WBN : Homework #2 Probability and Stochastic Processes [40 points ,Due 20th Feb 2007 in class]

- 1. [6 pts] A fair coin is tossed repeatedly until the first head appears.
- (i) [2 pts] Find the probability that the first head appears on the k^{th} toss. Let us call this event E_k .
- (ii) [2 pts] Let $S = \bigcup_{i=1}^{\infty} E_i$. Verify that P(S) = 1.
- (iii) [2 pts] Show that the union bound is tight for the event that first head appears in any of the first t tosses, i.e., the probability of the above event equals $\Sigma_{i=1..t}$ P(E_i).
- 2. [4 pts] For a continuous Random Variable X, and a > 0, show that (Chebyshev inequality) : $P(|X \mu_x| \ge a) \le \sigma_x^2/a^2$. <u>Hint</u>: use the definition of variance $(\sigma_x^2 = \int (X \mu_x)^2 f(X) dX)$. (note: there are several ways to derive this inequality. Any way you do it is fine.)

- 3. **[5 pts]** Let **X** be a uniform random variable over (-1, 1). Let $\mathbf{Y} = \mathbf{X}^{n}$.
- (i) [3 pts] Calculate the covariance of X and Y, i.e. E[XY] E[X]E[Y].
- (ii) [2 pts] Calculate the correlation coefficient of X and Y.

4. **[5 pts]** A laboratory test to detect a certain disease has the following statistics. Let

X = event that the tested person has the disease

It is known that 0.1 percent of the population actually has the disease. Also, $P(\mathbf{Y} \mid \mathbf{X}) = 0.99$ and $P(\mathbf{Y} \mid \mathbf{X}^{c}) = 0.005$. What is the probability that a person has the disease given that the test result is positive ?

- 5. [5 pts] Let (X₁, ..., X_n) be a random sample of an exponential random variable X with unknown parameter λ. Determine the maximum-likelihood estimator of λ. <u>Hint</u>: look at slides 40, 73 to review the exponential r.v. and MaxLikelihood estimator.
- 6. **[15 pts]** Consider the random process $Y(t) = (-1)^{X(t)}$, where X(t) is a Poisson process with rate λ . Thus Y(t) starts at Y(0) = 1 and switches back and forth from +1 to -1 at random Poisson times T_i . <u>Note</u>: $P(Y(t) = 1) = \exp(-\lambda t) \cos h \lambda t$; $P(Y(t) = -1) = \exp(-\lambda t) \sin h \lambda t$, because these are the sum of even or odd terms of a poisson distribution.
- (i) [3 pts] Find the mean of Y(t).
- (ii) [3 pts] Find the autocorrelation function of Y(t).
- (iii) [6 pts] Let Z(t) = A Y(t) where A is a discrete random variable independent of Y(t) and takes on values 1 and -1 with equal probability. Show that Z(t) is WSS. (note: Y(t) is not WSS)
- (iv) [3 pts] Find the power spectral density of Z(t). <u>Note</u>: look up the fourier transform table w/ autocorrelation function of Z(t).