WBN : Homework #2 - SOLUTIONS Probability and Stochastic Processes

- 1. A fair coin is tossed repeatedly until the first head appears.
- (i) Find the probability that the first head appears on the kth toss. Let us call this event $E_{k_{\infty}}(\frac{1}{2^{k}})$
- (ii) Let S = $\bigcup_{i=1}^{\infty} E_i$. Verify that P(S) = 1. ($\sum_{i=1}^{\infty} \frac{1}{2^i} = 1$)
- (iii) Show that the union bound is tight for the event that first head appears in any of the first t tosses, i.e., the probability of the above event equals $\Sigma_{i=1..t} P(E_i)$. (Let A_t denote the event that the first head appears in any of the first t tosses. $P(A_t) = 1 - P(\text{first t tosses are all tails}) = 1 - \frac{1}{2^t}$. Now, $\Sigma_{i=1..t} P(E_i) = \sum_{i=1}^t \frac{1}{2^i}$ $1 - \frac{1}{2^t} = P(A_t)$)

- 2. For a continuous Random Variable X, and a > 0, show that (Chebyshev inequality) : $P(|X - \mu_x| \ge a) \le \sigma_x^2/a^2$. $(\sigma_x^2 = \int_{-\infty}^{\infty} (x - u_x)^2 f(x) dx \ge \int_{|x - u_x| \ge a} (x - u_x)^2 f(x) dx \ge a^2 \int_{|x - u_x| \ge a} f(x) dx = a^2 P(|x - u_x| \ge a))$
- 3. Let **X** be a uniform random variable over (-1, 1). Let $\mathbf{Y} = \mathbf{X}^{n}$.
- (i) Calculate the covariance of **X** and **Y**. (E[X] = 0; cov (X,Y) = E[XY] E[X]E[Y] = E[XY] = E[Xⁿ⁺¹] = 1/(n+2) if n is odd; 0 if n is even.)
- (ii) Calculate the correlation coefficient of **X** and **Y**. ($\sigma_x = 1/\sqrt{3}$; $\sigma_y = 1/\sqrt{(2n+1)}$; cor(X, Y) = cov(X,Y)/($\sigma_x \sigma_y$) = $\sqrt{3(2n+1)}/(n+2)$ if n is odd; 0 if n is even.)

4. A laboratory test to detect a certain disease has the following statistics. Let

X = event that the tested person has the disease

Y = event that the test result is positive

It is known that 0.1 percent of the population actually has the disease. Also, $P(\mathbf{Y} | \mathbf{X}) = 0.99$ and $P(\mathbf{Y} | \mathbf{X}^{c}) = 0.005$. What is the probability that a person has the disease given that the test result is positive ?

P(X|Y) = P(Y|X)P(X)/P(Y) where $P(Y) = P(Y|X)P(X) + P(Y|X^{c})P(X^{c})$. Therefore P(X|Y) = (0.99)(0.001)/[(0.99)(0.001) + (0.005)(0.999)] = 0.1654.

Note that in only 16.5% of the cases where the tests are positive will the person actually have the disease even though the test is 99% effective in detecting the disease when it is, in fact, present.

Let (X₁, ..., X_n) be a random sample of an exponential random variable X with unknown parameter λ. Determine the maximum-likelihood estimator of λ.

$$L(\lambda) = P(X_1, ..., X_n | \lambda) = \prod_{i=1}^n \lambda e^{-\lambda x_i} = \lambda^n e^{-\lambda n \overline{X}}$$

log L(\lambda) = n log \lambda - \lambda n \overline{X}
Equating d/d \lambda [log L(\lambda)] = 0, we get MLE \lambda = 1 / \overline{X}

- 6. Consider the random process $Y(t) = (-1)^{X(t)}$, where X(t) is a Poisson process with rate λ . Thus Y(t) starts at Y(0) = 1 and switches back and forth from +1 to -1 at random Poisson times T_i .
- (i) Find the mean of Y(t). Y(t) = 1 if X(t) is even; -1 if X(t) is odd. $P(Y(t) = 1) = exp(-\lambda t) \cos h \lambda t$; $P(Y(t) = -1) = exp(-\lambda t) \sin h \lambda t$. Hence, $E[Y(t)] = exp(-\lambda t) (\cos h \lambda t - \sin h \lambda t) = exp(-2\lambda t)$.
- (ii) Find the autocorrelation function of Y(t).
 Y(t)Y(t+τ) = 1 if there are an even number of events in (t, t+τ); -1 otherwise.
 R_Y(t, t+τ) = E[Y(t)Y(t+τ)] = exp(- 2λτ). Thus, R_Y(τ) = exp(- 2λ|τ|).
 (iii) Let Z(t) = A Y(t) where A is a discrete random variable independent of Y(t) and
- takes on values 1 and -1 with equal probability. Show that Z(t) is WSS. $E[A] = 0; E[A^2] = 1; E[Z(t)] = E[A]E[Y(t)] = 0; R_Z(T) = R_Y(T) = exp(- 2\lambda|T|).$
- (iv) Find the power spectral density of Z(t).

 $4 \lambda / (\omega^2 + 4 \lambda^2)$