Principle (Contd)
Bayes manipulations: 
P(Urn A | Black) = 

P(Urn A and Black) /P(Black)
Decompose the numerator and denomenator in terms of the probabilities we know.

P(Urn A and Black) = P(Black | UrnA)*P(Urn A) 
P(Black) = P(Black| Urn A)*P(Urn A) + P(Black| UrnB)*P(UrnB) 

We know all these values (see prev page)! Plug in and crank.
P(Urn A and Black) = 1/3 * 1/2 
P(Black) = 1/3 * 1/2 + 2/3 * 1/2  = 1/2
P(Urn A and Black) /P(Black)  = 1/3  = 0.333
Notice that it matches our gut feeling that Urn A is less likely, once we have seen black.

The information that the ball is black has CHANGED !
From P(Urn A) = 0.5 to P(Urn A | Black) = 0.333
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Likelihood Principle

Way of thinking…
Hypotheses: Urn A or Urn B ? 
Observation: “Black”
Prior probabilities: P(Urn A) and P(Urn B)
Likelihood of Black given choice of Urn: {aka forward probability}

P(Black | Urn A) and P(Black | Urn B)
Posterior Probability: of each hypothesis given evidence

P(Urn A | Black) {aka inverse probability}
Likelihood Principle (informal): All inferences depend ONLY on 

The likelihoods P(Black | Urn A) and P(Black | Urn B), and 
The priors P(Urn A) and P(Urn B)

Result is a probability (or distribution) model over the space of possible hypotheses. 



Shivkumar KalyanaramanRensselaer Polytechnic Institute

71 : “shiv rpi”

Maximum Likelihood (intuition)
Recall: 
P(Urn A | Black) = P(Urn A and Black) /P(Black) =

P(Black | UrnA)*P(Urn A) / P(Black)

P(Urn? | Black) is maximized when P(Black | Urn?) is maximized. 
Maximization over the hypotheses space (Urn A or Urn B)

P(Black | Urn?) = “likelihood”
=> “Maximum Likelihood” approach to maximizing posterior probability
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Maximum Likelihood: intuition

This hypothesis has the highest (maximum)
likelihood of explaining the data observed

Max likelihood
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Maximum Likelihood (ML): mechanics

Independent Observations (like Black): X1, …, Xn

Hypothesis θ
Likelihood Function: L(θ) = P(X1, …, Xn | θ) = Πi P(Xi | θ) 

{Independence => multiply individual likelihoods}
Log Likelihood LL(θ) = Σi log P(Xi | θ) 
Maximum likelihood: by taking derivative and setting to zero 
and solving for θ

Maximum A Posteriori (MAP): if non-uniform prior 
probabilities/distributions 

Optimization function 

P
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Back to Urn example
In our urn example, we are asking: 

Given the observed data “ball is black”…
…which hypothesis (Urn A or Urn B) has the highest likelihood of 
explaining this observed data?
Ans from above analysis: Urn B

Note: this does not give the posterior probability P(Urn A | Black), 
but quickly helps us choose the best hypothesis (Urn B) that would explain 
the data…

More examples: (biased coin etc)
http://en.wikipedia.org/wiki/Maximum_likelihood
http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html
(chap 3)

http://en.wikipedia.org/wiki/Maximum_likelihood
http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html
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Not Just Urns and Balls: 
Detection of signal in AWGN

Detection problem:
Given the observation vector      , perform a mapping from    
to an estimate       of the transmitted symbol,     , such that 
the average probability of error in the decision is 
minimized.

m̂ im

Modulator Decision rule m̂im zis
n

z z
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Binary PAM + AWGN Noise

)|( 1mp zz

)(1 tψ
bEbE− 0
1s2s

)|( 1mp zz
)|( 2mp zz

Signal s1 or s2 is sent. z is received
Additive white gaussian noise (AWGN) => the likelihoods are

bell-shaped pdfs around s1 and s2

MLE => at any point on the x-axis, see which curve (blue or red) 
has a higher (maximum) value and select the corresponding
signal (s1 or s2) : simplifies into a “nearest-neighbor” rule

)|( 2mp zz
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AWGN Nearest Neighbor Detection

Projection onto the signal directions (subspace) is called matched filtering to 
get the “sufficient statistic”
Error probability is the tail of the normal distribution (Q-function), based 
upon the mid-point between the two signals
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Detection in AWGN: Summary
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Vector detection (contd)
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Estimation

References:
• Appendix A.3 (Tse/Viswanath)
• Stark & Woods, Probability and Random Processes with Applications to 
Signal Processing, Prentice Hall, 2001
• Schaum's Outline of Probability, Random Variables, and Random Processes
• Popoulis, Pillai, Probability, Random Variables and Stochastic Processes, 
McGraw-Hill, 2002. 
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Detection vs Estimation
In detection we have to decide which symbol was transmitted 
sA or sB

This is a binary (0/1, or yes/no) type answer, with an 
associated error probability

In estimation, we have to output an estimate h’ of a transmitted 
signal h. 

This estimate is a complex number, not a binary answer.
Typically, we try to estimate the complex channel h, so that 
we can use it in coherent combining (matched filtering)
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Estimation in AWGN: MMSE

Performance criterion: mean-squared error (MSE)

Optimal estimator is the “conditional mean” of x given the observation y 
Gives Minimum Mean-Square Error (MMSE)

Satisfies orthogonality property: 
Error independent of observation:

But, the conditional mean is a non-linear operator
It becomes linear if x is also gaussian. 
Else, we need to find the best linear approximation (LMMSE)!

Need:
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LMMSE

We are looking for a linear estimate: x = cy
The best linear estimator, i.e. weighting coefficient c is:

We are weighting the received signal y by the transmit 
signal energy as a fraction of the received signal energy.

The corresponding error (MMSE) is:
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LMMSE: Generalization & Summary
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Random Processes

References:
• Appendix B (Goldsmith)
• Stark & Woods, Probability and Random Processes with Applications to 
Signal Processing, Prentice Hall, 2001
• Schaum's Outline of Probability, Random Variables, and Random Processes
• Popoulis, Pillai, Probability, Random Variables and Stochastic Processes, 
McGraw-Hill, 2002. 
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Random Sequences and Random Processes
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Random process
A random process is a collection of time functions, or signals, 
corresponding to various outcomes of a random experiment. For each 
outcome, there exists a deterministic function, which is called a sample 
function or a realization.

Sample functions
or realizations
(deterministic

function)

Random 
variables

time (t)

R
ea

l n
um

be
r
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Specifying a Random Process
A random process is defined by all its joint CDFs

for all possible sets of sample times 

t0 t1
t2

tn…
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Stationarity
If time-shifts (any value T) do not affect its joint CDF

t0
t1

t2

tn… t0 + T t1+T t2+T 
tn+T

…
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Weak Sense Stationarity (wss)

Keep only above two properties (2nd order stationarity)…
Don’t insist that higher-order moments or higher order joint CDFs be 
unaffected by lag T

With LTI systems, we will see that WSS inputs lead to WSS outputs, 
In particular, if a WSS process with PSD SX(f) is passed through a linear time-
invariant filter with frequency response H(f), then the filter output is also a WSS 
process with power spectral density |H(f)|2SX(f).

Gaussian w.s.s. = Gaussian stationary process (since it only has 2nd order 
moments)
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Stationarity: Summary
Strictly stationary: If none of the statistics of the random process are affected by a shift 
in the time origin.

Wide sense stationary (WSS): If the mean and autocorrelation function do not change
with a shift in the origin time. 

Cyclostationary: If the mean and autocorrelation function are periodic in time.
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Ergodicity
Time averages = Ensemble averages

[i.e. “ensemble” averages like mean/autocorrelation can be computed as “time-
averages” over a single realization of the random process]
A random process: ergodic in mean and autocorrelation (like w.s.s.) if 

and     

Time average

Ensemble average

E[X(t)]
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Autocorrelation: Summary
Autocorrelation of an energy signal

Autocorrelation of a power signal

For a periodic signal:

Autocorrelation of a random signal

For a WSS process: 
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Power Spectral Density (PSD)

1. SX(f) is real and SX(f) ≥ 0
2. SX(-f) = SX(f) 
3. AX(0) = ∫ SX(ω) dω
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For a deterministic signal x(t), the spectrum is well defined: If             
represents its Fourier transform, i.e., if

then                 represents its energy spectrum. This follows from 
Parseval’s theorem since the signal energy is given by

Thus represents the signal energy in the band

( )X ω

 
( ) ( ) ,j tX x t e dtωω

+∞ −

−∞
= ∫

2| ( ) |X ω

  2 2
  

1
2( ) | ( ) | .x t dt X d Eπ ω ω

+∞ +∞

−∞ −∞
= =∫ ∫

2| ( ) |X ω ωΔ ( , )ω ω ω+ Δ

Power Spectrum

t0

( )X t

ω
ω0

2| ( )|X ω
Energy in     ( , )ω ω ω+Δ

ω ω+ Δ
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Spectral density: Summary
Energy signals:

Energy spectral density (ESD): 

Power signals:

Power spectral density (PSD):

Random process:
Power spectral density (PSD): 

Note: we have used f for ω and Gx for Sx
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Properties of an autocorrelation function

For real-valued (and WSS for random signals):
1. Autocorrelation and spectral density form a Fourier 

transform pair. RX(τ) ↔ SX(ω)
2. Autocorrelation is symmetric around zero. RX(-τ) = RX(τ) 
3. Its maximum value occurs at the origin. |RX(τ)| ≤ RX(0) 
4. Its value at the origin is equal to the average power or 

energy.
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Noise in communication systems
Thermal noise is described by a zero-mean Gaussian random process, 
n(t).
Its PSD is flat, hence, it is called white noise. IID gaussian. 

[w/Hz]

Probability density function

Power spectral 
density

Autocorrelation 
function
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White Gaussian Noise
White: 

Power spectral density (PSD) is the same, i.e. flat, for all frequencies of 
interest (from dc to 1012 Hz)
Autocorrelation is a delta function => two samples no matter however 
close are uncorrelated.

N0/2 to indicate two-sided PSD
Zero-mean gaussian completely characterized by its variance (σ2)
Variance of filtered noise is finite = N0/2

Similar to “white light” contains equal amounts of all frequencies in the 
visible band of EM spectrum

Gaussian + uncorrelated => i.i.d.
Affects each symbol independently: memoryless channel

Practically: if b/w of noise is much larger than that of the system: good 
enough
Colored noise: exhibits correlations at positive lags
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Signal transmission w/ linear systems (filters)

Deterministic signals:
Random signals:

Input Output
Linear system

Ideal distortion less transmission:
• All the frequency components of the signal not only arrive 
with an identical time delay, but also amplified or attenuated 
equally. 
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(Deterministic) Systems with Stochastic Inputs
A deterministic system1 transforms each input waveform              into
an output waveform                                   by operating only on the 
time variable t. Thus a set of realizations at the input corresponding 
to a process X(t) generates a new set of realizations                at the 
output associated with a new process Y(t).

),( itX ξ
)],([),( ii tXTtY ξξ =

)},({ ξtY

Our goal is to study the output process statistics in terms of the input
process statistics and the system function.

1A stochastic system on the other hand operates on both the variables t and .ξ

PILLAI/Cha

][⋅T⎯⎯ →⎯ )(tX ⎯⎯→⎯ )(tY

t t

),(
i

tX ξ
),(

i
tY ξ

Fig. 14.3
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Deterministic Systems

Systems with Memory

Time-Invariant
systems

Linear systems

Linear-Time Invariant
(LTI) systems

Memoryless Systems
)]([)( tXgtY =

)]([)( tXLtY =
Time-varying

systems
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LTI system
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LTI system
h(t)

Linear system

wide-sense 
stationary process

strict-sense 
stationary process

Gaussian
process (also
stationary)

wide-sense 
stationary process.

strict-sense
stationary process

Gaussian process
(also stationary)

)(tX )(tY

LTI system
h(t)

)(tX

)(tX

)(tY

)(tY

(a)

(b)

(c)

LTI Systems: WSS input good enough
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White Noise Process & LTI Systems
W(t) is said to be a white noise process if 

i.e.,  E[W(t1) W*(t2)] = 0  unless t1 = t2.
W(t) is said to be wide-sense stationary (w.s.s) white noise 
if E[W(t)] = constant, and 

If W(t) is also a Gaussian process (white Gaussian process), then all 
of its samples are independent random variables

),()(),( 21121 tttqttRWW −= δ

).()(),( 2121 τδδ qttqttRWW =−=

White noise
W(t)

LTI
h(t)

Colored noise
( ) ( ) ( )N t h t W t= ∗
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Summary
Probability, union bound, bayes rule, maximum likelihood
Expectation, variance, Characteristic functions
Distributions: Normal/gaussian, Rayleigh, Chi-squared, 
Exponential
Gaussian Vectors, Complex Gaussian

Circular symmetry vs isotropy
Random processes: 

stationarity, w.s.s., ergodicity
Autocorrelation, PSD, white gaussian noise
Random signals through LTI systems: 

gaussian & wss useful properties that are preserved.
Frequency domain analysis possible
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