WBN : Homework \#2 Probability and Stochastic Processes [40 points ,Due 20 th Feb 2007 in class]

1. [6 pts] A fair coin is tossed repeatedly until the first head appears.
(i) [2 pts] Find the probability that the first head appears on the $\mathrm{k}^{\text {th }}$ toss. Let us call this event E_{k}.
(ii) $\quad[2$ pts $]$ Let $S=\bigcup E_{i}$. Verify that $P(S)=1$.
(iii) [2 pts] Show that the union bound is tight for the event that first head appears in any of the first t tosses, i.e., the probability of the above event equals $\Sigma_{\mathrm{i}=1 . . \mathrm{t}}$ $P\left(E_{i}\right)$.
2. [4 pts] For a continuous Random Variable X, and a >0, show that (Chebyshev inequality) : $\mathrm{P}\left(\left|\mathrm{X}-\mu_{\mathrm{x}}\right|>=\mathrm{a}\right)<=\sigma_{\mathrm{x}}{ }^{2} / \mathrm{a}^{2}$. Hint: use the definition of variance $\left(\sigma_{\mathrm{x}}{ }^{2}\right.$ $=\int\left(\mathbf{X}-\mu_{\mathbf{x}}\right)^{2} f(\mathbf{X}) d \mathbf{X}$). (note: there are several ways to derive this inequality. Any way you do it is fine.)
3. [5 pts] Let \mathbf{X} be a uniform random variable over $(-1,1)$. Let $\mathbf{Y}=\mathbf{X}^{n}$.
(i) $\quad[3 \mathrm{pts}]$ Calculate the covariance of X and Y , i.e. $\mathrm{E}[\mathrm{XY}]-\mathrm{E}[\mathrm{X}] E[\mathrm{Y}]$.
(ii) [2 pts] Calculate the correlation coefficient of \mathbf{X} and \mathbf{Y}.
4. [5 pts] A laboratory test to detect a certain disease has the following statistics. Let
$X=$ event that the tested person has the disease
$\mathbf{Y}=$ event that the test result is positive
It is known that 0.1 percent of the population actually has the disease.
Also, $\mathrm{P}(\mathbf{Y} \mid \mathbf{X})=0.99$ and $\mathrm{P}\left(\mathbf{Y} \mid \mathbf{X}^{\mathbf{c}}\right)=0.005$. What is the probability that a person has the disease given that the test result is positive ?
5. [5 pts] Let $\left(X_{1}, \ldots, X_{n}\right)$ be a random sample of an exponential random variable X with unknown parameter λ. Determine the maximum-likelihood estimator of λ. Hint: look at slides 40, 73 to review the exponential r.v. and MaxLikelihood estimator.
6. [15 pts] Consider the random process $Y(t)=(-1)^{X(t)}$, where $X(t)$ is a Poisson process with rate λ. Thus $Y(t)$ starts at $Y(0)=1$ and switches back and forth from +1 to -1 at random Poisson times T_{i}. Note: $P(Y(t) b=1)=\exp (-\lambda t) \cos h \lambda t ; P(Y(t)=-1)=\exp (-\lambda t) \sin h \lambda t$, because these are the sum of even or odd terms of a poisson distribution.
(i) [3 pts] Find the mean of $\mathrm{Y}(\mathrm{t})$.
(ii) [3 pts] Find the autocorrelation function of $\mathrm{Y}(\mathrm{t})$.
(iii) [6 pts] Let $Z(t)=A Y(t)$ where A is a discrete random variable independent of $Y(t)$ and takes on values 1 and -1 with equal probability. Show that $Z(t)$ is WSS. (note: $Y(t)$ is not WSS)
(iv) [3 pts] Find the power spectral density of $Z(t)$. Note: look up the fourier transform table w/ autocorrelation function of $Z(t)$.
