## WBN : Homework \#1 Linear Algebra (45 points)

1. 10 pts. Let $u=(1,1,2), v=(2,3,1), w=(4,5,5)$ in $R^{3}$
(i) (2 pts) Show that the vectors are linearly dependent.
(ii) (2 pts) Find a vector $q$ in $R^{3}$ which can not be represented as a linear combination of $u, v$ and $w$.
(iii) (6 pts) Solve $A x=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{\top} . A=\left[\begin{array}{lll}u & v & w\end{array}\right], x=\left(x_{1}, x_{2}, x_{3}\right)^{\top}$. Note: here the vectors $u, v, w$ are columns of $A$. Hint: (this is a least-squares problem) multiply both sides by $A^{\top}$ and then invert $A^{\top} A$
2. ( 10 pts) $\quad$ Let $A=\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 1 / \sqrt{2} \\ 1 / 2 & 1 / 2 & -1 / \sqrt{2} \\ 1 / \sqrt{2} & -1 / \sqrt{2} & 0\end{array}\right]$
(i) (6 pts) Find determinant, transpose and inverse of A.
(ii) $(1 \mathrm{pt})$ Find rank of A .
(iii) (2 pts) Show that the columns of A form an orthonormal basis for $\mathrm{R}^{3}$.
(iv) (1 pt) What kind of matrix is A .
3. (5 pts): Projection, Orthogonality
(i) (3 pts) Find the projection vector $p$ of $b=(3-5)^{\top}$ onto $a=\left(\begin{array}{ll}1 & 1\end{array}\right)^{\top}$.
(ii) (2 pts) Find the error vector $(b-p)$ and show that it is orthogonal to $p$.
4. (10 points) Eigendecomposition:
(4 pts) Show that for a square symmetric matrix $A$, the $n$-th power: $A^{n}=Q \Lambda^{n} Q^{T}$. (4 pts) Find $Q, \wedge$ for: $A=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$. (2 pts) Find $A^{3}$ using the above and verify.
5. (10 pts) Let $\quad A=\left[\begin{array}{ll}3 & -4 \\ 2 & -6\end{array}\right]$.
(i) (3 pts) Find all eigenvalues and corresponding eigenvectors.
(ii) (2 pts) Find $\wedge$ using eigen decomposition.
(iii) (1 pts) Is it possible to represent $A$ as $Q \wedge Q^{\top}$ where $Q$ is a orthogonal matrix $\left(Q^{-1}=Q^{\top}\right)$ ? Why or why not?
(iv) (4 pts) Perform SVD for A and interpret the result.
