WBN : Homework #2
Probability and Stochastic Processes
[40 points ,Due 20th Feb 2007 in class]

1. [6 pts] A fair coin is tossed repeatedly until the first head appears.
 (i) [2 pts] Find the probability that the first head appears on the kth toss. Let us call this event \(E_k \).
 (ii) [2 pts] Let \(S = \bigcup_{i=1}^{\infty} E_i \). Verify that \(P(S) = 1 \).
 (iii) [2 pts] Show that the union bound is tight for the event that first head appears in any of the first \(t \) tosses, i.e., the probability of the above event equals \(\sum_{i=1}^{t} P(E_i) \).

2. [4 pts] For a continuous Random Variable \(X \), and \(a > 0 \), show that (Chebyshev inequality): \(P(|X - \mu_X| \geq a) \leq \frac{\sigma_X^2}{a^2} \). Hint: use the definition of variance \(\sigma_X^2 = \int (X - \mu_X)^2 f(X) dX \). (note: there are several ways to derive this inequality. Any way you do it is fine.)
3. **[5 pts]** Let X be a uniform random variable over $(-1, 1)$. Let $Y = X^n$.

(i) **[3 pts]** Calculate the covariance of X and Y, i.e. $E[XY] - E[X]E[Y]$.

(ii) **[2 pts]** Calculate the correlation coefficient of X and Y.

4. **[5 pts]** A laboratory test to detect a certain disease has the following statistics. Let

$X = \text{event that the tested person has the disease}$

$Y = \text{event that the test result is positive}$

It is known that 0.1 percent of the population actually has the disease. Also, $P(Y | X) = 0.99$ and $P(Y | X^c) = 0.005$. What is the probability that a person has the disease given that the test result is positive?
5. **[5 pts]** Let \((X_1, \ldots, X_n)\) be a random sample of an exponential random variable \(X\) with unknown parameter \(\lambda\). Determine the maximum-likelihood estimator of \(\lambda\). **Hint:** look at slides 40, 73 to review the exponential r.v. and MaxLikelihood estimator.

6. **[15 pts]** Consider the random process \(Y(t) = (-1)^{X(t)}\), where \(X(t)\) is a Poisson process with rate \(\lambda\). Thus \(Y(t)\) starts at \(Y(0) = 1\) and switches back and forth from +1 to -1 at random Poisson times \(T_i\). **Note:** \(P(Y(t) = 1) = \exp(-\lambda t) \cos \lambda t; P(Y(t) = -1) = \exp(-\lambda t) \sin \lambda t\), because these are the sum of even or odd terms of a poisson distribution.

(i) **[3 pts]** Find the mean of \(Y(t)\).

(ii) **[3 pts]** Find the autocorrelation function of \(Y(t)\).

(iii) **[6 pts]** Let \(Z(t) = A \cdot Y(t)\) where \(A\) is a discrete random variable independent of \(Y(t)\) and takes on values 1 and -1 with equal probability. Show that \(Z(t)\) is WSS. (note: \(Y(t)\) is not WSS)

(iv) **[3 pts]** Find the power spectral density of \(Z(t)\). **Note:** look up the fourier transform table w/ autocorrelation function of \(Z(t)\).