Overview: Trends and Implementation Challenges for Multi-Band/Wideband Communication

Mona Mostafa Hella

Assistant Professor, ESCE Department Rensselaer Polytechnic Institute

What is **RFIC**?

•Any integrated circuit used in the frequency range: 100 MHz to 3 GHz (till 6GHz can sometimes be considered RF). Currently we are having mm-wave circuits in Silicon (17GHz, 24GHz, 60GHZ, and 77GHz)

•Generally RFIC's contain the analog front end of a radio transceiver, or some part of it.

•RFIC's can be the simplest switch, up to the whole front end of a radio transceiver.

•RFIC's are fabricated in a number of technologies: Si Bipolar, Si CMOS, GaAs HBT, GaAs MESFET/HEMT, and SiGe HBT are today's leading technologies.

We are going to design in either CMOS, or SiGe.

Basic Wireless Transceivers

RF Receiver

Rensselaer Radio Frequency Integrated Circuits Lab.

RF Transmitter

The last 10 years in wireless systems

- New Transmitter / Receiver Architectures
- CMOS/BiCMOS RF Circuit Design in sub 100nm CMOS
- Low-Power A/D and D/A in CMOS
- Power-optimized DSP architectures and circuits
- New Approaches for Low-Noise On-chip Freq Synthesis
- Control of Chip, Package Parasitic RF Paths
- IP Libraries, Design Environment, and Synthesis Tools for Custom Radios

Where we are in terms of technology?

The metric for performance depends on the class of circuit. It can include dynamic range, signal-to-noise, bandwidth, data rate, and/or inverse power.

*Source: International roadmap for semiconductors ITRS 2005

Application-specific wireless node implemented in a low cost technology (CMOS) can provide programmability, low cost and low power solution

The next 10 years !!

1. Spectrum Utilization/expansion- critical for ubiquitous wireless

2. Universal radio/SW radio- critical for system designability

3. Micropower radios- critical for ubiquitous/autonomous sensing

- a. New bands Use scaled CMOS Technology to exploit unused bands (60 GHz Radios)
- b. Underlay Sharing limit power to reduce interference and compensate by the use of wide bandwidths (UWB Radios)
- Overlay Sharing Sense primary users and use vacant bands, time slots or locations "white space" (Cognitive Radios)

Introduction to Cognitive Radio

- A Cognitive Radio (CR) can be defined as "a radio that senses and is aware of its operational environment and can dynamically adapt to utilize radio resources in *time, frequency and space* domains on a real time basis, accordingly to maintain connectivity with its peers while not interfering with licensed and other CRs".
- Cognitive radio can be designed as an enhancement layer on top of the Software Defined Radio (SDR) concept.

Introduction to Cognitive Radio-2

 Basic Non-Cognitive Radio Architecture:

Cognitive Radio architecture:

Window of Opportunity

- Existing spectrum policy forces spectrum to behave like a fragmented disk
- Bandwidth is expensive and good frequencies are taken
- Unlicensed bands biggest innovations in spectrum efficiency

- Recent measurements by the FCC in the US show 70% of the allocated spectrum is not utilized
- Time scale of the spectrum occupancy varies from msecs to hours

CR Definitions

Frequency (MHz)

Spectrum utilization.

- Today "spectrum" is regulated by governmental agencies, e.g. FCC)
- "Spectrum" is assigned to users or licensed to them on a long term basis normally for huge regions like whole countries
- Doing so, resources are wasted
- Vision: Resources are assigned where and as long as they are needed, spectrum access is organized by the network (i.e. by the end users)
- A CR is an autonomous unit in a communications environment. In order to use the spectral resource most efficiently, it has to
 - be aware of its location
 - be interference sensitive
 - comply with some communications etiquette
 - be fair against other users
 - keep its owner informed
- CR should
 - <u>Sense</u> the spectral environment over a wide bandwidth
 - <u>detect</u> presence/absence of primary users
 - <u>Transmit</u> in a primary user band only if detected as unused
 - <u>Adapt</u> power levels and transmission bandwidths to avoid interference to any primary user

CR Definitions

Digital Radio (**DR**): The baseband signal processing is invariably implemented on a DSP.

Software Radio (SR): An ideal SR directly samples the antenna output.

Software Defined Radio (SDR): An SDR is a presently realizable version of an SR: Signals are sampled after a suitable band selection filter.

Cognitive Radio (CR): A CR combines an SR with a PDA

Rensselaer Radio Frequency Integrated Circuits Lab.

Cognitive radio Functions

Sensing Radio

- Wideband Antenna, PA
 and LNA
- High speed A/D & D/A, moderate resolution
- Simultaneous Tx & Rx
- Scalable for MIMO

Physical Layer

- **OFDM** transmission
- Spectrum monitoring
- Dynamic frequency selection, modulation, power control
- Analog impairments compensation

MAC Layer

- Optimize transmission parameters
- Adapt rates through feedback
- Negotiate or opportunistically use resources

RF Front-End Schematic

RF Front-End Challenges

Rensselaer Radio Frequency Integrated Circuits Lab.

Motivation

- Intelligence and military application require an applicationspecific low cost, secure wireless systems.
- An adaptive spectrum-agile MIMO-based wireless node will require application-specific wireless system:
 - > Reconfigurable Radio (operating frequency)
 - band, bit rate, transmission power level, etc)
 - > Wide frequency coverage and agility
 - > Work independent of commercial infrastructure
 - Large instantaneous bandwidth

System Challenges

- A/D converter:
 - High resolution
 - Speed depends on the application
 - Low power ~ 100mWs
- RF front-end:
 - Wideband antenna and filters
 - Linear in large dynamic range
 - Good sensitivity
- Interference temperature:
 - Protection threshold for licensees

System Challenges

- Wideband sensing
- Different primary use
 - Channel uncertainty between CR and primary user

Transmitter

- Wideband transmission
- Adaptation
- Interference with primary user

spectrum opportunities (unused TV channels)

time 🖊

Dynamic Operation: Near-Far Problem

- High power consumption due to simultaneous requirement of high linearity in RF front-end and low noise operation
- The conflicting requirements occur since the linearity of the RF front-end is exercised by a strong interferer while trying to detect a weak signal

- The worst case scenario is a rare event.
- A dynamic transceiver can schedule gain/power of the front-end for optimal performance

Advantages of CR

- Cognitive radios are expected to be powerful tools for mitigating and solving general and selective spectrum access issues (e.g. finding an open frequency band and effectively utilizing it).
- Improves current spectrum utilization (Fill in unused spectrum and move away from occupied spectrum).
- Improves wireless data network performance through increased user throughput and system reliability.
- More adaptability and less coordination required between wireless networks.

UWB Systems

Rensselaer Radio Frequency Integrated Circuits Lab.

Basics of UWB Signaling

Rensselaer Radio Frequency Integrated Circuits Lab.

Definition of UWB Systems

FCC: UWB systems should have a -10dB bandwidth of at least 500MHz or a fractional bandwidth of at least 20% (regardless of fractional bandwidth) at any point in time.

- Ground penetrating radar (GPR), through wall imaging, surveillance
 - Medical imaging, indoor communication
 - Vehicular radar

Why UWB?

1. UWB Communication

- i. Higher data-rate
- ii. immunity to multi-path fading
- iii. narrowband interferers can be nulled with little performance degradation
- 2. UWB Imaging
 - i. Higher range resolution
 - ii. Higher azimuth beam forming resolution

UWB Applications

Rensselaer Radio Frequency Integrated Circuits Lab.

UWB Sensors

- Pulse sensors simple generator architecture
- PRBS sensors low crest factor of stimulus signal
- Frequency bands: 3.1GHz 10.6GHz, 22GHz 29GHz, 60GHz

UWB Sensor Architectures

Rensselaer Radio Frequency Integrated Circuits Lab.

UWB receiver Architecture

- Suitable for communication applications
- Inherently low power architecture
 - no frequency synthesizer
 - ADC after analog correlator
- Challenges: UWB front-end, timing and pulse generators

UWB receiver Architecture

- Power consumption of digital signal processing improves with technology scaling => perform all the necessary signal processing (e.g., correlators, RAKE) in DSP
- UWB ADC is the most challenging building block
 - Power consumption almost proportional to BW
 - Dynamic range limited due to narrowband interferer signals
- UWB ADC architectures:
 - time-interleaved (multiple ADCs sampled at successive times)
 - frequency channelized (multiple ADCs, each for a portion of BW)

Multi-band OFDM UWB Architecture

- Communication Applications
 - Orthogonal frequency division multiplexing (OFDM) in each band
 - Carrier hops between bands in less than 9.5ns
 - Fast switching multi-band + digital filter bank (FFT) receiver

128 (sub-carriers per band) x 4.125MHz (sub-carrier spacing) = 528MHz

Band center frequency = 2904 + (528MHz x n_b) MHz, where n_b =1...14

Rensselaer Radio Frequency Integrated Circuits Lab.

Multi-band OFDM UWB Radio Architecture

Challenges:

- Local oscillator frequency synthesizer
 - <9ns switching time</p>
 - small spurious tones (in-band & out-of-band)
- UWB/multi-band front-end
- Low power FFT/IFFT

Comparison of MB-OFDM radios

Paper ID	Technol ogy	Power (mW)			Vdd	NF	Commonts
		Rx	Тх	LO	(V)	(dB)	Comments
Tanaka [ISSCC'06]	90nm CMOS	84	177	47	1.1	6.9	All bands using 1 PLL + Dividers + SSB Mixers + MUX
Sander [ISSCC'06]	130nm CMOS	51	97.5	186	1.5	3.6	Bands 1-3 using 1 PLL + Dividers + SSB Mixers + DDS + MUX
Lo* [ISSCC'06]	180nm CMOS	412	397	?(*)	1.8	4.0	Bands 1-3 using 1 PLL + Dividers + SSB Mixers + MUX
Razavi [ISSCC'05]	130nm CMOS	60		45	1.5	6.5	Bands 1-3 using 3 PLLs
Ismail [ISSCC'05]	180nm SiGe BiCMOS	60	N/A	178	2.7	3.3	UWB front-end, Bands 1-7 using 1 PLL + Dividers + SSB Mixer + MUX

 Significant DC power (up to 75% in Rx) is consumed in the LO generation circuitry.

UWB Components/Subsystems

Step recovery diode based pulse generator for GPR

UWB pulse transmitter prototype

UWB Rx prototype

Source: Center of Competence in Mechatronics, Linz, Austria

Rensselaer Radio Frequency Integrated Circuits Lab.

UWB Levels of Integration

Antennas

- Monopole antenna for 3-10GHz range
- 30 mm length (lambda/2 @ 5 GHz)
- Integration not feasible

Power amplifiers

Is integration possible?

Embedded RF Antenna

Embedded antennas @ mm-wave frequencies

Ultra-Small RFID

Chip (μ -chip)

0.4 mm

UWB Basic Building Blocks (Pulse Generator)

Source: IHP, Frankfurt Order, Germany

- Gaussian baseband pulse
 + frequency shift
- Pulse shaping with passive LC filter
- Trigger pulses derived from VCO signal
- BPSK phase modulation

- 3.1GHz 5.1 GHz range
- 0.25um SiGe:C BiCMOS technology
- 60mW @ 2.5V

Challenges in UWB IC Design

Components

- Improvement of broadband matching and amplification properties of PA and LNA blocks
- Integration of passive elements (couplers, baluns)
- Jitter performance improvement in sequential sampling sensors
- High-resolution ADCs for Nyquist sampling sensors

Challenges in UWB IC Design

Power consumption

- Low power consumption generators/synthesizers/PAs
- Low power DACs and ADCs
- Use of high speed BiCMOS technologies beneficial

Other

- Sensor chip area
- Crosstalk
- Full CMOS implementations

Mm-wave UWB sensors

- Development of UWB radar sensors for 77-81 GHz
- UWB sensors in 122 GHz ISM band

Integrated UWB sensor arrays

Future Trends; UWB Beam forming

Variable true time delay is required in UWB beam forming.

Rensselaer Radio Frequency Integrated Circuits Lab.

Multi-band VCO

- Existing Multiband VCOs/Frequency References are based on:
 - Switched inductor and/or capacitor LC tanks (Extra parasitics and resistive loss → degrade both tuning range and phase noise)
 - Frequency dividers (higher phase noise and power consumption)
 - MEMS resonators (non-standard process, extra processing steps, higher fabrication cost)

Multi-Band VCO--Schematic

Rensselaer Radio Frequency Integrated Circuits Lab.

Future Trends

- Wireless Control of machines and devices in the process and automation industry
- Logistic Radio Frequency Identification (RFID), includes transportation, terminals, and warehouses.
- Smart home appliance, remote controls
- Medical monitoring health conditions (wireless body area network WBAN)
- Environmental monitoring, such as smart dust or other ambient intelligence

RF-Powered Wireless Communication Circuits for BioImplantable Microsystems

3D RF System Integration

One Possible Antenna Implementation Si-substrate SiGe/CMOS Chip AI BCB

Integrated Antenna

High Q inductors (top glass layer or inter-wafer inductors

Glass Substrate

Digitally assisted RF/Analog Design (All blocks can be optimized through vertical control signals) Power Amplifier linearization \rightarrow Digital predistortion or dynamic bias through bottom layer monolithic DC-DC Converter

Added functionality/versatility

3D Micro-Power Portable/Implantable RF Wireless

Rensselaer Radio Frequency Integrated Circuits Lab.