OFDM Channel Modeling for WiMAX

April 27, 2007

David Doria

Goals:

 To develop a simplified model of a Rayleigh fading channel

Apply this model to an OFDM system

• Implement the above in network simulation software (NS2)

What is OFDM?

- We can use one radio to transmit in an FDM system
- Orthogonality properties allow for more closely packed frequency symbols

Figure 1: FDM with Nine Sub-carriers Using Filters

What is WiMAX?

• IEEE 802.16d/e

 Speed and Mobility: best of both worlds

 Combines many new ideas into one standard (MIMO, OFDM/A, etc.)

"WiMAX aims to provide wireless data over long distances.....from point to point links to full mobile cellular type access."

"30,000 feet" View of the Model

 Each OFDM sub-symbol is subjected to each of the following blocks

• The first 2 blocks are modeled using the Cost231 model

Distance

Basically a black box

Cost231 Attenuation

Small Scale Fading

- Takes into account multipath effects
- These effects are very complex, so statistical models are used
- To implement these models in the time domain is very computationally intensive
- Need to "skip some steps" in simulation

Problems with Time Domain Modeling

- Clearly, all communication must be done over time (aka the time domain)
- To "send" information through a channel, you must convolve x[n] with the channel impulse response h[n]
- Working in the time domain (convolution x[n]*h[n]) requires MANY more multiplication and addition operations than working in the frequency domain (multiplication X(f)H(f))
- This is too computationally intensive to be implemented in a simulation

Working in the Frequency Domain

- OFDM symbols are created in the frequency domain
- Multiplication in the frequency domain is the equivalent operation to convolution in the time domain
- MUCH less computationally intensive

What we expect to see...

- The FFT of an impulse is a complex sinusoid
- Since the PDP is a sum of shifted impulses, we expect to see the sum of sinusoids (looking at abs(H(f)))
- The destructive interference of these sinusoids is what causes the channel to fade

Frequency Response

• To obtain H(f), we simply take the FFT of the PDP!

Modeling Channel Time Correlation

• The channel coherence time is assumed to be 5ms

- Therefore, the mobile should see a different but related channel every 5ms
- To model this correlation, we weight the taps of the PDP by time correlated Rayleigh numbers, then take the FFT to obtain H(f)

Where is the Correlation?

• Looking at each row of a matrix as the 6 taps weights of the channel, the correlation is down the columns!!

Realization 1

Realization 2

Realization 3

Realization 4

How To Obtain the Correlation?

- The following process is performed for EACH COLUMN
- 1.Generate N IID Complex Normal Random
 Variables (N is the number of channel realizations
 you wish to obtain)
- 2.Generate Doppler Spectrum (Jakes Model) (also length N)
- 3. Multiply (1) and (2)
- 4. Take the IFFT to obtain a time domain sequence

OFDM Channel Model

• The correlation was created with Jakes spectrum

$$D = \frac{1.5}{\pi * f_m * \sqrt{1 - \left(\frac{f - f_c}{f_m}\right)^2}}$$

Applying the Time Correlated Rayleigh Numbers Time Domain Channel H(t)

- The process in the previous slide is performed 6 times.
- Each of these 6 sets of time correlated numbers are used to weight the SAME tap in successive channel realizations (Indicated in red)
- Three successive channels are shown to the right

Getting the Frequency Domain Channel

Table A.2.6.3: ITU Channel Model for Vehicular Test Environment

• Scale the initial PDP with a row from the

• Take the 1024 point FFT to get the frequency domain response.

Tap	Channel A	
	Relative delay (ns)	Average power (dB)
1	0	0.0
2	310	-1.0
3	710	-9.0
4	1 090	-10.0
5	1 730	-15.0
6	2 510	-20.0

Implementation in NS2

• Outside of NS, generate a file of a sufficient number of channel realizations

• Create an interface to read the frequency domain channel gains from the appropriate file into an array, prior to the simulation starts.

• Simply (not THAT simply!!) multiply (Y(f)X(f))

The Problem

- Since NS2 is a packet level simulator, there is no data!! Don't have X(f)!!
- Now what do we do?

• We are only looking for the received power of a packet, so we can assume each slot in X(f) to be P/M where P is the transmit power of the OFDM symbol and M is the number of subcarriers used in the current symbol.

Simulating Multiple, Uncorrelated Channels (Cont.)

- The file is organized as a 2-dimensional matrix with Y-axis as independent channel realizations and X-axis the frequency domain channel response.
- Every coherence time, each user is assigned a random number from 1 to NumChannelRealizations
- A maximum of NumChannelRealizations users can be simulated simultaneously with uncorrelated channels.

THANK YOU!

QUESTIONS???