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What is RFIC?

«Any integrated circuit used in the frequency range: 100 MHz to 3
GHz (till 6GHz can sometimes be considered RF). Currently we are
having mm-wave circuits in Silicon (17GHz, 24GHz, 60GHZ, and
77GH2z)

<Generally RFIC’s contain the analog front end of a radio
transceiver, or some part of it.

<RFIC’s can be the simplest switch, up to the whole front end of a
radio transceiver.

RFIC’s are fabricated in a number of technologies: Si Bipolar, Si
CMOS, GaAs HBT, GaAs MESFET/HEMT, and SiGe HBT are today’s
leading technologies.

We are going to design in either CMOS, or SiGe.
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Basic Wireless Transcelvers
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The last 10 years in wireless systems

 New Transmitter / Receiver Architectures

« CMOS/BICMOS RF Circuit Design in sub 100nm CMOS
« Low-Power A/D and D/A in CMOS

 Power-optimized DSP architectures and circuits
 New Approaches for Low-Noise On-chip Freq Synthesis
« Control of Chip, Package Parasitic RF Paths

« |P Libraries, Design Environment, and Synthesis Tools for Custom
Radios
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Where we are In terms of technology?
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*Source: International roadmap for semiconductors ITRS 2005 include dynamic range, signal-to-noise, bandwidth, data rate, and/or

inverse power.

Application-specific wireless node implemented
In alow cost technology (CMOS) can provide
programmability, low cost and low power
solution
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The next 10 years !!

1. Spectrum Utilization/expansion- critical
for ubiquitous wireless

2. Universal radio/SW radio- critical for
system designability

3. Micropower radios- critical for
ubiquitous/autonomous sensing
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Spectrum Utilization

a. New bands — Use scaled CMOS Technology to exploit
unused bands (60 GHz Radios)

b. Underlay Sharing — limit power to reduce interference
and compensate by the use of wide bandwidths
(UWB Radios)

c. Overlay Sharing — Sense primary users and use
vacant bands, time slots or locations — “white space”
(Cognitive Radios)
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Introduction to Cognitive Radio

= A Cognitive Radio (CR) can be defined as “a radio that
senses and Is aware of its operational environment and
can dynamically adapt to utilize radio resources in t/ime,
frequency and space domains on a real time basis,
accordingly to maintain connectivity with its peers while
not interfering with licensed and other CRs”.

= Cognitive radio can be designed as an enhancement
layer on top of the Software Defined Radio (SDR)

concept.
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Introduction to Cognitive Radio-2

Basic Non-Cognitive Radio

Architecture:
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Window of Opportunity

B EXxisting spectrum policy forces
spectrum to behave like a fragmented

disk

B Bandwidth is expensive and good

frequencies are taken

B Unlicensed bands — biggest
innovations in spectrum efficiency
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B Recent measurements by the

FCC in the US show 70% of the
allocated spectrum is not utilized

Time scale of the spectrum
occupancy varies from msecs to
hours
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CR Definitions
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= Today “spectrum® is regulated by governmental agencies, e.g. FCC)

= “Spectrum® is assigned to users or licensed to them on a long term basis
normally for huge regions like whole countries

= Doing so, resources are wasted

= Vision: Resources are assigned where and as long as they are needed,
spectrum access Is organized by the network (i.e. by the end users)

= A CR s an autonomous unit in a communications environment. In
order to use the spectral resource most efficiently, it has to
- be aware of its location

be interference sensitive

comply with some communications etiquette

be fair against other users

keep its owner informed

= CRshould
= Sense the spectral environment over a wide bandwidth
= detect presence/absence of primary users
= Transmit in a primary user band only if detected as unused

= Adapt power levels and transmission bandwidths to avoid interference to
any primary user
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CR Definitions

Digital Radio (DR): The baseband signal processing is invariably implemented on a DSP.

Software Radio (SR): An ideal SR directly samples the antenna output.

Software Defined Radio (SDR): An SDR is a presently realizable version of an SR:
Signals are sampled after a suitable band selection filter.

Cognitive Radio (CR): A CR combines an SR with a PDA

Y radio frontend ~ A
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Cognitive radio Functions

 Wideband Antenna, PA -
and LNA .

« High speed A/D & D/A,
moderate resolution

e Simultaneous Tx & Rx
e Scalable for MIMO

RF/Analog Front-end

Sensing Radio B Physical Layer

OFDM transmission
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Dynamic frequency
selection, modulation,
power control

Analog impairments
compensation
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POWER CTRL LOADING

== CHANNEL INTERFERENC
SEL/EST MEAS/CANCEL

Digital Baseband

B MAC Layer

Optimize transmission
parameters

Adapt rates through
feedback

Negotiate or
opportunistically use
resources

TIME, FREQ,
SPACE SEL

LEARN FEEDBACK
ENVIRONMENT TO CRs

MAC Layer
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RF Front-End Schematic
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RF Front-End Challenges
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» Intelligence and military application require an application-
specific low cost, secure wireless systems.
» An adaptive spectrum-agile MIMO-based wireless node
will require application-specific wireless system:
» Reconfigurable Radio (operating frequency
band, bit rate, transmission power level, etc)
» Wide frequency coverage and agility
» Work independent of commercial infrastructure
» Large instantaneous bandwidth
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System Challenges

B A/D converter:
— High resolution
— Speed depends on the application
— Low power ~ 100mWs
B RF front-end:
— Wideband antenna and filters
— Linear in large dynamic range
— Good sensitivity
B Interference temperature:
— Protection threshold for licensees
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System Challenges

spectrum opportunities
{unused TV channels)

. " i time
Multicarrier - Spectrum Agile / ./ " -
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e Different primary usel e, e "

e Channel uncertainty between CR and primary user
Transmitter

e Wideband transmission

e Adaptation

e Interference with primary user
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Dynamic Operation: Near-Far Problem

= High power consumption due to
simultaneous requirement of
high linearity in RF front-end
__ and low noise operation

= The conflicting requirements
occur since the linearity of the
RF front-end is exercised by a
strong interferer while trying to
detect a weak signal

= A dynamic transceiver can schedule gain/power of the
front-end for optimal performance
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Advantages of CR

= Cognitive radios are expected to be powerful tools for
mitigating and solving general and selective spectrum
access issues (e.g. finding an open frequency band and
effectively utilizing it).

= Improves current spectrum utilization (Fill in unused
spectrum and move away from occupied spectrum ).

= Improves wireless data network performance through
Increased user throughput and system reliability.

= More adaptability and less coordination required
between wireless networks.
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UWB Systems
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Basics of UWB Signaling

Basics

Fractional bandwidth
or

Absolute bandwidth

Properties

Wide bandwidth

* Low average power spectral density
* High temporal resolution
* High information transmission capacity

Rensselaer Radio Frequency Integrated Circuits Lab.

B>0.5GH:z

- B . 2(ﬂ; _ij) A
(fu + /1)

————————————————————————————————

April 20th, 2007



Definition of UWB Systems

FCC: UWB systems should have a -10dB bandwidth of
at least 500MHz or a fractional bandwidth of at least
20% (regardless of fractional bandwidth) at any point in

time.
1.99 3.1 10.6 22 29 freq.
(GH2)

n Ground penetrating radar (GPR), through wall
Imaging, surveillance
B Medical imaging, indoor communication

B Vehicular radar
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Why UWB?

1. UWB Communication C =BW -log,(1+ SNR)
. Higher data-rate l b l
i.  immunity to multi-path bandwidth Isignal NN
fading channel 10
ii. narrowband interferers can ©¢@Pacly  representing
be nulled with little information in bits

performance degradation

2. . UWB Imaging . Resolution oC —
. Higher range resolution BW

.  Higher azimuth beam
forming resolution
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UWB Applications

Applications

* Communications >

( Localization and Sensing>

=

Rensselaer Radio Frequency Integrated Circuits Lab.



UWB Sensors

’/Sensors\‘
Pulse sensors Pseudo random

/ \ binary sequence
Sensors
Sequential sampling  Correlating pulse
sensors sensors

* Pulse sensors - simple generator architecture

* PRBS sensors - low crest factor of stimulus signal

* Frequency bands: 3.1GHz - 10.6GHz, 22GHz - 29GHz, 60GHz
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UWB Sensor Architectures

DUT Wall

Tx
Rx

»

Pulse

Signal 4— Digital Signal

Generator

LNA e Sampling
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UWB receilver Architecture

Analog Correlator

Receive Data
ADC || Recovery

- ..-.1

L--I LY F

T/R
Switch
f Timing
Generator

Pulse Generator

« Suitable for communication applications

* |nherently low power architecture
— no frequency synthesizer
— ADC after analog correlator

« Challenges: UWB front-end, timing and pulse generators
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UWB receilver Architecture

LNA VG ADC p—| DSP

« Power consumption of digital signal processing improves
with technology scaling => perform all the necessary
sighal processing (e.g., correlators, RAKE) in DSP

« UWB ADC is the most challenging building block

— Power consumption almost proportional to BW
— Dynamic range limited due to narrowband interferer signals

« UWB ADC architectures:

— time-interleaved (multiple ADCs sampled at successive times)
— frequency channelized (multiple ADCs, each for a portion of BW)
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Multi-band OFDM UWB Architecture

« Communication Applications

— bOrthdogonaI frequency division multiplexing (OFDM) in each
an

— Carrier hops between bands In less than 9.5ns
— Fast switching multi-band + digital filter bank (FFT) receiver

#1 #2 #3 #4 #5 #6 #7T #8 #9 #10 #11#12 #13 #14

_ TR T T T T T3

N O ®©® © ¥ N O © © ¥ N O w© © freq
m © ®W T ¥ K~ O N 1 0w T «w © o .
O « O 1w O W T W = N~ o N~ (MHz)
M ® & O W W O M~ N © O o o o

F

128 (sub-carriers per band) x 4.125MHz (sub-carrier spacing) = 528MHz

Band center frequency = 2904 + (528MHz x n,) MHz, where n_=1...14
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Multi-band OFDM UWB Radio Architecture

UWB or Image Reject
Switched Multi-band Mixer

» .:‘ Filter —>[>—> ADC |—»
Band FFT/IFFT
T/R Sealgct Frequency Band Select
Switch Synthesizer(s) ~ —
T Timing
Generalor
PA Filter |- DAC |e=—
Challenges:

« Local oscillator frequency synthesizer
— <9ns switching time
— small spurious tones (in-band & out-of-band)

« UWB/multi-band front-end
 Low power FFT/IFFT
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Comparison of MB-OFDM radios

Paper ID Technol Power (mW) Vdd | NF Comments
ogy Rx | T™x | Lo | (V) [ (dB)
Tanaka 90nm All bands using 1 PLL + Dividers +
[ISSCC06] [ CMOS 84 177 a7 11 6.9 SSB Mixers + MUX
Sander 130nm Bands 1-3 using 1 PLL + Dividers
nssccoe] | cmos | 1 [ 97> [ 186 15 36 + SSB Mixers + DDS + MUX
Lo™ 180nm Bands 1-3 using 1 PLL + Dividers
2(%)

nssccoe] | cmos | 412 | 397 | ° 18 | 40 + SSB Mixers + MUX
Razavi 130nm :
[ISSCC'05] CMOS 60 45 1.5 6.5 Bands 1-3 using 3 PLLs
lsmail 180nm UWB front-end, Bands 1-7 using 1
(1SSCC05] SiGe 60 N/A | 178 | 2.7 3.3 PLL + Dividers + SSB Mixer +

BiCMOS MUX

+ Significant DC power (up to 75% in Rx) is
consumed in the LO generation circuitry.
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UWB Components/Subsystems

UWB Rx prototype

Source: Center of Competence in Mechatronics,

UWB pulse transmitter prototype Linz, Austria
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UWB Levels of Integration

Chip (u -chip)

A n te nnas Embedded RF Antenna Ultra-Small RFID
.

—¢

* Monopole antenna for 3-10GHz range  source: Mitsuo Usami "An Ultra-Small RFID Chip: u-chip",
Proc. 2004 |IEEE AP-ASIC Conference

* 30 mm length (lambda/2 @ 5 GHz) * Embedded antennas @
mm-wave frequencies

* Integration not feasible
Chip-PCB connections _ short

P bondwires
Power amplifiers /
* |s integration possible? Cavity :D_
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UWB Basic Building Blocks (Pulse Generator)

i ] | | ¥ BE | | [
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Source: IHP, Frankfurt Order, Germany Po s 1 s ',m;'iqs; e & a5 s
* (Gaussian baseband pulse * 3.1GHz - 5.1 GHz range

t DSgRRRE Salk »  0.25um SiGe:C BICMOS
* Pulse shaping with passive LC filter technology
* Trigger pulses derived from VCO signal °* 60mW @ 2.5V

* BPSK phase modulation
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Challenges in UWB IC Design

Components

* Improvement of broadband matching and amplification
properties of PA and LNA blocks

* |ntegration of passive elements (couplers, baluns)

* Jitter performance improvement
In sequential sampling sensors

* High-resolution ADCs for Nyquist sampling sensors
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Challenges in UWB IC Design

Power consumption

* Low power consumption generators/synthesizers/PAs
* Low power DACs and ADCs

* Use of high speed BICMOS technologies beneficial

Other

* Sensor chip area
* Crosstalk

* Full CMOS implementations
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Future Trends

Mm-wave UWB sensors
* Development of UWB radar sensors for 77-81 GHz

* UWB sensors in 122 GHz ISM band

Integrated UWB sensor arrays
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Future Trends; UWB Beam forming

Incident V ‘“"

Array Beam Pattern

erf ( VZLO/2ATc)

Wave ‘d
% IV 'V&' —ats (VzLo/ATe)
9?\V W Peak

Detection

Beam Width

a/’_\.Tca C
T T BWxL

Variable Delay

Variable true time delay is required in UWB beam forming. ‘
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Multi-band VCO

5.4-7.0GH
3.3-4.2GHz 1.65-2§Z 1.72-2.25G:|Z \
K\/ 1/2 |'>
5.4-7.0GHz
0.825-4.2GHz - 1.72-2.25GHz —~ o?é:;-::ﬁ 2GGI-||-Tz
e [T M @) |11 12 M
l'> U = —| > 1 U
X A ) O
4.7-5.4GHz —
4.7-5.4GHz L B 1/4 —|>—[ |
< ) > 12 —{>— 1.35-1.7GHz
ll> D 0.43-0.56GHz
2.35-2.7GHz
= EXisting Multiband VCOs/Frequency References are based

on:

= Switched inductor and/or capacitor LC tanks (Extra parasitics
and resistive loss < degrade both tuning range and phase
noise)

= Frequency dividers (higher phase noise and power
consumption)

= MEMS resonators (non-standard process, extra processing
steps, higher fabrication cost)
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Multi-Band VCO--Schematic
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Future Trends

e Wireless Control of machines and
devices in the process and
automation industry

e Logistic Radio Frequency

Identification (RFID), includes 1 >
transportation, terminals, and
WaFEhOUSGS RF-Powered Wireless Communication
- Circuits for BieImplantable
e Smart home appliance, remote Microsystems
controls

e Medical monitoring health
conditions (wireless body area
network WBAN)

e Environmental monitoring, such
as smart dust or other ambient
Intelligence
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3D RF System Integration
G

| ] -
|| ®BcB | | Glass Substrate

. Integrated Antenna

. High Q inductors (top glass layer or inter-wafer
inductors

. Digitally assisted RF/Analog Design (All blocks
can be optimized through vertical control signals)
" power Amplifier linearization—> Digital pre-

distortion or dynamic bias through bottom layer
monolithic DC-DC Converter

LNA input matching

Omne Possible
Antenna
Implementation

]
’.
*

Added functionality / versatility
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3D Micro-Power Portable/Implantable RF Wireless

Wireless Body Area Network

(WBAN)

EEG
HEARING
VISIoN /@
POSITIONING
==
uwB
BLOOD
PRESSURE
CELLULAR
WLAN TOXINS

IMPLANTS

(a)
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