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Linear Algebra for Communications: 
A gentle introduction

Linear Algebra has become as basic and as applicable 
as calculus, and fortunately it is easier.

--Gilbert Strang, MIT

Shivkumar Kalyanaraman
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Outline
What is linear algebra, really? Vector? Matrix? Why care?
Basis, projections, orthonormal basis
Algebra operations: addition, scaling, multiplication, inverse
Matrices: translation, rotation, reflection, shear, projection etc

Symmetric/Hermitian, positive definite matrices
Decompositions: 

Eigen-decomposition: eigenvector/value, invariants
Singular Value Decomposition (SVD). 

Sneak peeks: how do these concepts relate to communications 
ideas: fourier transform, least squares, transfer functions, 
matched filter, solving differential equations etc
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What is “Linear” & “Algebra”?
Properties satisfied by a line through the origin (“one-dimensional 
case”. 

A directed arrow from the origin (v) on the line, when scaled by a 
constant (c) remains on the line
Two directed arrows (u and v) on the line can be “added” to 
create a longer directed arrow (u + v) in the same line.

Wait a minute! This is nothing but arithmetic with symbols!
“Algebra”: generalization and extension of arithmetic. 
“Linear” operations: addition and scaling. 

Abstract and Generalize !
“Line” ↔ vector space having N dimensions
“Point” ↔ vector with N components in each of the N 
dimensions (basis vectors). 

Vectors have: “Length” and “Direction”.
Basis vectors: “span” or define the space & its 
dimensionality.

Linear function transforming vectors ↔ matrix.
The function acts on each vector component and scales it
Add up the resulting scaled components to get a new vector!
In general: f(cu + dv) = cf(u) + df(v)
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What is a Vector ?
Think of a vector as a directed line 
segment in N-dimensions! (has “length”
and “direction”)

Basic idea: convert geometry in higher 
dimensions into algebra!

Once you define a “nice” basis along 
each dimension: x-, y-, z-axis …
Vector becomes a 1 x N matrix!
v = [a  b  c]T

Geometry starts to become linear 
algebra on vectors like v!
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Examples of Geometry becoming Algebra

Lines are vectors through the origin, scaled and translated: mx
+ c

Intersection of lines can be modeled as addition of vectors: solution of 
linear equations. 

Linear transformations of vectors can be associated with a 
matrix A, whose columns represent how each basis vector is 
transformed.
Ellipses and conic sections: 

ax2 + 2bxy + cy2 = d
Let x = [x y]T and A is a symmetric matrix with rows [a b]T and [b c]T

xTAx = c {quadratic form equation for ellipse!}
This becomes convenient at higher dimensions 

Note how a symmetric matrix A naturally arises from such a 
homogenous multivariate equation…
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Scalar vs Matrix Equations

Line equation: y = mx + c
Matrix equation: y = Mx + c

Second order equations: 
xTMx = c
y = (xTMx)u + Mx

… involves quadratic forms like xTMx
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Vector Addition: A+B
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A+B = C
(use the head-to-tail method 

to combine vectors)

A+B
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Scalar Product: av

),(),( 2121 axaxxxaa ==v

vv
avav

Change only the length (“scaling”), but keep direction fixed.

Sneak peek: matrix operation (Av) can change length, 
direction and also dimensionality!
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Vectors: Magnitude (Length) and Phase (direction)
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Alternate representations:
Polar coords: (||v||, θ)
Complex numbers: ||v||ejθ

“phase”
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(Magnitude or “2-norm”)

(unit vector => pure direction)
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Inner (dot) Product: v.w or wTv
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The inner product is a The inner product is a SCALAR!SCALAR!

αcos||||||||),).(,(. 2121 wvyyxxwv ⋅==

wvwv ⊥⇔= 0. 

If vectors v, w are “columns”, then dot product is wTv
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Inner Products, Norms: Signal space
Signals modeled as vectors in a vector space: “signal space”
To form a signal space, first we need to know the inner product
between two signals (functions):

Inner (scalar) product: (generalized for functions)

Properties of inner product:
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Signal space …
The distance in signal space is measure by calculating the norm.
What is norm?

Norm of a signal (generalization of “length”):

Norm between two signals:

We refer to the norm between two signals as the Euclidean 
distance between two signals.
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Example of distances in signal space
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Detection in 
AWGN noise: 

Pick the “closest”
signal vector
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Bases & Orthonormal Bases
Basis (or axes): frame of reference

vs

Basis: a space is totally defined by a set of vectors – any point is a linear 
combination of the basis

Ortho-Normal: orthogonal + normal

[Sneak peek: 
Orthogonal: dot product is zero
Normal: magnitude is one ] 0
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Projections w/ Orthogonal Basis
Get the component of the vector on each axis: 

dot-product with unit vector on each axis! 

Sneak peek: this is what Fourier transform does!
Projects a function onto a infinite number of orthonormal basis functions: 
(ejω or ej2πnθ), and adds the results up (to get an equivalent “representation”
in the “frequency” domain).

CDMA codes are “orthogonal”, and projecting the composite received 
signal on each code helps extract the symbol transmitted on that code. 
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Sender Receiver

Code A

A

Code B

B

A
B

AB
C

BC

A

Code A

A
B

C

Time

Fr
eq

ue
nc

y

BC

B

A

Base-band Spectrum Radio Spectrum

spread spectrum

Orthogonal Projections: CDMA, Spread Spectrum

Each “code” is an orthogonal basis vector => signals sent are orthogonal
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What is a Matrix?

A matrix is a set of elements, organized into rows and 
columns
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What is a Matrix? (Geometrically)
Matrix represents a linear function acting on vectors:

Linearity (a.k.a. superposition): f(au + bv) = af(u) + bf(v)
f transforms the unit x-axis basis vector i = [1 0]T to [a c]T

f transforms the unit y-axis basis vector j = [0 1]T to [b d]T

f can be represented by the matrix with [a c]T and [b d]T as columns
Why? f(w = mi + nj) = A[m n]T

Column viewpoint: focus on the columns of the matrix!

[a,c]T

[1,0]T

[0,1]T

⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

[b,d]T

Linear Functions f : Rotate and/or stretch/shrink the basis vectors
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Matrix operating on vectors
Matrix is like a function that transforms the vectors on a plane
Matrix operating on a general point => transforms x- and y-components
System of linear equations: matrix is just the bunch of coeffs !  

x’ = ax + by 
y’ = cx + dy

Vector (column) viewpoint: 
New basis vector [a c]T is scaled by x, and added to:
New basis vector [b d]T scaled by y
i.e. a linear combination of columns of A to get [x’ y’]T

For larger dimensions this “column” or vector-addition viewpoint is better than the 
“row” viewpoint involving hyper-planes (that intersect to give a solution of a set of 
linear equations)
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Vector Spaces, Dimension, Span
Another way to view Ax = b, is that a solution exists for all vectors b that lie in the 
“column space” of A, 

i.e. b is a linear combination of the basis vectors represented by the columns of 
A
The columns of A “span” the “column” space
The dimension of the column space is the column rank (or rank) of matrix A. 

In general, given a bunch of vectors, they span a vector space. 
There are some “algebraic” considerations such as closure, zero etc
The dimension of the space is maximal only when the vectors are linearly 
independent of the others. 
Subspaces are vector spaces with lower dimension that are a subset of the 
original space

Sneak Peek: linear channel codes (eg: Hamming, Reed-solomon, BCH) can be 
viewed as k-dimensional vector sub-spaces of a larger N-dimensional space. 

k-data bits can therefore be protected with N-k parity bits
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Forward Error Correction (FEC): 
Eg: Reed-Solomon RS(N,K)

Data = K

FEC (N-K)

Block 
Size 
(N)

RS(N,K) >= K of N
received

Lossy Network

Recover K 
data packets!

This is linear algebra in action: design an appropriate 
k-dimensional vector sub-space out of an

N-dimensional vector space
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Matrices: Scaling, Rotation, Identity
Pure scaling, no rotation => “diagonal matrix” (note: x-, y-axes could be scaled differently!)
Pure rotation, no stretching => “orthogonal matrix” O
Identity (“do nothing”) matrix = unit scaling, no rotation!

[cosθ, sinθ]T

[1,0]T

[0,1]T

θ

[-sinθ, cosθ]T

cosθ -sinθ
sinθ cosθ

[1,0]T

[0,1]T

r1 0
0    r2

[r1,0]T

[0,r2]T

scaling

rotation
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Scaling

PP

PP’’

r 0
0    r

a.k.a: dilation (r >1), 
contraction (r <1)



Shivkumar KalyanaramanRensselaer Polytechnic Institute

24 : “shiv rpi”

Rotation

PP

PP’’

cosθ -sinθ
sinθ cosθ
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Reflections
Reflection can be about any line or point. 
Complex Conjugate: reflection about x-axis 
(i.e. flip the phase θ to -θ)
Reflection => two times the projection 
distance from the line.
Reflection does not affect magnitude

Induced Matrix
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Orthogonal Projections: Matrices
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Shear Transformations

Hold one direction constant and transform (“pull”) the 
other direction

1 0
-0.5    1



Shivkumar KalyanaramanRensselaer Polytechnic Institute

28 : “shiv rpi”

2D Translation
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Basic Matrix Operations
Addition, Subtraction, Multiplication: creating new matrices (or functions)
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Just add elements

Just subtract elements

Multiply each row 
by each column
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Multiplication
Is AB = BA?  Maybe, but maybe not!

Matrix multiplication AB: apply transformation B first, and 
then again transform using A!
Heads up: multiplication is NOT commutative!

Note: If A and B both represent either pure “rotation” or 
“scaling” they can be interchanged (i.e. AB = BA)
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Multiplication as Composition…

Different!



Shivkumar KalyanaramanRensselaer Polytechnic Institute

32 : “shiv rpi”

Inverse of a Matrix
Identity matrix: 
AI = A
Inverse exists only for square 
matrices that are non-singular

Maps N-d space to another 
N-d space bijectively

Some matrices have an 
inverse, such that:
AA-1 = I
Inversion is tricky:
(ABC)-1 = C-1B-1A-1

Derived from non-
commutativity property
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Determinant of a Matrix
Used for inversion
If det(A) = 0, then A has no inverse
Can be found using factorials, pivots, and 
cofactors!
“Volume” interpretation

⎥
⎦

⎤
⎢
⎣

⎡
=

dc
ba

A

bcadA −=)det(

⎥
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=−
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bd

bcad
A 11

Sneak Peek: Determinant-criterion for 
space-time code design.

Good code exploiting time diversity 
should maximize the minimum 
product distance between codewords. 

Coding gain determined by min of 
determinant over code words. 
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Projection: Using Inner Products (I)

p = a (aTx)
||a|| = aTa = 1
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Projection: Using Inner Products (II)

Note: the “error vector” e = b-p
is orthogonal (perpendicular) to p. 
i.e. Inner product: (b-p)Tp = 0

“Orthogonalization” principle: after projection, the difference or “error” is 
orthogonal to the projection

Sneak peek : we use this idea to find a “least-squares” line that minimizes 
the sum of squared errors (i.e. min ΣeTe).

This is also used in detection under AWGN noise to get the “test statistic”:
Idea: project the noisy received vector y onto (complex) transmit vector h: 
“matched” filter/max-ratio-combining (MRC) 

p = a (aTb)/ (aTa)



Shivkumar KalyanaramanRensselaer Polytechnic Institute

36 : “shiv rpi”

Schwartz Inequality & Matched Filter
Inner Product (aTx) <= Product of Norms (i.e. |a||x|)

Projection length <= Product of Individual Lengths
This is the Schwartz Inequality!

Equality happens when a and x are in the same direction (i.e. cosθ = 1, 
when θ = 0)

Application: “matched” filter
Received vector y = x + w (zero-mean AWGN)
Note: w is infinite dimensional
Project y to the subspace formed by the finite set of transmitted symbols
x: y’
y’ is said to be a “sufficient statistic” for detection, i.e. reject the noise 
dimensions outside the signal space. 
This operation is called “matching” to the signal space (projecting)
Now, pick the x which is closest to y’ in distance (ML detection = 
nearest neighbor)
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Signal + AWGN noise will not reveal the original transmitted sequence. 
There is a high power of noise relative to the power of the desired signal  (i.e., low SNR).

If the receiver were to sample this signal at the correct times, the 
resulting binary message would have a lot of bit errors.

Matched Filter Receiver: Pictorially…

Transmitted Signal Received Signal (w/ Noise)
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Matched Filter (Contd)

Consider the received signal as a vector r, and the transmitted signal vector as s
Matched filter “projects” the r onto signal space spanned by s (“matches” it)

Filtered signal can now be safely sampled by the receiver at the correct sampling instants,
resulting in a correct interpretation of the binary message 

Matched filter is the filter that maximizes the  signal-to-noise ratio it can be 
shown that it also  minimizes the BER: it is a simple projection operation
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Matched Filter w/ Repetition Coding

hx1 only spans a 
1-dimensional space

Multiply by conjugate => cancel phase!

||h||
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Symmetric, Hermitian, Positive Definite
Symmetric: A = AT

Symmetric => square matrix
Complex vectors/matrices:

Transpose of a vector or a matrix with complex elements must involve a 
“conjugate transpose”, i.e. flip the phase as well.
For example: ||x||2 = xHx, where xH refers to the conjugate transpose of x

Hermitian (for complex elements): A = AH

Like symmetric matrix, but must also do a conjugation of each element 
(i.e. flip its phase). 
i.e. symmetric, except for flipped phase
Note we will use A* instead of AH for convenience

Positive definite: symmetric, and its quadratic forms are strictly positive, 
for non-zero x :

xTAx > 0
Geometry: bowl-shaped minima at x = 0
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Orthogonal, Unitary Matrices: Rotations
Rotations and Reflections: Orthogonal matrices Q

Pure rotation => Changes vector direction, but not magnitude (no scaling effect)
Retains dimensionality, and is invertible

Inverse rotation is simply QT

Unitary matrix (U): complex elements, rotation in complex plane
Inverse: UH (note: conjugate transpose).

Sneak peek:
Gaussian noise exhibits “isotropy”, i.e. invariance to direction. So any rotation 
Q of a gaussian vector (w) yields another gaussian vector Qw. 
Circular symmetric (c-s) complex gaussian vector w => complex rotation w/ U 
yields another c-s gaussian vector Uw

Sneak peek: The Discrete Fourier Transform (DFT) matrix is both unitary and
symmetric. 

DFT is nothing but a “complex rotation,” i.e. viewed in a basis that is a rotated 
version of the original basis. 
FFT is just a fast implementation of DFT. It is fundamental in OFDM. 
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Quadratic forms: xTAx
Linear: 

y = mx + c … generalizes to vector equation
y = Mx + c  (… y, x, c are vectors, M = matrix)

Quadratic expressions in 1 variable: x2

Vector expression: xTx (… projection!)
Quadratic forms generalize this, by allowing a linear transformation A as well

Multivariable quadratic expression: x2 + 2xy + y2

Captured by a symmetric matrix A, and quadratic form: 
xTAx

Sneak Peek: Gaussian vector formula has a quadratic form term in its exponent: 
exp[-0.5 (x -μ)T K-1 (x -μ)]

Similar to 1-variable gaussian: exp(-0.5 (x -μ)2/σ2 )
K-1 (inverse covariance matrix) instead of 1/ σ2

Quadratic form involving (x -μ) instead of (x -μ)2
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Rectangular Matrices
Linear system of equations:

Ax = b
More or less equations than necessary.

Not full rank
If full column rank, we can modify equation as:

ATAx = ATb
Now (ATA) is square, symmetric and invertible. 
x = (ATA)-1 ATb … now solves the system of equations!
This solution is called the least-squares solution. Project b onto column space 
and then solve. 

(ATA)-1 AT is sometimes called the “pseudo inverse”

Sneak Peek: (ATA) or (A*A) will appear often in communications math (MIMO). 
They will also appear in SVD (singular value decomposition)
The pseudo inverse (ATA)-1 AT will appear in decorrelator receivers for MIMO 
More: http://tutorial.math.lamar.edu/AllBrowsers/2318/LeastSquares.asp

(or Prof. Gilbert Strang’s (MIT) videos on least squares, pseudo inverse):

http://tutorial.math.lamar.edu/AllBrowsers/2318/LeastSquares.asp
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Invariants of Matrices: Eigenvectors
Consider a NxN matrix (or linear transformation) T 
An invariant input x of a function T(x) is nice because it does not change
when the function T is applied to it. 

i.e. solve this eqn for x: T(x) = x
We allow (positive or negative) scaling, but want invariance w.r.t direction:

T(x) = λx
There are multiple solutions to this equation, equal to the rank of the matrix 
T. If T is “full” rank, then we have a full set of solutions.
These invariant solution vectors x are eigenvectors, and the “characteristic”
scaling factors associated w/ each x are eigenvalues.

E-vectors:
- Points on the x-axis unaffected [1 0]T

- Points on y-axis are flipped [0 1]T

(but this is equivalent to scaling by -1!)
E-values: 1, -1 (also on diagonal of matrix)



Shivkumar KalyanaramanRensselaer Polytechnic Institute

45 : “shiv rpi”

Eigenvectors (contd)
Eigenvectors are even more interesting because any vector in the domain of 
T can now be …

… viewed in a new coordinate system formed with the invariant “eigen”
directions as a basis.
The operation of T(x) is now decomposable into simpler operations on x, 
… which involve projecting x onto the “eigen” directions and applying the 
characteristic (eigenvalue) scaling along those directions

Sneak Peek:
In fourier transforms (associated w/ linear systems): 

The unit length phasors ejω are the eigenvectors! And the frequency response are 
the eigenvalues!
Why? Linear systems are described by differential equations (i.e. d/dω and 
higher orders)

Recall d (ejω)/dω = jejω

j is the eigenvalue and ejω the eigenvector (actually, an “eigenfunction”)
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Eigenvalues & Eigenvectors
Eigenvectors (for a square m×m matrix S)

How many eigenvalues are there at most?

only has a non-zero solution if

this is a m-th order equation in λ which can have at 
most m distinct solutions (roots of the characteristic 
polynomial) – can be complex even though S is real.

eigenvalue(right) eigenvector

Example
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Diagonal (Eigen) decomposition – (homework)

Let .3,1;
21
12

21 ==⎥
⎦

⎤
⎢
⎣

⎡
= λλS

The eigenvectors         and         form 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−1
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
1

⎥
⎦

⎤
⎢
⎣

⎡
−

=
11
11

U

⎥
⎦

⎤
⎢
⎣

⎡ −
=−

2/12/1
2/12/11UInverting, we have

Then, S=UΛU–1 = ⎥
⎦

⎤
⎢
⎣

⎡ −
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
− 2/12/1

2/12/1
30
01

11
11

Recall
UU–1 =1.



Shivkumar KalyanaramanRensselaer Polytechnic Institute

48 : “shiv rpi”

Example (homework)

Let’s divide U (and multiply U–1) by  2

⎥
⎦

⎤
⎢
⎣

⎡ −
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

− 2/12/1
2/12/1

30
01

2/12/1
2/12/1

Then, S=

Q (Q-1= QT )Λ
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Geometric View: EigenVectors
Homogeneous (2nd order) multivariable equations:
Represented in matrix (quadratic) form w/ symmetric matrix A:

where

Eigenvector decomposition:

Geometry: Principal Axes of Ellipse
Symmetric A => orthogonal e-vectors!
Same idea in fourier transforms 

E-vectors are “frequencies”
Positive Definite A => +ve real e-values!
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Why do Eigenvalues/vectors matter?
Eigenvectors are invariants of A

Don’t change direction when operated A
Recall d(eλt)/dt = λeλt . 

eλt is an invariant function for the linear operator d/dt, with eigenvalue λ
Pair of differential eqns: 

dv/dt = 4v – 5u 
du/dt = 2u – 3w

Can be written as: dy/dt = Ay, where y = [v u]T

y = [v u]T at time 0 = [8 5]T

Substitute y = eλtx into the equation dy/dt = Ay
λeλtx = Aeλtx
This simplifies to the eigenvalue vector equation: Ax = λx

Solutions of multivariable differential equations (the bread-and-butter in 
linear systems) correspond to solutions of linear algebraic eigenvalue
equations!
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Eigen Decomposition
Every square matrix A, with distinct eigenvalues has an eigen
decomposition: 

A = SΛS-1

… S is a matrix of eigenvectors and 
… Λ is a diagonal matrix of distinct eigenvalues Λ = 
diag(λ1, … λN)

Follows from definition of eigenvector/eigenvalue:
Ax = λx
Collect all these N eigenvectors into a matrix (S): 

AS = SΛ. 
or, if S is invertible (if e-values are distinct)…

=> A = SΛS-1
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Eigen decomposition: Symmetric A
Every square, symmetric matrix A can be decomposed into a product of a 
rotation (Q), scaling (Λ) and an inverse rotation (QT)

A = QΛQT

Idea is similar … A = SΛS-1

But the eigenvectors of a symmetric matrix A are orthogonal and form 
an orthogonal basis transformation Q.
For an orthogonal matrix Q, inverse is just the transpose QT

This is why we love symmetric (or hermitian) matrices: they admit nice 
decomposition

We love positive definite matrices even more: they are symmetric and 
all have all eigenvalues strictly positive. 
Many linear systems are equivalent to symmetric/hermitian or positive 
definite transformations. 
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Fourier Methods ≡ Eigen Decomposition!
Applying transform techniques is just eigen decomposition! 
Discrete/Finite case (DFT/FFT): 

Circulant matrix C is like convolution. Rows are circularly 
shifted versions of the first row
C = FΛF* where F is the (complex) fourier matrix, which 
happens to be both unitary and symmetric, and 
multiplication w/ F is rapid using the FFT. 
Applying F = DFT, i.e. transform to frequency domain, i.e. 
“rotate” the basis to view C in the frequency basis. 
Applying Λ is like applying the complex gains/phase 
changes to each frequency component (basis vector)
Applying F* inverts back to the time-domain. (IDFT or 
IFFT)
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Fourier /Eigen Decomposition (Continued)
Continuous case: 

Any function f(t) can be viewed as a integral (sum) of 
scaled, time-shifted impulses ∫c(τ)δ(t+τ) dτ
h(t) is the response the system gives to an impulse 
(“impulse response”). 
Function’s response is the convolution of the function f(t) 
w/ impulse response h(t): for linear time-invariant systems 
(LTI): f(t)*h(t)
Convolution is messy in the time-domain, but becomes a 
multiplication in the frequency domain: F(s)H(s)

Input Output
Linear system
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Fourier /Eigen Decomposition (Continued)
Transforming an impulse response h(t) to frequency domain gives H(s), the 
characteristic frequency response. This is a generalization of multiplying by 
a fourier matrix F

H(s) captures the eigen values (i.e scaling) corresponding to each 
frequency component s. 
Doing convolution now becomes a matter of multiplying eigenvalues
for each frequency component; 

and then transform back (i.e. like multiplying w/ IDFT matrix F*)

The eigenvectors are the orthogonal harmonics, i.e. phasors eikx

Every harmonic eikx is an eigen function of every derivative and every 
finite difference, which are linear operators. 
Since dynamic systems can be written as differential/difference 
equations, eigen transform methods convert them into simple 
polynomial equations!
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Applications in Random Vectors/Processes

Covariance matrix K for random vectors X:
Generalization of variance, Kij is the “co-variance” between components 
xi and xj

K = E[(X -μ)(X -μ)T] 
Kij = Kji: => K is a real, symmetric matrix, with orthogonal eigenvectors!
K is positive semi-definite. When K is full-rank, it is positive definite.

“White” => no off-diagonal correlations
K is diagonal, and has the same variance in each element of the

diagonal
Eg: “Additive White Gaussian Noise” (AWGN)
Whitening filter: eigen decomposition of K + normalization of each 
eigenvalue to 1!

(Auto)Correlation matrix R = E[XXT] 
R.vectors X, Y “uncorrelated” => E[XYT] = 0. “orthogonal”
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Gaussian Random Vectors
Linear transformations of the standard gaussian vector:

pdf: has covariance matrix K = AAt in the quadratic form instead of σ2

When the covariance matrix K is diagonal, i.e., the component random 
variables are uncorrelated. Uncorrelated + gaussian => independence. 

“White” gaussian vector => uncorrelated, or K is diagonal
Whitening filter => convert K to become diagonal (using eigen-

decomposition)

Note: normally AWGN noise has infinite components, but it is projected onto 
a finite signal space to become a gaussian vector
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Singular Value Decomposition (SVD)

ρ: rank of A

U (V): orthogonal matrix containing the left (right) singular vectors of A.

S: diagonal matrix containing the singular values of A.

σ1 ¸ σ2 ¸ … ¸ σρ : the entries of Σ.

0

0

Like the eigen-decomposition, but for ANY matrix!
(even rectangular, and even if not full rank)!

Singular values of A (i.e. σi) are related (see next slide) 
to the eigenvalues of the square/symmetric matrices ATA and AAT
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Singular Value Decomposition

TVUA Σ=

m×m m×n V is n×n

For an m× n matrix A of rank r there exists a factorization
(Singular Value Decomposition = SVD) as follows:

The columns of U are orthogonal eigenvectors of AAT.

The columns of V are orthogonal eigenvectors of ATA.

ii λσ =

( )rdiag σσ ...1=Σ Singular values.

Eigenvalues λ1 … λr of AAT are the eigenvalues of ATA.
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4.0 4.5 5.0 5.5 6.0
2

3

4

5

SVD, intuition

Let the blue circles represent m 
data points in a 2-D Euclidean space.

Then, the SVD of the m-by-2 matrix 
of the data will return …

1st (right) 
singular vector

1st (right) singular vector: 

direction of maximal variance,

2nd (right) 
singular vector

2nd (right) singular vector:

direction of maximal variance, after 
removing the projection of the data
along the first singular vector.



Shivkumar KalyanaramanRensselaer Polytechnic Institute

61 : “shiv rpi”
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2

3

4

5

1st (right) 
singular vector

2nd (right) 
singular vector

Singular Values

σ1: measures how much of the data variance 
is explained by the first singular vector.

σ2: measures how much of the data variance 
is explained by the second singular vector.

σ1

σ2
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SVD for MIMO Channels
MIMO (vector) channel:

SVD:

Rank of H is the number of non-zero singular values

H*H = VΛtΛV*

Change of variables:

=>

Transformed MIMO channel: 
Diagonalized!
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SVD & MIMO continued

Represent input in terms of a coordinate system defined by the columns of V (V*x)
Represent output in terms of a coordinate system defined by the columns of U (U*y)
Then the input-output relationship is very simple (diagonal, i.e. scaling by singular 
values)
Once you have “parallel channels” you gain additional degrees of freedom: aka 
“spatial multiplexing”
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SVD example (homework)

Let

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

01
10
11

A

Thus m=3, n=2. Its SVD is
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⎦

⎤

⎢
⎢
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⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

2/12/1
2/12/1

00
30

01

3/16/12/1
3/16/12/1
3/16/20

Note: the singular values arranged in decreasing order.
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Aside: Singular Value Decomposition, cont’d

Can be used for noise rejection (compression): 
aka low-rank approximation
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Aside: Low-rank Approximation w/ SVD

set smallest r-k
singular values to zero

T
kk VUA )0,...,0,,...,(diag 1 σσ=

column notation: sum 
of rank 1 matrices

T
ii

k

i ik vuA ∑=
=

1
σ

k
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For more details
Prof. Gilbert Strang’s course videos: 
http://ocw.mit.edu/OcwWeb/Mathematics/18-06Spring-
2005/VideoLectures/index.htm

Esp. the lectures on eigenvalues/eigenvectors, singular value 
decomposition & applications of both. (second half of course)

Online Linear Algebra Tutorials: 
http://tutorial.math.lamar.edu/AllBrowsers/2318/2318.asp

http://ocw.mit.edu/OcwWeb/Mathematics/18-06Spring-2005/VideoLectures/index.htm
http://ocw.mit.edu/OcwWeb/Mathematics/18-06Spring-2005/VideoLectures/index.htm
http://tutorial.math.lamar.edu/AllBrowsers/2318/2318.asp
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