1. 10 pts. Let \(u = (1, 1, 2), \ v = (2, 3, 1), \ w = (4, 5, 5) \) in \(\mathbb{R}^3 \)

(i) \((2 \text{ pts})\) Show that the vectors are linearly dependent.

(ii) \((2 \text{ pts})\) Find a vector \(q \) in \(\mathbb{R}^3 \) which cannot be represented as a linear combination of \(u, v \) and \(w \).

(iii) \((6 \text{ pts})\) Solve \(Ax = (1 \ 1 \ 1)^T \). \(A = [u \ v \ w] \), \(x = (x_1, x_2, x_3)^T \). Note: here the vectors \(u, v, w \) are columns of \(A \). \textbf{Hint:} (this is a least-squares problem) multiply both sides by \(A^T \) and then invert \(A^T A \).
2. (10 pts) Let \(A = \begin{bmatrix} 1/2 & 1/2 & 1/\sqrt{2} \\ 1/2 & 1/2 & -1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \end{bmatrix} \)

(i) (6 pts) Find determinant, transpose and inverse of \(A \).

(ii) (1 pt) Find rank of \(A \).

(iii) (2 pts) Show that the columns of \(A \) form an orthonormal basis for \(\mathbb{R}^3 \).

(iv) (1 pt) What kind of matrix is \(A \).

3. (5 pts): Projection, Orthogonality

(i) (3 pts) Find the projection vector \(p \) of \(b = (3 \ -5)^T \) onto \(a = (1 \ 1)^T \).

(ii) (2 pts) Find the error vector \((b - p)\) and show that it is orthogonal to \(p \).
4. (10 points) Eigendecomposition:

(4 pts) Show that for a square symmetric matrix A, the n-th power: $A^n = Q\Lambda^n Q^T$.

(4 pts) Find Q, Λ for: $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. (2 pts) Find A^3 using the above and verify.

5. (10 pts) Let $A = \begin{bmatrix} 3 & -4 \\ 2 & -6 \end{bmatrix}$.

(i) (3 pts) Find all eigenvalues and corresponding eigenvectors.

(ii) (2 pts) Find Λ using eigen decomposition.

(iii) (1 pts) Is it possible to represent A as $Q\Lambda Q^T$ where Q is an orthogonal matrix ($Q^{-1} = Q^T$) ? Why or why not?

(iv) (4 pts) Perform SVD for A and interpret the result.