WBN : Homework \#1 Linear Algebra

1. Let $\mathrm{u}=(1,1,2), \mathrm{v}=(2,3,1), \mathrm{w}=(4,5,5)$ in R^{3}
(i) Show that the vectors are linearly dependent. $(2 u+v=w)$
(ii) Find a vector q in R^{3} which can not be represented as a linear combination of u, v and $w . ~\left(q=\left(\begin{array}{lll}-5 & 3 & 1\end{array}\right)^{\top}\right)$
(iii) Find a solution to $A x=0$, where $A=[u \vee w], x=\left(x_{1}, x_{2}, x_{3}\right)^{\top}$.
($\mathrm{x}=\left(\begin{array}{lll}2 & 1 & -1\end{array}\right)^{\top}$)
Also comment on the solution to $A x=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{\top}$.
(No solution since A is not of full rank and is not invertible)
2. Let $A=\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 1 / \sqrt{2} \\ 1 / 2 & 1 / 2 & -1 / \sqrt{2} \\ 1 / \sqrt{2} & -1 / \sqrt{2} & 0\end{array}\right]$
(i) Find determinant, transpose and inverse of $A .\left(\operatorname{det} A=-1, A^{\top}=A, A^{-1}=\right.$

$$
\left.A=A^{\top}\right)
$$

(ii) Find rank of A. (Full rank $=3$)
(iii) Show that the columns of A form an orthonormal basis for R^{3}. (columns are linearly independent, orthogonal and of magnitude 1)
(iv) What kind of matrix is A . (Orthogonal)
3. Find the projection vector p of $\mathrm{b}=\left(\begin{array}{ll}3 & -5\end{array}\right)^{\top}$ onto $\mathrm{a}=\left(\begin{array}{ll}1 & 1\end{array}\right)^{\top}$. $\left(\begin{array}{ll}\mathrm{p}=\left(\begin{array}{ll}-1 & -1\end{array}\right)^{\top}\end{array}\right)$
(i) Find the error vector $(b-p)$ and show that it is orthogonal to p. $(4-4)^{\top}$
4. Show that for a square symmetric matrix $A, A^{i}=Q \Lambda^{i} Q^{\top}$.

Find Q, \wedge for $A=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$. Find A^{3} using the above and verify.
$Q=[1 /$ sqrt(2) $1 /$ sqrt(2); -1/sqrt(2) $1 / s q r t(2)], \Lambda=\left[\begin{array}{lll}2 & 0 ; & 0\end{array}\right], A^{3}=\left[\begin{array}{lll}36 & 28 ; 28 & 36\end{array}\right]$
5. Let $A=\left[\begin{array}{ll}3 & -4 \\ 2 & -6\end{array}\right]$.
(i) Find all eigenvalues and corresponding eigenvectors. (2, $-5,(4,1)$, $(1,2)$)
(ii) Find \wedge using eigen decomposition. ([20; 0 -5 0)
(iii) Is it possible to represent A as $Q \wedge Q^{\top}$ where Q is a orthogonal matrix $\left(Q^{-1}=Q^{\top}\right)$? Why or why not? (No. A is not symmetric)
(iv) Perform SVD for A and interpret the result.
$U=[-0.6154-0.7882 ;-0.78820 .6154] ; \mathrm{V}=[-0.4298-0.9029 ; 0.9029-$
0.4298]; $S=[7.96390 ; 0$ 1.2557];

