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Lecture 26

Intro to Antennas & Propagation

K. A. Connor
Electrical, Computer, and Systems Engineering Department
Rensselaer Polytechnic Institute, Troy, NY



These Slides Were Prepared by Prof. Kenneth A. Connor Using
Original Materials Written Mostly by the Following:

= Kenneth A. Connor — ECSE Department, Rensselaer Polytechnic
Institute, Troy, NY

= J. Darryl Michael — GE Global Research Center, Niskayuna, NY

= Thomas P. Crowley — National Institute of Standards and
Technology, Boulder, CO

= Sheppard J. Salon — ECSE Department, Rensselaer Polytechnic
Institute, Troy, NY

= Lale Ergene — ITU Informatics Institute, Istanbul, Turkey
= Jeffrey Braunstein — Chung-Ang University, Seoul, Korea

Materials from other sources are referenced where they are used.
Those listed as Ulaby are figures from Ulaby’s textbook.
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Examples of Antennas
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mote/r Tmote Sky

N

Humidity
Active Radiation Sensor
Sensor {optional)
(o Total Solar
Button

Radiation 6-pin expansion

e 10-pin expansion

connector
USB Transmit LED

USB oy . . ::! . i I' o E_:}..m.-._ :1 t’ U U t_) 'JI cJ L! t:j
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USB Receive LED

LEDs Microcontroller C'CE“?“ SMA
. . Radio Antenna
JTAG Digital switch
connector Isolating USB from Connector
microcontroller (optional)
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mote/r Tmote Sky

N

Texas Instruments
M$ P430 F1611 48-bit silicon
microcontroller serial 1D

2-pin V3
connectar

Flash (2kB) oscillator Flash (1MB)
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mote/v Tmote Sky

Measured Output Power

The RF output power of the Tmote Sky module from the CC2420 radio is shown in Figure 9.
For this test, the Tmote Sky module is transmitting at 2. 405GHz (IEEE 802.15.4 channel 11)
using the O-QPSK modulation with DSSS. The CC2420 programmed output power is setto 0
dBm. The measured output power of the entire modulated spectrum is 2.4 dBm.
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Figure 9 : Measured RF output power over the modulated spectrum from the Tmote Sky module
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mote/v Tmote Sky

Radiation Pattern
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Figure 12 : Radiated pattern of the Inverted-F antenna with horizontal mounting (from Chipcon AS)
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mote/v Tmote Sky
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Figure 13 : Radiated Elﬁﬂttern of the Inverted-F antenna with vertical mounting (from Chipcon AS)
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Figure 4: Radiated antenna pattern vertical mounting
CC2420DB Figure 4 depicts the antenna pattern while the CC24200E is mounted vertically with the
Top view antennas parallel section aligned to the 0 degree direction.

Fipie 32 Hadited ki Rovzonial modniing The peak antenna gain is —5 dBi, the corresponding peak field strength is 90dBuim.

Figure 3 depicts the antenna pattern while the CC24200DE is mounted horizontally with the
antennas parallel section aligned to the 0 degree direction. 10



Transmission Lines & Antennas

= Review Transmission Lines
= Review Boundary Conditions

= Review Voltage, Current, Electric and
Magnetic Fields

= Etc.
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TEM Waves on Transmission Lines

N

Connecting Uniform Plane Waves with Voltages and Currents on
Transmission Lines:

E.(z)=E.eV+E e |

E+e_jﬂZ —E e I

Hy(z) = 7 l
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TEM Waves

These fields can exist in the region between the conducting plates if
the boundary conditions on the plates are reasonably satisfied. Since
the electric field has only an x component, it is totally normal to the

conducting boundaries. This can occur if there is a surface charge on
the boundary,

p.=E (2)=6E. e V" + £ etV

The magnetic field is totally tangent to the conducting boundary,
which can occur if there is a surface current density given by

E+e—JﬂZ L E_e+JﬁZ

17
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TEM Waves

L

Then, assuming that the lower plate is grounded, the voltage on the
upper plate will be

v(z) = j:Ex(Z)dX =SE. e +SE e =V e % 4y I

where we have integrated the electric field along the vertical (red)
path shown.

w
S
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TEM Waves

To connect the magnetic field with the current, we must integrate
along a closed path that encloses one of the two conductors. The
bottom path shown includes the horizontal (green) path inside the field
region and the blue path outside of the field region. (We assume no
fringing in this ideal case.) The magnetic field only contributes along
the green path. Thus

. W E.e”* —wE eV
(2)= [ H, @)y = —————

7

- WsE,e " —wsE eV Vv eV et

" D
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TEM Waves

For a parallel plate waveguide (stripline), the inductance and
capacitance per unit length and intrinsic impedance are

C=— — £
S W
I ’USW U S S
ZOI _— —— _ 77—
C \/6W EW W
S
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TEM Waves

so the current expression is
-1pz _ +1pz
. € V_e

0]

(2) =~

We could have determined this current from the surface current
density so we should check to be sure that the two results agree. The
total current at any z should be given by

EeV —Ee Velt_vel

1(2z) = J.w = W
(z) = J, " 5

0]

as before.
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TEM Waves

Finally, we can check to see if the charge per unit length (as
determined from the boundary condition) gives us the usual
capacitance per unit length.

g=pW=eWE e "+ awE e = %(Vﬁ‘jﬂz +V_e+jﬂz) = cv(z)

as expected.

The same analysis can be done for coaxial cables and two-wire lines.
The general results are the same.
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Standing Waves:
Voltage Standing Wave with Short Circuit Load

N

5 Constructive

/ Interference

Destructive
Interference
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Standing Waves:
Voltage Standing Wave with Open Circuit Load
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Java Applet of Waves

Reflectometer Calculator

Type avalue in one ofthe fields below

and hit ‘enter:’

Reflection Coefficient -1

SWR 0.00

Return Loss (dB) =0.00
Mismatch Loss (dB) 8

1 0.00

erl 1.0

[ Show two interfaces

Resume

Standing Wave

Z

Zp

Incident’Refl. Wave:

MAVA'AVi

Transmitted Wave:

Standing YWave:

AVVAVAN

/

= http://www.bessernet.com/Ereflecto/tutorialFrameset.htm

4

Besser
. Associates

9 February 2007
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http://www.bessernet.com/Ereflecto/tutorialFrameset.htm

Simple Antennas

= Currents on Wire Antennas

= General Types of Antennas

= The Hertzian Dipole as the Model Antenna
= Other Simple Wire Configurations

= Antenna Parameters & Analysis

= Radiation Patterns

= Yagi & Patch Antennas

= Polarization

9 February 2007 Fields and Waves |
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Simple Wire Antenna Currents
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Figure 11-9. Relative to thin-wire antennas and their current distri-
butions. (¢) The summing of field contributions at P due to infinitesimal
current-elements along an antenna. (b) Linear antenna current standing
wave, obtained from a deformation of an open-circuited transmission line.
(c) Loop antenna current standing wave, obtained from a deformation of
a shorted transmission line. (¢) Pertaining to the distribution of a current

From CTA Johnk Engineering Electromagnetic standing wave along a thin wire, as a function of z.
Fields & Waves

9 February 2007 Fields and Waves | 23




Simple Wire Antenna Currents

N

£ - ~—{2)

%

9 February 2007 Fields and Waves |

24




N

Simple Wire Antenna Currents
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N

Simple Wire Antenna Currents
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N

Simple Wire Antenna Currents
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Types of Antennas

L
J%L
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Hertzian Dipole

Note the Coordinates

9 February 2007

Constant Currents

Q(R, 0,9)

-y
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Hertzian Dipole

Direction (8, ¢)

- - L] L]
P Rfldlatmm
Source |
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Hertzian Dipole

N

Radiation is primarily to
the side

Radiation is isotropic or
uniform around the axis
of the antenna

Little or no radiation up
or down

9 February 2007

(b) Azimuth pattern
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Short Dipole

T \\ ~
\“/?(z) M)
b Y “
. 1
LY ]
s KA ::—'1 :
J'f ;,
F F
F 4 ’..l"
X } 7

9 February 2007 Fields and Waves | 35



Electric field lines
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Aperture Antennas

Sidelobes

Boresight
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Antenna Parameters

= Calculate the Electric and Magnetic Fields from the
Antenna Currents — usually requires the use of
potentials

= Far Fields are Products of terms like the following —
(depends on current and inversely on position),
spherical wave, field pattern F(6)

= Determine the Poynting Vector — Power Density is
product of E and H — average goes inversely with
position squared and with FZ(Q)

= Gain is the ratio of power density to isotropic value

= Radiation Resistance Is twice the average total power
divided by the current squared
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Antenna Analysis

Hertzian Dipole

—
.
y
-
-

) cos(wt — [Br)i..

41

/I _ (/.L[}I[}(S[

olod
A, = (’L tirr[-]r E ) cos(wt — [Br) cos(6)
' 0lod
Ag = (ﬁ tzﬁi‘ [> cos(wt — [r)sin(0)
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Antenna

H =

9 February 2007

Analysis
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Antenna Analysis

Q‘/
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Taking the derivatives of H,; and integrating over time yields
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Antenna Analysis

= Keep Only The Largest Terms in the Far Field

. Ipéi 3] [sin(8
H(r=>A2m) = - [ L ] [mt,( J

: } sin(wt — ,S'P]E;,
4

and

L o [ 15632 ] [sin(8)] . ~
E(r=>A2r) = -— t [ ) sin(wt — 3r)ig
| dmepw | r
[ 183 [sin(@)] . | o
— Ij : [ ) sin(wt — Or)ig
A7 r
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Antenna Analvsis
y - i (9)
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Antenna Analysis
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Hertzian Dipole

N

Radiation is primarily to
the side

Radiation is isotropic or
uniform around the axis
of the antenna

Little or no radiation up
or down

9 February 2007

(b) Azimuth pattern
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Half Wave Dipole

Eq
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Radiation Patterns

N

Horizontal

http://www.hyperlinktech.com/web/hg914y.php
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Example

double-layer printed Yagi antenna

""""""" . director 7

|
1
|
. |
dlclccrqr substrate
I
1
|
1
|
I

¥
quane -wave
transformer "
a top
"
om laver
A beffom a

Note: no galvanic contact with the
director

Source: N Gregorieva

Property ol

top layer

reflector

bottom layer

% e Bl et 1%




Power pattern vs. Field pattern

Antenna
under test
or reference

Auxiliary
antenna

\

antenna /;)" Large distance ﬂ/’_\

o

Power or
field-strength meter

Generator

Turntable

The power pattern and the field

patterns are inter-related:

P8, @) = (1/m)*|E(6, @) = n*|H(8, )|

P = power

E = electrical field component vector
H = magnetic field component vector

n = 377 ohm (free-space, plane wave

impedance)

The power pattern is the
measured (calculated)
and plotted received
power: |Pﬂ8, Q)| ata
constant (large) distance
from the antenna

The amplitude field

pattern is the measured

(calculated) and plotted
electric (ma neticf field
Intensity, |E(©, )| or
|IH(6, )| at a constant
(large) distance from the
antenna

Property of R Struzak



Normalized pattern

» Usually, the pattern describes the
normalized field (power) values with
respect to the maximum value.

— Note: The power pattern and the amplitude
fleld pattern are the same when computed
and when plotted in dB.

Property of R Struzak



3-D pattern

 Antenna radiation
pattern is
3-dimensional

« The 3-D plot of antenna
pattern assumes both
angles 6 and @ varying,
which Is difficult to
produce and to interpret

3-D pattern

Source: NK Nikolova
Property of R Struzak 28



2-D pattern

« Usually the antenna
attern is presented as a
-D plot, with onlr one of
the direction angles, 6 or
@ varies

« |t is an intersection of the
3-D one with a given plane

— usually it is a 8 = const
plane or a @= const plane
that contains the pattern’s
maximum

Two 2-D patterns

Source: NK Nikolova
Property of R Struzak 29



Principal patterns

* Principal patterns are the 2-D patterns
of linearly polarized antennas,
measured in 2 planes

1. the E-plane: a plane parallel to the E
vector and containing the direction of
maximum radiation, and

2. the H-plane: a plane parallel to the H
vector, orthogonal to the E-plane, and
containing the direction of maximum

. . Source: NK Nikolova
ra d | at 10N Property of R Struzak 31



-180° 140" ig0” 60° 207 20° 607 100° 140° 180°

Figure 1.

This figure shows a rectangular azimuth ("E" plane) plat
presentation of a typical 10 element Yagi. The detail is
good

but the pattern shape is not always apparent.

40" 380° . 10°
3 s 10°
30 20° 'O,

« 20°
_3!]! mﬂ :uu-
3

00 - ﬂl:
1 300
L]
290"/ 70
i 290°
m" a0’
lﬂo _ 280"
270 a0’
80" 2’
260" 100°
100° 260"
ek o*
110 260°
240 1200
120°

Figure 2.

This is a polar plat of the same 10 element ¥agi and is
similar

to a compass rose. Therefore it is more compatible with
maps

and directions. Rote that it shows the sidelobes of the
antenna relative to the main beam in decibels. This type
of plot is

preferred when the exact level of the sidelobes is
imoottant

200° m: .,m: 160" m:
170" 180 190" 200° 200
R e

210" 2007
150° 160
s

o ! % ey
40 y # ""I_':-.___h . III i || i ..____,' L
3300 13409 3500 (° 109 2p°  30¢
30  20° 10° as0” 340 330°

Figure 3.

Thizis a linear plot of the same 10 element Yaoi. Mote
emphasizes the shape ofthe main radiation lobe of the

antenna

while suppressing all side [obes making the radiation
pattern

ook better than it really is!

Fields and Waves |

Antenna

Patterns

L st b "'.E-g‘-'\nu. .

Figure 4.

This is a maodified logarithmic plot of the same 10 element
Yagi which emphasizes the shape ofthe major beam while
compressing verny low-level (=30 dB) sidelobes towards the
center of the pattern.



Yagl Antenna

N

- 5.8GHz

le i IE
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rechanical

ent and the

e inducad by
ek,
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antenna. Guara
amvd wind witho
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Solid alu

‘ . : L to the boom,
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muost dia

i il
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msdels fo match speclal requirements. resistant installation for greater reliability.
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10 Element Yagi

10 Element Yagi
E-Plane H-Plane

330

270

240

210

http://www.astronwireless.com/library.html
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N

Quasi Yagi

Maodel

The broadhand Quasi-vYagi antenna is a microstrip antenna swith a truncated ground
plane, which eliminates the need for a reflectar, resulting in & very compact design
(approKimately W2 0720 The microstrip passes through a splitter curcuit o excite the 2
dipole arms out of phase. The near-field distribution shows clearly that the desired
mode has been excited along the microstrip line.

Simulation

The substrait has a permitivity (2r=10.2 which reduces the freespace wavelength in the
layer, such that the arid step has to be chosen accordingly, The minimum arid step is
chosen small enough to resolve the fine geometry of the splitter curcuit. & broadband
simulation is then run.

Results

The near-field distribution shows clearly that the desired mode has heen excited along
the microstrip line. The reflection coefficient shows that the antenna has a bandwidth of
ahout 5 GHz.

9 February 2007 Fields and Waves |
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Patch Antenna

AZ

9 February 2007

jringe field
P _probe feed

feedline

Fields and Waves |

_fringe field

.
¥

top layer
substate
ground plane

electrical field
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Patch Antenna

9 February 2007

L=0.49 Aq=0.49

'y
., — —_— —_— -
2
g - —_— — D i
@
Q Feed
= > —P) — s — >
= > — @ — s -
o
v
E i — e e =
+ = — — — -»>
Z
-+ .

Resonant length A2

Current distribution on the patch surface.
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Patch Antenna

”T

Figure 1. Physical and effective lengths of Rectangular microstrip patch
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Patch Antenna

N

{nh Recessed microstrip-line feed

Figure 2 Recessed microstrip-line feed
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N

9 Februa

a =

MFE'
—FE.p

E, = —joV, wk,

sl ot sth Scos @) sind £ov cos &)
where, (8.8 = kj 2 sin &

—2_sin Fcos g L ¥ 058
2 2

‘r' i5 the distance between the far field and the origin for a single slot.

Vo' is the woltage across the slotwhich is invariant with x over its width.
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Figure 3.9 Microstrip Patch Antenna
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Figure 3.10 Top View of Antenna

Figure 3.11 Side View of Antenna

http://etd.lib.fsu.edu/theses/available/etd-04102004-

143656/unrestricted/Chapter4.pdf
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Figure 4.5 Elevation Pattern for ¢ =0 and ¢ = 90 degrees
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Figure 1. A rectangular patch antenna.
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Figure 3. The 3 x 3 patch array that operates at 1.8 GHz, and with 35° beamwidth.

http://journals.tubitak.gov.tr/elektrik/issues/elk-05-13-1/elk-13-1-7-0407-7.pdf

w = 5.52 cm

h=1mm

g=22

a=2.758 cm

Figure 2. The square patch element and the dimensions.
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Antenna Polarization

A linear polarized antenna radiates wholly in one plane containing
the direction of propagation. In a circular polarized antenna, the
plane of polarization rotates in a circle making one complete
revolution during one period of the wave. If the rotation is
clockwise looking in the direction of propagation, the sense is called
right-hand-circular (RHC). If the rotation is counterclockwise, the
sense is called left-hand-circular (LHC).

An antenna is said to be vertically polarized (linear) when its electric
field is perpendicular to the Earth's surface. An example of a
vertical antenna is a broadcast tower for AM radio or the "whip"
antenna on an automobile.

Antenna Polarization Application Note
By Joseph H. Reisert
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Antenna Polarization

Horizontally polarized (linear) antennas have their electric field
parallel to the Earth's surface. Television transmissions in the USA
use horizontal polarization.

A circular polarized wave radiates energy in both the horizontal and
vertical planes and all planes in between. The difference, if any,
between the maximum and the minimum peaks as the antenna is
rotated through all angles, is called the axial ratio or ellipticity and is
usually specified in decibels (dB). If the axial ratio is near 0 dB, the
antenna is said to be circular polarized. If the axial ratio is greater
than 1-2 dB, the polarization is often referred to as elliptical.

Antenna Polarization Application Note
By Joseph H. Reisert
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Antenna Polarization

In the early days of FM radio in the 88-108 MHz spectrum, the radio
stations broadcasted horizontal polarization. However, in the
1960's, FM radios became popular in automobiles which used
vertical polarized receiving whip antennas. As a result, the FCC
modified Part 73 of the rules and regulations to allow FM stations to
broadcast RHC or elliptical polarization to improve reception to
vertical receiving antennas as long as the horizontal component was

dominant.

Antenna Polarization Application Note
By Joseph H. Reisert
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Antenna Polarization

Circular polarization is most often use on satellite

communications. This is particularly desired since the polarization of
a linear polarized radio wave may be rotated as the signal passes
through any anomalies (such as Faraday rotation) in the

lonosphere. Furthermore, due to the position of the Earth with
respect to the satellite, geometric differences may vary especially if
the satellite appears to move with respect to the fixed Earth bound
station. Circular polarization will keep the signal constant regardless
of these anomalies.

Antenna Polarization Application Note
By Joseph H. Reisert
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Antenna Polarization

Why is a TV signal horizontally polarized?

Because man-made noise is predominantly vertically polarized.

Do the transmitting and receiving antennas need to have the same

polarization?
Palarity matched antennas
o P AR
\\." R‘\:\\'\... _.n".f f_-"‘r) ...".lf
Y e S L] :ll I| Il:l I|II II: ||I
P A
/./ ’/ / \‘_ " .
Wertically oriented antenna Werfically erignted antenna
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Antennas

The simplest antenna is the Hertzian dipole, which looks like the
following figure with the antenna axis aligned with the z direction in
spherical coordinates.

Q(R, 0, 9)

Transmission Line T
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Antennas

Power is radiated horizontally,
which is a good thing since
this means that such
antennas can easily
communicate with one
another on the surface of the
earth. The range in angle is
more than sufficient to handle
the small elevation changes
that characterize the earth’s

surface.

9 February 2007 Fields and Waves |

(b) Azimuth pattern
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Antennas — Half Wave Dipole vs Quarter Wave Monopole
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Antennas — Half Wave Dipole vs Quarter Wave Monopole

Current distrubution
I(z) =1y cos kg

Transmission T {0 “‘
=2 line - : ':
[
’f
Dipole = Ti(t) o
v antenna |
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Antennas — Half Wave Dipole vs Quarter Wave Monopole
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Bertoni Slides

N

= Extensive Slides on Propagation, Etc for
Wireless
http://eewebl.poly.edu/faculty/bertoni/el675.
html
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