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Utility Maximizing Node Activation Policies in
Networks of Partially Rechargeable Sensors

Neeraj Jaggi, Ananth Krishnamurthy and Koushik Kar

Abstract—We address the problem of optimal node activation in
a sensor network, where the optimization objective is represented
by a time-average generalized coverage metric. We consider a sce-
nario where each sensor is rechargeable, can hold up toK quanta
of energy, and can be activated even if it is partially recharged. If
the recharge and/or discharge process is random, the problem of
optimal sensor activation in this context is a complex stochastic de-
cision question. For the case of identical sensor coverages, we show
that there exists a simplethreshold policythat is asymptotically op-
timal with respect toK, i.e., the performance of the this threshold
policy approaches the optimal performance asK becomes large.
We then extend this approach to a general sensor network, where
coverage areas of different sensors could have full, partial or no
overlap with each other. We demonstrate through simulations that
a local information based threshold policy, with an appropriately
chosen threshold, achieves a performance that is very close to the
global optimum. We also show, through analysis and simulations,
that spatial correlation in the discharge process worsens system
performance.

I. I NTRODUCTION

Significant advancements in hardware technologies, and
growing application requirements, have fueled a considerable
interest in ad-hoc and sensor networks in recent years. It is
envisioned that in the next few decades, these networks will
be used for communication in infrastructure-less regions, mil-
itary and relief operations, intra-community communication,
environmental and health monitoring, and a vast number of
other applications. A large number of such networks consist
of battery-powered nodes, which implies that these networks
are also heavily constrained in terms of energy [13]. Typically,
a sensing device can remain powered on (and be sensing) only
for a limited amount of time, until it runs out of battery energy
[13]. In many scenarios, however, sensors may be equipped
with rechargeable batteries, but recharging is often a very slow
process, possibly influenced by random environmental factors
like the intensity of sunlight etc. Typically, the average rate
of recharging will be significantly less than the average energy
discharge rate during the sensing period. As a result, a sensor
could need to spend most of its lifetime in the “off” state, when
it is not sensing, but only recharging. These factors motivate re-
dundant deployment of sensors to cover the area of interest, so
that more number of these sensors would remain charged (and
hence can be used for sensing) at any given time. In the fol-
lowing, we consider such a scenario, where sensors have been
deployed redundantly in the area of interest.
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There is a large body of work on energy-efficient MAC and
adaptive wakeup of sensors, although these works only con-
sider energy-constrained, but non-rechargeable sensors. A dis-
cussion on the importance of energy management in adhoc and
sensors networks, along with a description of various perfor-
mance objectives, is outlined in [13]. Energy-efficient MAC
protocols are studied in [5], [6], [15]. The problem of minimiz-
ing power consumption during idle times is addressed in [4],
[9], [14]. In [3], the authors use occupancy theory to analyze
the effect of switching off idle nodes on the network lifetime.
In [11], the effects of power conservation, coverage and cooper-
ation on data dissemination is investigated for a particular data
sharing architecture.

Unlike previous work, in this paper we consider sensors that
are rechargeable. We assume that sensors are recharged con-
tinuously, according to a random process. On the other hand,
sensorsactivate(i.e., participate in sensing and transmission)
themselves periodically, and are discharged during the activa-
tion period, again according to some random process. The deci-
sion question that we address is when and which sensors should
be activated (or “switched on”) so that the time-average system
utility is maximized.

The paper is structured as follows. In the next section, we
formulate the sensor activation problem as a stochastic deci-
sion question. We outline our basic approach and contribution
in Section III. In Section IV, we consider a system of sen-
sors with identical coverages, and show that simple threshold
policies can achieve asymptotically optimal performance in this
scenario. In Section V, we extend the threshold activation pol-
icy outlined in Section IV to a more general scenario where
sensor coverages may not overlap completely, and evaluate its
performance through simulations.

II. FORMULATION

We assume that battery recharge occurs in units of an energy
quantum. Each sensor is modeled as aK-quantum bucket, i.e.,
a sensor battery can hold at mostK quanta. Quanta arrive at
the sensor according to a random process. During its activa-
tion period of a sensor, these accumulated quanta are used up
one by one. Thus, a sensor can be modeled as a finite-buffer
quantum-queue, as shown in Figure 1, with a buffer capacity
of K. Note that this queue is discharged of quanta only when
the sensor is activated. Therefore, the quantum service (dis-
charge) process depends on the chosen activation decision pol-
icy. More details on the quantum arrival (recharge) and service
(discharge) process models are provided in later in this paper.

We assume that the performance of the system is character-
ized by a continuous, non-decreasing, strictly concave function
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Fig. 1. Quantum-queue model of a sensor

U satisfyingU(0) = 0. More specifically,U(n) represents the
utility derivedper unit area, per unit time, fromn active sensors
covering an area. Note that different sensors can be located at
different points in the overall physical space of interest, and the
coverage patterns of different nodes can be different. Therefore,
the coverage areas of different sensors will typically be differ-
ent. This implies that at any time, utilities in different parts of
the area of interest can differ significantly from one another.

Note that the strict concavity assumption merely states the
fact that the system has diminishing returns with respect to the
number of active sensors. As an example of a practical utility
function, consider the scenario where each sensor can detect an
event with probabilitypd. If the utility is defined as the prob-
ability that the sensing system is able to detect an event, then
U(n) = 1 − (1 − pd)n, wheren is the number of sensors that
are active. Note that this utility function is strictly concave, and
satisfiesU(0) = 0.

We are interested in maximizing the time-average utility of
the system. LetA denote a generic area element in the physical
space of interest. LetnP (A, t) denote the number of active
sensors that cover area elementA at time t, under activation
policy P . The time-average utility under policyP , is given by

lim
t→∞

1
t

∫ t

0

∫

A
U(nP (A, t)) dA dt . (1)

In Euclidean coordinates system,dA = dx dy, and
nP (A, t) = nP (x, y, t), in the above expression. The deci-
sion problem that we consider in this paper is that of findingP
so that the objective function in (1) is maximized.

Clearly, the sensors with no energy (i.e., sensors whose
quantum-queue is empty) cannot be activated. Therefore, our
decision problem is that of determining how many, and which,
sensors to activate at any time, from the set ofavailablesensors
(i.e., sensors with non-zero energy). Note that if we activate
more sensors, we gain utility in the short time-scale. However,
if the number of active sensors is already large, since the util-
ity function exhibits diminishing returns, we may want to keep
some of the available sensors “in store” for future use. In fact,
the performance results shown later in this paper justify this in-
tuition.

III. M ETHODOLOGY AND CONTRIBUTION

The random nature of recharging and discharging process im-
plies that the activation question outlined above is a stochas-
tic decision problem. Although under specific cases the opti-
mal policies may be formulated as semi-Markov decision prob-
lem, determining optimal policies can be computationally pro-
hibitive. Since sensors are energy constrained we seek policies

that can be implemented in a distributed manner with minimal
information and computational overhead. Therefore, in this pa-
per, we focus on simplethresholdpolicies (defined precisely
later in the paper) and examine their performance. Interestingly,
as we show later in this paper, a threshold policy leads to near-
optimal performance, if the threshold is chosen appropriately.

To simplify the analysis and obtain fundamental performance
insights, we examine the performance of threshold policies for
a system of sensors whose coverage areas are identical. In this
case the objective function in equation (1) reduces to a single
integral over the time domain. Under Markovian assumptions
we derive tight bounds on the performance of threshold poli-
cies for two different lifetime correlation models of the sensor
nodes. These performance bounds motivate our study of the
performance of threshold based policies in a very general net-
work setting, where coverage areas of different sensors could
have partial, complete or no overlap with each other. Results
from our extensive simulation studies show that even in this
case, the performance of threshold activation policies is still
very close to the best achievable performance.

The optimal node activation problem for rechargeable sen-
sor networks was first addressed by Karet al. in a recent work
[8]. In [8], for the case of identical sensor coverages, the au-
thors have formulated the node activation problem as a com-
plex semi-Markov decision problem (MDP), and provided a so-
lution approach to this problem. This solution approach being
computationally hard, the authors have studied the performance
of threshold policies, and shown that the best threshold policy
achieves a performance within34 of the best achievable perfor-
mance. Threshold policies are also shown to work well in a
general network scenario with non-identical sensor coverages.

In this paper too, we study the performance of threshold poli-
cies for the optimal node activation problems, but our results
differ from, and enhances, the results in [8] in several aspects.
Firstly, in [8], the authors consider a exponential model for the
recharge and discharge times; our finite-buffer quantum queue
model is a much more realistic model of the recharge/discharge
process. Secondly, in order to simplify the analysis, the system
model in [8] makes the assumption that sensors can only be ac-
tivated only when they are fully recharged. However, there is
no reason why sensors with partially recharged batteries can-
not take part in the sensing process. In this paper, we allow
partially recharged sensors to be activated, and show that this
could improve the system performance significantly over what
was observed in [8]. The consideration of partially recharged
node activation is a key aspect that distinguishes our work from
[8]. Finally, the performance bounds that we obtain are sig-
nificantly stronger than those observed in [8]. We show that
threshold policies can achieve a performance that isasymptot-
ically optimal, with respect to the buffer capacityK. SinceK
is expected be fairly large (K represents the granularity on the
energy recharge/discharge process) in most practical scenarios,
the difference between performance of the threshold policy and
that of the optimal policy is insignificant in almost all cases.
On the other hand, the performance bound obtained in [8] for
threshold policies is only34 of the optimum. Note that this
performance improvement, and the near-optimality of threshold
policies, are only possible because of the activation of partially
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recharged sensors.
It is worth noting here that the threshold policies that we

study can be implemented in a large-scale sensor network in
a distributed manner, with only local information. Therefore,
our results show how performance close to the global optimum
(which is computationally difficult to obtain) can be achieved
with a simple activation policy using only local information.

IV. A CTIVATION POLICIES WITH IDENTICAL SENSOR

COVERAGES

In this section, we address our node activation decision prob-
lem for a system of sensors whose coverage areas overlap com-
pletely with each other.

A. Problem Definition

We consider a system ofN sensors covering the same area.
We model the quanta arrival (recharge) process at each sensor
by a poisson process with rateλ. Note that in a realistic sensing
environment, the discharge time of a quantum could depend on
various random factors. For instance, sensors can transmit in-
formation (resulting in energy usage) on the occurrence of “in-
teresting” events, which may be generated according to a ran-
dom process. Therefore in our system model, we assume that
the quantum discharge times are random. More specifically,
we assume that the discharge time of each quantum is expo-
nentially distributed with mean1µ . In the simulations, however,
we also study the performance with deterministic discharge and
recharge times. Note here that we assumeµ ≥ λ, which cap-
tures the fact that the discharge rate of a sensor in the active
state is no less than the recharge rate.

We assume that there is no energy discharge when a node
is not active. However, note that although a sensor can power
itself off when it is not active, it has to wake up periodically
and exchange messages with its neighbors to keep track of the
system state in its neighborhood (so as to decide whether to
activate itself or not). Therefore, in reality, we would expect
that energy will be drained even when a sensor is not active (as
long as it has non-zero energy), but probably at a fairly steady
rate. However, since the energy discharge rate in the non-active
state can be expected to be much slower than the discharge rate
in the active state, it is not considered in our analysis.

Let nP (t) denote the number of sensors in the active state at
time t under policyP . Since the coverage areas of all sensors
are completely overlapping, the optimization problem can be
posed as that of finding a policyP that minimizesŪ(P ), where
Ū(P ) is defined as

Ū(P ) = lim
t→∞

1
t

∫ t

0

U(nP (t))dt . (2)

We assume that activation decisions can be taken at any in-
stant of time. As we argue later in the paper, these decisions
need to be taken only when some active sensor runs out of en-
ergy, or when some sensor with zero energy becomes available
by gaining a quantum through recharging. It is worth noting
here that although we will address our decision question in the
identical coverage case from the perspective of a centralized de-
cision maker, the decision policy that we develop can easily be
implemented in a decentralized manner.

B. Discharge Process Models

As we discuss later in more detail, the performance of
decision policies depend considerably on how the discharge
processes of sensors are correlated. We consider two differ-
ent correlation models of the discharge/recharge times of the
different sensors:
• Independent Discharge (ID) process model:In this model,

the quantum discharge times of the active sensors are in-
dependent of each other.

• Correlated Discharge (CD) process model:In this model,
all active sensors get discharged of a quantum at the same
time.

The two correlation models can be practically motivated in the
following way. To motivate the ID model, consider a scenario
where data transmission (on the detection of interesting events)
is the primary mode of energy expenditure, as is often the case
in practice. Moreover, assume that the detection of an event
and/or the subsequent data transmission is a random variable.
This could happen, for instance, if a certain failure probabil-
ity is associated with the detection of an event at each sensor,
or if an event is reported only by one or a subset of the sen-
sors (randomly chosen) detecting the event (to avoid redundant
event reporting). In such scenarios, the system is better repre-
sented by the ID model. To motivate the CD model, consider a
scenario where all active sensor report data on a regular basis,
or the data reporting is so infrequent that most of the energy
expenditure occurs in sensing and processing. In these cases,
the active sensors will all get discharged at the same rate, and
therefore, the system is better modeled by the CD model.

Note that these two models represent two extreme forms of
correlation, and real-life situations can be expected to fall in
between these two extremes. We will argue that our solutions
perform well with respect to both of these extreme forms of
correlation. Therefore, our solutions are expected to perform
well in intermediate discharge correlation scenarios as well.

Note that the recharge process can exhibit a certain degree of
spatial correlation as well. Since we discuss the case of iden-
tical sensor coverages in this section, we will assume that the
recharge processes at the sensors are perfectly correlated, i.e.,
quanta arrive at all the sensors simultaneously. Since the sen-
sors have identical coverages, they can be assumed to be lo-
cated close to one another; thus, the high correlation between
the recharge processes at different sensors are justified. Our re-
sults can also be extended to the case of independent recharge
processes, and certain intermediate scenarios. The fundamental
observations in those cases are similar to those in the perfectly
correlated recharge process case addressed in this paper, and
those are therefore omitted for the sake of brevity.

C. Upper Bound on the Optimal Time-average Utility

Since the optimal time-average utility is difficult to compute,
we obtain an upper bound on it. In the next subsection, we will
evaluate the performance of our proposed policies with respect
to this bound. The proof of the following result is provided in
the Appendix.

Lemma 1:The time-average utility underany node activa-
tion policy is upper-bounded byU(N

γ ).
Note that this results holds for both ID and CD process models.
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D. Performance Analysis of Threshold Activation Policies

Next we define the class of threshold activation policies, and
analyze their performance.

1) Threshold Activation Policies:Note that the set of all
possible activation policies can be very large, and the structure
of these policies can be very complex. Therefore, determining
the optimal activation policy for the ID and CD models is com-
putationally very intensive. Therefore, we focus primarily on
threshold activation policies. A threshold activation policy with
parameterm, is characterized as follows: an available sensor
(i.e., a sensor with non-zero energy)s is activated if the number
of active sensors does not exceedm afters is activated; other-
wise,s is not activated. In other words, a threshold policy with
parameterm tries to maintain the number of active sensors as
close tom as possible. Note that with such a policy, the number
of active sensors can never exceedm.

2) Scheduling Models:The performance of the threshold
policies, and their analyses, depend on how the active sensors
are chosen from the set of available sensors. Recall that for a
threshold with parameterm, at mostm sensors are activated at
any given time. Most common scheduling disciplines (work-
conserving as well as non work-conserving) can be used in se-
lecting the sensors to be activated. In the following, we ana-
lyze the performance of threshold policies for aLongest Undis-
charged-time First (LUF)scheduling policy. In LUF, at any de-
cision instant, the sensor that is activated first is the one which
has not been discharged for the longest time, amongst the set
of available sensors. In other words, at each decision instant,
available sensors are ordered according to the last time they
were active, and the first sensor in the increasing order is cho-
sen for activation. Note that the LUF policy tries to achieve
fairness amongst sensors while choosing them for activation.

3) Performance Bounds:Now we derive worst-case bounds
on the performance of threshold policies (with LUF scheduling)
with respect to the optimal policy, for the two correlation mod-
els. We defineγ = µ

λ ≥ 1. For simplicity of exposition, we
assumeγ is an integer, andN is divisible byγ (i.e., N

γ is an
integer), although our results can be generalized to cases where
these assumptions do not hold.

First, let us consider the CD model. LetVC(m) denote the
time-average utility for the CD model, with LUF scheduling, at
thresholdm.

Theorem 2:Let m∗ = N
γ . ThenVC(m∗) is lower-bounded

by K
K+1U(N

γ ), i.e.,

VC(m∗) ≥ K

K + 1
U(

N

γ
) .

The proof outline of Theorem 2 is provided in the Appendix.
Theorem 2, together with Theorem 1, implies threshold policy
with a threshold ofm∗ = N

γ is within a factor of K
K+1 of the

optimal performance over all policies.
For the ID model too, we can show a result similar to the one

stated above. LetVI(m) denote the time-average utility for the
ID model, with LUF scheduling, at thresholdm.

Theorem 3:Let m∗ = N
γ . ThenVI(m∗) is lower-bounded

by K
K+1U(N

γ ), i.e.,

VI(m∗) ≥ K

K + 1
U(

N

γ
) .

The proof of the above result is in the Appendix. Theorem 3, to-
gether with Theorem 1, implies threshold policy with a thresh-
old of m∗ = N

γ is within a factor of K
K+1 of the optimal perfor-

mance over all policies.
Note that the performance ratioKK+1 approaches unity asK

becomes large. Therefore the threshold activation policy with a
threshold ofm∗ = N

γ is asymptotically optimal with respect to
K, for both the ID and CD models.

Next we compare the performance of threshold policies for
the ID and CD models. Consider a threshold activation pol-
icy with a threshold ofm, and assume thatN is a multiple of
m. First, for the ID model, we define agroup Longest Undis-
charged-time First (g-LUF) policy as follows. Divide theN
sensors intom groups, each group consisting ofN

m sensors.
Under the g-LUF policy, at any decision instant, at most one
sensor is activated from each group. Within a group, the sen-
sor to be activated is chosen (from the set ofN

m sensors of that
group) based on a LUF scheduling policy. Note that if none
of the sensors in any group is available (i.e., all the sensors in
that group have run out of energy), then the threshold ofm can-
not be met, even if the all the sensors in the other groups are
available. Thus, g-LUF is a non work-conserving scheduling
discipline. LetV g

I (m) denote the time-average utility for the
CD model, with g-LUF scheduling, at thresholdm.

LetSN denote the set of all positive factors ofN , i.e., all pos-
itive integers which divideN . Then the following result (proof
in Appendix) shows that the threshold policy under ID model
and g-LUF scheduling performs no worse than a threshold pol-
icy under CD model and LUF scheduling.

Theorem 4:For anym ∈ SN , V g
I (m) is no less thanVC(m),

i.e., V g
I (m) ≥ VC(m) ∀m ∈ SN .

Note that under the ID model, the performance with LUF
scheduling (which is work-conserving) is intuitively expected
to be better than that with g-LUF scheduling. Therefore, with
LUF scheduling, the performance under ID model is expected
to be better than that under the CD model. Proof of this fact re-
mains an open question; however, we support this observation
through simulation results in the next subsection.

E. Simulation Validation

In this section, we report results from numerical experiments
on the performance of threshold policies for the ID and CD
models under different parameter settings. The utility function
used isU(n) = 1 − (1 − pd)n, with pd = 0.1. We report the
results forN = 16, K = 10, 100, andγ = 2, 4; the results
obtained for other values of these parameters are similar in na-
ture. For each parameter setting, we compare the time-average
utility of the system for different values of the threshold (m).
The scheduling policy used in the simulations for both the ID
and CD models is LUF.

Figures 2 - 5 show the time-average utilitiesVI(m) and
VC(m) along with U(N

γ ), the upper bound on the maxi-
mum achievable time-average utility. The figures also show

K
K+1U(N

γ ), the lower bound on the achieved utility for thresh-

old policy at a threshold ofm∗ = N
γ . The figures show that the

performance of the threshold policy is maximized at the thresh-
old of m∗ = N

γ or close to it. Moreover, the time average utility



5

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

Threshold (m)

T
im

e 
A

ve
ra

ge
 U

til
ity

ID model
CD model
Upper Bound(UB)
UB*K/(K+1)

Fig. 2. Time-average utility for both models (N = 16, K = 100, γ = 2).

0 2 4 6 8 10 12 14 16
0.05

0.1

0.15

0.2

0.25

0.3

0.35

Threshold (m)

T
im

e 
A

ve
ra

ge
 U

til
ity

ID model
CD model
Upper Bound(UB)
UB*K/(K+1)

Fig. 3. Time-average utility for both models (N = 16, K = 100, γ = 4).

at the threshold ofNγ is very close to that of the upper bound

on the achievable performance,U(N
γ ), particularly for largeK.

The time average utility at this threshold is also greater than the
lower bound K

K+1U(N
γ ) for both ID and CD models, as ex-

pected (Theorems 2 and 3). Also note that the performance
under the ID model is better than that under the CD model, at
all values of the thresholdm ∈ SN (Theorem 4).

V. ACTIVATION POLICIES IN A GENERAL NETWORK

SCENARIO

In a realistic deployment scenario, nodes may be deployed
at random, and therefore, nodes will typically cover different
areas in the physical space of interest. In other words, the cov-
erage areas of two sensors may overlap only partially, or may
not overlap at all. In this section, we extend our threshold acti-
vation policy to this very general scenario.

The partial coverage overlap scenario is very difficult to
model and analyze, even for the special class of threshold poli-
cies. In this section, therefore, we will try to develop a solu-
tion heuristically, based on the insights obtained for the identi-
cal coverage case. We develop a threshold activation algorithm
that can be implemented in a distributed manner in a general
network. We then show through simulations that our solution
yields a performance trend that is similar to that observed in the
identical coverage case. More specifically, for an appropriately
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Fig. 4. Time-average utility for both models (N = 16, K = 10, γ = 2).
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Fig. 5. Time-average utility for both models (N = 16, K = 10, γ = 4).

chosen threshold, our threshold activation algorithm results in
a near-optimal performance even in this general network sce-
nario.

A. Distributed Threshold Activation Policies

To motivate our distributed activation algorithm, let us as-
sume thatmi is the target threshold for sensori. In other words,
sensori wants to maintain a utility ofU(mi) per unit area per
unit time in its coverage area. In other words, if the coverage
area of the sensor is denoted byAi, then the sensor targets to
derive a utility of |Ai|U(mi) per unit time. When the sensor
is available (i.e., has non-zero energy), then at any decision in-
stant, the sensor computes the current utility per unit time in its
coverage area. If the current utility is less than the targeted util-
ity, then the node activates itself; otherwise, the node remains
in the available state until the next decision instant.

A sensor can compute the utility derived from its coverage
area in the following manner. For a generic area elementA ∈
Ai, letn(A, t) denote the number of sensors coveringA at time
t. Then the utility per unit time in the coverage area of nodei
is calculated as∫

Ai

U(n(A, t)) dA . (3)

Assume that nodei can communicate with all nodes whose
coverage areas overlap with its own coverage area. Then the
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sensor can periodically poll those neighbors to know their ac-
tivation state. Assuming that the sensori knows the coverage
patterns of those neighbors, it can compute the targeted utility
by evaluating the expression in (3). Therefore, the proposed al-
gorithm can be realized in a distributed setting based only on
local information. In practice the decision interval needs to be
chosen carefully to ensure that not too much energy is wasted in
the available state by periodic wakeup and polling, while guar-
anteeing good performance.

Note that the algorithm is motivated by the threshold activa-
tion policy discussed in the previous section, and in the case
of identical sensor coverages, it reduces to a distributed imple-
mentation of the threshold policy described earlier.

B. Choice of Threshold

The thresholdsmi can be defined globally or locally, and
accordingly we have two variants of our policy:
• Global threshold policy:In this case, themi = m ∀i,

where the fixed thresholdm is chosen appropriately.
• Local threshold policy:In this case, themi can be differ-

ent for eachi, depending on the local neighborhood of the
individual sensor nodes.

In Section V-D, we comment on the appropriate choice of the
local and global thresholds, to yield optimum performance. We
can intuitively expect the local threshold policy to perform bet-
ter, particularly in scenarios where there is a high spatial vari-
ance in the density of nodes in the deployment region. For the
local threshold policy, nodes in areas with larger density can
have a higher threshold, while nodes in a sparser region can
set its threshold to a lower value. However, if the nodes are
deployed more or less uniformly, then both these policies are
observed to perform very well in simulations, although local
threshold policy performs slightly better.

C. Discharge and Recharge Event Models

We assume that discharge (recharge) of sensors occur
through discharge (recharge) events. We consider two corre-
lation models for these discharge (recharge) events.
i) Independent Discharge-Recharge Event Model:Events are
assumed to occur randomly in the physical space of interest,
and a sensor node gets discharged (by a quantum) only when
an event occurs within its coverage area. Events are assumed
to occur according to a Poisson process, and are uniformly dis-
tributed in the area of interest. Thus an active sensor gets dis-
charged of one quantum of energy if an event occurs within its
coverage area, otherwise not. The recharge process is modeled
similar to the discharge process. Thus “recharge events” occur
randomly in the space of interest, and a sensor gets recharged
by one quantum if a recharge event occurs within its coverage
area.
ii) Block-correlated Discharge-Recharge Event Model:Here
the network is divided into virtual blocks of equal sizes. Here
too, discharge (recharge) events occur according to a poisson
process, and are assumed to be uniformly distributed in the
area of interest. However, a discharge (recharge) event occur-
ring anywhere in the block affects all the sensors located in this
block in a similar manner. This introduces spatial correlation

between the discharge (recharge) times of the sensors. The de-
gree of spatial correlation depends on the sizes of the blocks.
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Fig. 6. Performance with global thresholds
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Fig. 7. Performance with local thresholds

D. Simulation Results

The performance of the node activation algorithm described
above is evaluated using simulations for a wide range of para-
meters for both the cases of global and local thresholds. In the
representative simulation results presented here, the simulation
setup and the parameters used are as follows. A total ofN =
52 sensors, each having a circular coverage pattern of radius 12
units, are thrown uniformly at random in an area of size 50×50.
We useγ = 2 andK = 100. With these parameters, the mean
coverage of the network (̄N ), defined as the average number
of sensors covering any point in the deployment region, is ob-
served to be 9.1. Therefore,̄N/γ ≈ 2. The utility function
used is given byU(n) = 1− (1− pd)n, wherepd = 0.1.

Since the optimal policy is difficult to formulate and compute
in this case, we will compare the performance of our algorithm
with respect to an upper bound, computed as follows. LetA
denote a generic area element in the physical space of interest,
andN(A) denote the number of active sensors that cover area
elementA. Then the following result can be proved using the
same line of analysis as in the proof of Theorem 1:

Corollary 5: The optimal time-average utility for a general
network of sensors is upper-bounded by
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∫

A
U

(
N(A)

γ

)
dA . (4)

Figures 6 and 7 show the performance of the various models
for global and local thresholds, along with the upper bound on
the performance (UB) and UB× K

K+1 . Let us defineα, the local
threshold parameter, asα = mi/(ni

γ ), whereni is the number
of sensors (includingi) that cover the point wherei is located.
Note that in Figure 7, the time-average utility is plotted against
this local threshold parameterα.

From Figure 6, we observe that the peak performance is
achieved at approximately(2N̄)/γ ≈ 4). From Figure 6, we
note that the best performance is achieved atα = 1. A care-
ful examination also reveals that the peak performance with lo-
cal thresholds is better than the peak performance with global
thresholds. Local thresholds can be computed with local in-
formation. In contrast, computation of the appropriate global
threshold would require global coverage information. Thus,
the use of local thresholds (over global thresholds) is justifiable
from both the perspectives of overall performance and commu-
nication complexity.

Note that in all cases, the peak performance is very close to
the upper bound. For the block-correlated event models, note
that the degree of spatial correlation increases as the number of
blocks decreases (i.e., the size of each block increases). There-
fore, the figures demonstrate that the performance of threshold
policies degrade as the degree of spatial correlation increases.
The performance drop is particularly significant at higher val-
ues of the threshold.
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APPENDIX I: PROOFOUTLINES OF THEOREMS

Proof Outline of Lemma 1: The proof involves concavity
arguments and Jensen’s Inequality [16]. Letf and p be
measureable functions finite a.e. onR. Suppose, thatfp and
p are integrable onR, p ≥ 0, and

∫
p > 0. If φ is convex in

an interval containing the range off , then Jensen’s inequality
states that:

φ

(∫
R

fp∫
R

p

)
≤

∫
R

φ(f)p∫
R

p
.

Let n(t) denote the number of sensors that are discharging at
time t. SinceU(.) is concave, substitutingφ = U(.), f = n(t)
andp = 1 in the above, Jensen’s Inequality implies that:

U

(∫ T

0
n(t)dt

T

)
≥

∫ T

0
U(n(t))dt

T
.

Since,U(.) is continuous, we have:

lim
T→∞

U

(∫ T

0
n(t)dt

T

)
≥ lim

T→∞

∫ T

0
U(n(t))dt

T
.

Therefore, it suffices to show that

lim
T→∞

U

(∫ T

0
n(t)dt

T

)
≤ U

(
N

γ

)
.

Defineψi(t) such thatψi(t) = 1 if sensori is discharging at
time t andψi(t) = 0, otherwise. Then, continuity ofU(.) also
implies

lim
T→∞

U

(∫ T

0
n(t)dt

T

)
= U

(
lim

T→∞

∫ T

0
n(t)dt

T

)

= U

(
lim

T→∞

∫ T

0

∑i=N
i=1 ψi(t)dt

T

)

Sinceψi(t) is positive and bounded,

lim
T→∞

U

(∫ T

0
n(t)dt

T

)
= U

(
lim

T→∞

i=N∑

i=1

∫ T

0
ψi(t)dt

T

)

= U

(
i=N∑

i=1

lim
T→∞

∫ T

0
ψi(t)dt

T

)
.

Further, since all sensors are identical, for anyi

U

(
lim

T→∞

∫ T

0
n(t)dt

T

)
= U

(
N lim

T→∞

∫ T

0
ψi(t)dt

T

)
.

Since the recharging is modeled as Poisson processes with para-
meterλ, the discharging times are assumed to be exponentially
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distributed with mean1/µ, and each sensor is assumed to have
an energy capacity equivalent toK quanta, the fraction of time
a sensor is discharging corresponds to the steady state probabil-
ity that the server in anM/M/1/K queue is busy. Therefore,
we have

lim
T→∞

∫ T

0
ψi(t)dt

T
≤ γK − 1

γK+1 − 1
.

Sinceγ ≥ 1, we have γK−1
γK+1−1

≤ 1
γ for finite K, implying

lim
T→∞

∫ T

0
ψi(t)dt

T
≤ 1

γ
.

Therefore we have

U

(
lim

T→∞

∫ T

0
n(t)dt

T

)
≤ U

(
N

γ

)

This implies

U

(
lim

T→∞

∫ T

0
n(t)dt

T

)
≤ U

(
N

γ

)

i.e., lim
T→∞

∫ T

0
U(n(t))dt

T
≤ U

(
N

γ

)
.

The above theorem implies that the time-average utility under
anypolicy can not be greater thatU(N

γ ).

Proof Outline of Theorem 2:
The proof is based on the analysis of a queuing system equiv-

alent to the CD model. We describe the queuing system and
then prove the desired result.
Equivalent queuing system:Each sensor is modeled as a single
server queue with a buffer of sizeK. The charging process is
modeled by a Poisson process with parameterλ. We assume
that arriving quanta that find a sensor fully charged are lost.
In the CD model operating under a threshold policy with pa-
rameterm, exactlym of theN sensors undergo the discharge
process simultaneously. The discharge process at thesem sen-
sors will be perfectly correlated, i.e. quanta of energy are con-
sumed from each of them sensors at exactly the same time.
Therefore theN sensors will be partitioned intoc = N/m
groups ofm sensors, and the system performance can be stud-
ied by analyzing the queuing process at a representative sensor
from each group. Hence, performance of the threshold policy in
the CD model is analyzed using the queuing model of a polling
system shown in Figure 8. Thec buffers correspond to repre-
sentative sensors from each of thec batches. We assume that
the server polls the buffers periodically using a LUF scheduling
discipline. Note that for the CD model, the LUF scheduling dis-
cipline is equivalent to a round-robin discipline. When a buffer
is polled, exactly one quantum (if available) is consumed and
the discharging process takes an exponentially distributed time
with mean1/µ. Subsequent to polling bufferj, the server polls
the otherc− 1 buffers, and re-polls bufferj after at mostc− 1
exponentially distributed service times (each with mean1/µ).
Therefore, with respect to bufferj, the system operates like a

Fig. 8. Correlated Discharge Model

single server queue with vacations. Letπi,C denote the long
run proportion of time exactlyi of thec buffers are non-empty.
The long run proportion of the time the server is busy,1−π0,C ,
determines the time average utility of the system,VC(m). That
is,

VC(m) = (1− π0,C)U(m). (5)

Proof Outline:We first determine an upper bound onπ0,C and
then show that form∗ = N/γ, VC(m) ≥ (K/K + 1)U(N/γ).
To derive the bound, we analyze the single server queue
with vacations as an equivalentM/G/1/K queue. At this
M/G/1/K queue, we assume that the arrivals form Poisson
process with parameterλ. We letS denote the random variable
corresponding to service times at this queue. ThenS = X +Y ,
whereX denotes the service/discharge time (exponentially dis-
tributed with mean1/µ), and Y denotes the vacation time.
Note thatY is the sum of at mostc − 1 exponentially distrib-
uted random variables (each with mean1/µ), depending upon
whether all the otherc − 1 buffers polled were non-empty at
their polling instants or not. This implies that p.d.f ofY is a
mixture of Erlang distributions. We derive our desired result
using a pessimistic estimate on the vacation time, i.e., we as-
sume that all thec− 1 buffers are always non-empty at polling
instants. This implies that the p.d.f ofS, f(t), is Erlang dis-
tributed with c exponential stages, and that the mean service
time at theM/G/1/K queue isc/µ. We denote byπ0, the
long run proportion of the time the server in this queue is idle.
Next, we compare the performance of theM/G/1/K queue
with anM/M/1/K queue that differs only in terms of the dis-
tribution of the service times. More precisely, ifSM denotes
the service time in theM/M/1/K queue, then we assume that
fM (t) = (µ/c)e−µt/c. Note that this implies that the mean ser-
vice time at thisM/M/1/K queue is alsoc/µ. Further, we let
πM

0 denote the long run proportion of time that the server of the
M/M/1/K queue is idle. The definitions off(t) andfM (t)
imply thatS ≤st SM , where≤st denotes the usual stochastic
ordering (Shaked and Shanthikumar [12]). Further, ifF̄ (t) and
F̄M (t) denote the tail probabilities ofS andSM , thenF̄ (t) ≤
F̄M (t) for all t > 0. Then, using the analysis of Lavenberg
[10] we can show thatπ0 ≤ πM

0 . Further, since the through-
put of the queuing system shown in Figure 8 is at leastc times
the throughput of the individualM/G/1/K being considered,
we have(1 − π0,C)µ ≥ c(1 − π0)(µ/c) ≥ c(1 − πM

0 )(µ/c),
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Fig. 9. Independent Discharge Model

i.e., π0,C ≤ πM
0 . From the analysis ofM/M/1/K queue

(Gross and Harris [7]) we haveπM
0 = 1/

∑i=K
i=0 (c/γ)i. Now

we setm∗ = N/γ. Note that this implies thatc = γ and
πM

0 = 1/(K + 1). Therefore,

VC(m∗) = (1− π0,C)U(N/γ)
≥ (1− πM

0 )U(N/γ)

≥ K

K + 1
U(N/γ) (6)

This proves the desired result. Note that asK → ∞, setting
m = N/γ yields the maximum possible time average utility
underany policy implying that the threshold ofm = N/γ is
asymptotically optimal with respect toK.

Proof Outline of Theorem 3: The proof is based on the analy-
sis of a queuing system equivalent to the ID model. We describe
the queuing system and then prove the desired result.
Equivalent queuing system:As before, each sensor is modelled
as a single server queue with a buffer of sizeK. Under a thresh-
old policy with parameterm in the ID model, at mostm of the
N sensors can be discharged simultaneously. However unlike
the CD model, the discharge process at these sensors are in-
dependent. To analyze the performance of this model we con-
struct the queuing model of a multi-server polling system (see
Figure 9). Note that in this system, the buffers correspond to
the N sensors. Further, the charging process is modelled by
poisson arrivals and the discharging process by exponentially
distributed service times. Them-server group polls the buffers
periodically using a LUF scheduling policy. Therefore, with re-
spect to a each buffer the system operates like a queuing system
with vacations. When a buffer is polled, exactly one quantum
(if available) is consumed and the corresponding discharging
process takes an exponentially distributed time with mean1/µ.

Proof Outline: The proof is similar to that used to show the
result for the CD model. We letπi,I denote the long run pro-
portion of time that exactlyi of them servers are busy. Then

the time average utility of the system,VI(m) is given by

VI(m) =
m∑

i=1

πi,IU(i). (7)

To determine a bound on
∑m

i=1 πi,IU(i) we analyze the queu-
ing system from the perspective of a single buffer. More pre-
cisely, we analyze the queuing system with vacations using an
equivalentM/G/1/K queue. IfX̃ denotes the random vari-
able corresponding to service times of thisM/G/1/K queue,
thenS̃ = X̃ + Ỹ , whereX̃ denotes the service time – exponen-
tially distributed with mean1/µ, and Ỹ denotes the vacation
time. (Note thatỸ is a sum of at mostN − m exponentially
distributed random variables with mean1/mµ). That is, the
p.d.f of Ỹ is a mixture of Erlang distributions. As in the analy-
sis of the CD model, we derive our desired result using a pes-
simistic estimate on the vacation time, i.e., we assume thatỸ
has an Erlang distribution withN −m stages. This implies that
the p.d.f ofS̃, f̃(t) is convolution of the p.d.f of exponential
and Erlang distribution. However, the mean service time at this
M/G/1/K queue is alsoc/µ (=N−m

mµ + 1
µ = N

mµ ). We denote
by π̃0, the long run proportion of the time this server is idle.
Then, we compare the performance of theM/G/1/K queue
with an M/M/1/K queue that differs from theM/G/1/K
queue only in the distribution of the service times. IfS̃M de-
notes the service time in theM/M/1/K queue, then we as-
sume thatf̃M (t) = (µ/c)e−µt/c. Further, we letπ̃M

0 de-
note the the long run proportion of time that the server in the
M/M/1/K queue is idle. Therefore we have the expectations
of S̃ and ˜SM both equal toc/µ. Further, the definitions of
S̃ and ˜SM implies thatS̃ ≤st

˜SM . Then using an analy-
sis similar to that used for the CD model, it can be shown
that π̃0 ≤ π̃M

0 . Further, since the throughput of the queu-
ing system shown in Figure 9 is at leastN times the through-
put of the individualM/G/1/K being considered, we have∑m

i=1 iπi,Iµ ≥ N(1 − π̃0)(µ/c) ≥ N(1 − π̃M
0 )(µ/c). Fur-

ther, the strict concavity of the utility functionU(.) implies that
U(i)

i ≥ U(m)
m for all i ≤ m. Therefore,

m∑

i=1

πi,IU(i) ≥ (U(m)/m)
m∑

i=1

iπi,I

≥ U(m)(1− π̃M
0 )

From the analysis of anM/M/1/K queue we can show that
for m∗ = N/γ, π̃M

0 = 1/(K + 1), implying that

VI(m∗) ≥ K

K + 1
U(N/γ). (8)

Note that as in the case of the CD model, whenK → ∞,
setting m = N/γ yields the maximum possible time aver-
age utility underany policy implying that the threshold of
m = N/γ is asymptotically optimal with respect toK.

Proof of Theorem 4:
Proof Outline: We compare the performance of the queuing
system representation of the ID model under two different
scheduling disciplines, LUF and g-LUF. To understand the g-
LUF scheduling discipline, we focus on the system shown in
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Fig. 10. Comparison of ID and CD Models

Figure 10. In this system, theN buffers are divided intom vir-
tual groups ofc buffers. A server is dedicated to each virtual
group and quanta in the buffers belonging to this virtual group
are served by this server exclusively. Within each virtual group,
the server adopts a LUF scheduling policy. We show that when
the network operates under the g-LUF scheduling discipline,
the ID model yields a time average utility that is greater than
that of the CD model.
We letπg

i,I denote the long run proportion of time that exactly
i of them servers are busy when the system follows the g-LUF
scheduling policy. Then the time average utility of the system,
V g

I (m) is given by

V g
I (m) =

m∑

i=1

πg
i,IU(i). (9)

Next, we note that the stochastic behavior of the server in each
virtual group is identical to that of the server in the CD model.
This implies that the throughput of the system operating under
the g-LUF scheduling policy, given by

∑m
i=1 iπg

i,Iµ = m(1 −
π0,C)µ. Further, the strict concavity of the utility functionU(.)

implies thatU(i)
i ≥ U(m)

m for all i ≤ m. Therefore,

m∑

i=1

πg
i,IU(i) ≥ (U(m)/m)

m∑

i=1

iπg
i,I

≥ U(m)(1− π0,C)
≥ VC(m). (10)

This proves the desired result.


