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Abstract—We address the problem of optimal node activationin ~ There is a large body of work on energy-efficient MAC and
a sensor network, where the optimization objective is represented adaptive wakeup of sensors, although these works only con-
by a time-average generalized coverage metric. We consider a sCegider energy-constrained, but non-rechargeable sensors. A dis-

nario where each sensor is rechargeable, can hold up t& quanta . the i t f tin adh d
of energy, and can be activated even if it is partially recharged. If Cussion on the Importance o energy management in adnoc an

the recharge and/or discharge process is random, the problem of Sensors networks, along with a description of various perfor-
optimal sensor activation in this context is a complex stochastic de- mance objectives, is outlined in [13]. Energy-efficient MAC
cision question. For the case of identical sensor coverages, we showsrotocols are studied in [5], [6], [15]. The problem of minimiz-
that there exists a simplethreshold policythat is asymptotically op- ing power consumption during idle times is addressed in [4],

timal with respect to K, i.e., the performance of the this threshold
policy approaches the optimal performance asK becomes large. [9], [14]. In [3], the authors use occupancy theory to analyze

We then extend this approach to a general sensor network, where the effect of switching off idle nodes on the network lifetime.
coverage areas of different sensors could have full, partial or no In [11], the effects of power conservation, coverage and cooper-

overlap with each other. We demonstrate through simulations that - ation on data dissemination is investigated for a particular data
a local information based threshold policy, with an appropriately sharing architecture.

chosen threshold, achieves a performance that is very close to the . - : . .
global optimum. We also show, through analysis and simulations, Unlike previous work, in this paper we consider sensors that

that spatial correlation in the discharge process worsens system aré reChargeable_- We assume that sensors are recharged con-
performance. tinuously, according to a random process. On the other hand,
sensorsactivate(i.e., participate in sensing and transmission)
|. INTRODUCTION themselves periodically, and are discharged during the activa-
Significant advancements in hardware technologies, atrIf()Jn perlod., again accordlngto.some random Process. The deci-
on guestion that we address is when and which sensors should

growing application requirements, have fueled a considera@I . . ., .
interest in ad-hoc and sensor networks in recent years. It activated (or “switched on’) so that the time-average system

envisioned that in the next few decades, these networks V\LIJIH ity 1s max'”.“zed- .

C . . The paper is structured as follows. In the next section, we
be used for communication in infrastructure-less regions, mjl- o ) .
. ; . . . . ' formulate the sensor activation problem as a stochastic deci-
itary and relief operations, intra-community communication

. o Si]pn question. We outline our basic approach and contribution
environmental and health monitoring, and a vast number 0 . . )
in Section Ill. In Section IV, we consider a system of sen-

other applications. ‘A large number of such networks ConSIStrs with identical coverages, and show that simple threshold

L 0
of battery-powered nodes, which implies that these networks,. . ; ! X o
: . . . Olicies can achieve asymptotically optimal performance in this
are also heavily constrained in terms of energy [13]. Typicall . : o
: . ) . enario. In Section V, we extend the threshold activation pol-
a sensing device can remain powered on (and be sensing) on . ; . .
o . o icy outlined in Section IV to a more general scenario where
for a limited amount of time, until it runs out of battery energ .
. . ¥%5ensor coverages may not overlap completely, and evaluate its
[13]. In many scenarios, however, sensors may be equippe . .
: : o erformance through simulations.
with rechargeable batteries, but recharging is often a very slow

process, possibly influenced by random environmental factors Il. EORMULATION

like the intensity of sunlight etc. Typically, the average rate W that batt h . its of
of recharging will be significantly less than the average ener € assume that batlery recharge occurs in units ot an energy
%ﬁ?ntum Each sensor is modeled agaquantum bucket, i.e.,

discharge rate during the sensing period. As a result, a sen batt hold at mdst i ¢ ; i
could need to spend most of its lifetime in the “off” state, whe sensor battery can hold at mdstquanta. Quanta arrive a

itis not sensing, but only recharging. These factors motivateli € sen§ocjr afccordlng toﬂ? random proIC(tasds. Durtmg Its act|c\j/a—
dundant deployment of sensors to cover the area of interest, '0p Period of a sensor, these accumulated quanta are used up
by one. Thus, a sensor can be modeled as a finite-buffer

that more number of these sensors would remain charged (QH(? ‘ h in Fi 1 with a buff it
hence can be used for sensing) at any given time. In the fSEan Um-queue, as snown In Figure 1, with a bufler capacity

lowing, we consider such a scenario, where sensors have b?h rﬁ{ Note Fhat tthlstqgeu_?hls d:‘schart%ed of ql:anta only whg_n
deployed redundantly in the area of interest. e sensor is activated. erefore, the quantum service (dis-

charge) process depends on the chosen activation decision pol-
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@—> that can be implemented in a distributed manner with minimal

#}fﬁ fg{‘gﬁ;‘?ﬁ;ew information and computational overhead. Therefore, in this pa-
A :- activhtion policy per, we focus on S|mplmre_sholdp_oI|C|es (defined preuse_ly
“quanm later in the paper) and examine their performance. Interestingly,
arrivals as we show later in this paper, a threshold policy leads to near-
(sensor recharge) " onsor not activated optimal performance, if the threshold is chosen appropriately.
(no discharge) To simplify the analysis and obtain fundamental performance
insights, we examine the performance of threshold policies for
Fig. 1. Quantum-queue model of a sensor a system of sensors whose coverage areas are identical. In this

case the objective function in equation (1) reduces to a single
integral over the time domain. Under Markovian assumptions
we derive tight bounds on the performance of threshold poli-

covering an area. Note that different sensors can be Iocate&'gg for t\TNr? d|ffererf1t lifetime %orrel(;;\tlon rtr_10dtels of tr][edsen?(i:]
different points in the overall physical space of interest, and thQues. ese performance bounds mofivate our study ot the

coverage patterns of different nodes can be different. Therefo'i’g,r formance of threshold based policies in a very general net-

the coverage areas of different sensors will typically be diffe}:-/ork setting, where coverage areas of different sensors could

ent. This implies that at any time, utilities in different parts o ave partlal,t completg orl r:p ove:;rlzp W'tu eactpl c;ther. Resttrjl!ts
the area of interest can differ significantly from one another. rom our extensive simuiation studies show that even in this

Note that the strict concavity assumption merely states tfdse: the performance of threshold activation policies is still

fact that the system has diminishing returns with respect to t8'Y ¢lose to the best achievable performance.

number of active sensors. As an example of a practical utility ' "€ OPtimal node activation problem for rechargeable sen-
function, consider the scenario where each sensor can detect@n"etworks was first addressed by keaal. in a recent work

event with probabilityp. If the utility is defined as the prob- [8]- In [8], for the case of identical sensor coverages, the au-
ability that the sensing system is able to detect an event, tH8Rrs have formulated the node activation problem as a com-
U(n) = 1 — (1 — pa)™, wheren is the number of sensors that?lex semi-Markov decision problem (MDP), and provided a so-

are active. Note that this utility function is strictly concave, antftion approach to this problem. This solution approach being
satisfies/ (0) = 0. computationally hard, the authors have studied the performance

We are interested in maximizing the time-average utility dif threshold policies, and shown that the best threshold policy
the system. Lef4 denote a generic area element in the physicafhieves a performance withijiof the best achievable perfor-
space of interest. Letp(A,t) denote the number of activeMance- Threshold policies are also shown to work well in a
sensors that cover area elemehtt timet. under activation 9€neral network scenario with non-identical sensor coverages.

U satisfyingU (0) = 0. More specificallylU (n) represents the
utility derivedper unit area per unit time fromn active sensors

policy P. The time-average utility under polidy, is given by~ Inthis paper too, we study the performance of threshold poli-
1t cies for the optimal node activation problems, but our results

[Jim ;/ / U(np(A,t)) dAdt. (1) differ from, and enhances, the results in [8] in several aspects.

0 /A Firstly, in [8], the authors consider a exponential model for the
In Euclidean coordinates systemA = dz dy, and recharge and discharge times; our finite-buffer quantum queue

np(A,t) = np(z,y,t), in the above expression. The decimodel is a much more realistic model of the recharge/discharge
sion problem that we consider in this paper is that of findihg process. Secondly, in order to simplify the analysis, the system
so that the objective function in (1) is maximized. model in [8] makes the assumption that sensors can only be ac-

Clearly, the sensors with no energy (i.e., sensors whoggated only when they are fully recharged. However, there is
guantum-queue is empty) cannot be activated. Therefore, Q¢ reason why sensors with partially recharged batteries can-
decision problem is that of determining how many, and whicRot take part in the sensing process. In this paper, we allow
sensors to activate at any time, from the set\afilablesensors partially recharged sensors to be activated, and show that this
(i.e., sensors with non-zero energy). Note that if we activagguld improve the system performance significantly over what
more sensors, we gain utility in the short time-scale. Howevgyas observed in [8]. The consideration of partially recharged
if the number of active sensors is already large, since the ufibde activation is a key aspect that distinguishes our work from
ity function exhibits diminishing returns, we may want to kee[B]_ Finally, the performance bounds that we obtain are sig-
some of the available sensors “in store” for future use. In fagjificantly stronger than those observed in [8]. We show that
thfe_performance results shown later in this paper justify this ifhreshold policies can achieve a performance thasjsnptot-
turtion. ically optimal with respect to the buffer capacify. SinceK

is expected be fairly largef{ represents the granularity on the
lIl. METHODOLOGY AND CONTRIBUTION energy recharge/discharge process) in most practical scenarios,

The random nature of recharging and discharging process itlhe difference between performance of the threshold policy and
plies that the activation question outlined above is a stochdlsat of the optimal policy is insignificant in almost all cases.
tic decision problem. Although under specific cases the op@®n the other hand, the performance bound obtained in [8] for
mal policies may be formulated as semi-Markov decision protitrreshold policies is onlﬁ of the optimum. Note that this
lem, determining optimal policies can be computationally pr@erformance improvement, and the near-optimality of threshold
hibitive. Since sensors are energy constrained we seek poligieticies, are only possible because of the activation of partially



recharged sensors. B. Discharge Process Models
It is worth noting here that the threshold policies that we As we discuss later in more detail, the performance of
study can be implemented in a large-scale sensor networkgigcision policies depend considerably on how the discharge
a distributed manner, with 0I’I|y local information. Therefor%rocesses of sensors are correlated. We consider two differ-
our results show how performance close to the global optimuit correlation models of the discharge/recharge times of the
(which is computationally difficult to obtain) can be achievegifferent sensors:
with a simple activation policy using only local information. « Independent Discharge (ID) process modelthis model,
the quantum discharge times of the active sensors are in-
V. ACTIVATION POLICIES WITH IDENTICAL SENSOR dependent of each other.
COVERAGES « Correlated Discharge (CD) process modét:this model,
In this section, we address our node activation decision prob- all active sensors get discharged of a quantum at the same
lem for a system of sensors whose coverage areas overlap com- time.

pletely with each other. The two correlation models can be practically motivated in the
following way. To motivate the ID model, consider a scenario
A. Problem Definition where data transmission (on the detection of interesting events)

We consider a system df sensors covering the same area:i.s the pr_imary mode of energy expenditure, as i; often the case
We model the quanta arrival (recharge) process at each sef@dyractice. Moreover, assume that the detection of an event
by a poisson process with rake Note that in a realistic sensing@nd/or the subsequent data transmission is a random variable.
environment, the discharge time of a quantum could depend b could happen, for instance, if a certain failure probabil-
various random factors. For instance, sensors can transmit/f4-IS @ssociated with the detection of an event at each sensor,
formation (resulting in energy usage) on the occurrence of ! if an event is reported only by one or a subset of the sen-
teresting” events, which may be generated according to a r&R!S (randomly chosen) detectlng the event (to ay0|d redundant
dom process. Therefore in our system model, we assume Nt reporting). In such scena.rlos, the system is better.repre-
the quantum discharge times are random. More specificafignted by the ID model. To motivate the CD model, consider a
we assume that the discharge time of each quantum is expgEnario where all active sensor report data on a regular basis,
nentially distributed with mea. In the simulations, however, 0" the data reporting is so infrequent that most of the energy
we also study the performance with deterministic discharge afigPenditure occurs in sensing and processing. In these cases,
recharge times. Note here that we assume ), which cap- the active sensors will all get discharged at the same rate, and
tures the fact that the discharge rate of a sensor in the acfijgrefore, the system is better modeled by the CD model.
state is no less than the recharge rate. Note that these two models represent two extreme forms of

We assume that there is no energy discharge when a n&@yelation, and real-life situations can be expected to fall in
is not active. However, note that although a sensor can povp@rtween these two extremes. We will argue that our solutions
itself off when it is not active, it has to wake up periodically€rform well with respect to both of these extreme forms of
and exchange messages with its neighbors to keep track of fRgelation. Therefore, our solutions are expected to perform
system state in its neighborhood (so as to decide whethertgll in intermediate discharge correlation scenarios as well.
activate itself or not). Therefore, in reality, we would expect the that the_ recharge process can e_xh|b|t acertain deg_ree of
that energy will be drained even when a sensor is not active |t|al correlation as well. h$|nce we dlscusgnthe case Or: |der:1-
long as it has non-zero energy), but probably at a fairly stea hsensor coverages 'E this section, we V]Y' ellssumelt a;t.e
rate. However, since the energy discharge rate in the non-acfit&"3'9¢ processcﬁs :t the sensors alre per e(l:tyé:_orre art]e o 1.8,
state can be expected to be much slower than the discharge fi@nta arrive at all the sensors simultaneously. Since the sen-
in the active state, it is not considered in our analysis. sors have identical coverages, they can be assumed to be lo-

Letnp(t) denote the number of sensors in the active stateGed close to one another; thus, the high correlation between
time ¢ under policyP. Since the coverage areas of all sensoFQe recharge processes at different sensors are justified. Our re-

are completely overlapping, the optimization problem can (ullts can also be extgnded to th_e case of ir_1dependent recharge
posed as that of finding a polidy that minimizes/ (P), where processes, and certain intermediate scenarios. The fundamental

U(P) is defined as observations in those cases are similar to those in the perfectly
- 1 [t correlated recharge process case addressed in this paper, and
Uuwp) = Jim n / U(np(t))dt . (2) those are therefore omitted for the sake of brevity.
— 00 Jo

We assume that activation decisions can be taken at any th- UPPer Bound on the Optimal Time-average Utility
stant of time. As we argue later in the paper, these decisionsSince the optimal time-average utility is difficult to compute,
need to be taken only when some active sensor runs out of ¢ obtain an upper bound on it. In the next subsection, we will
ergy, or when some sensor with zero energy becomes availa®@luate the performance of our proposed policies with respect
by gaining a quantum through recharging. It is worth noting this bound. The proof of the following result is provided in
here that although we will address our decision question in tHe&e Appendix.
identical coverage case from the perspective of a centralized debemma 1:The time-average utility undeany node activa-
cision maker, the decision policy that we develop can easily Ben policy is upper-bounded by (7).
implemented in a decentralized manner. Note that this results holds for both ID and CD process models.



D. Performance Analysis of Threshold Activation Policies  The proof of the above result is in the Appendix. Theorem 3, to-

Next we define the class of threshold activation policies, a§ther with Theorem 1, implies threshold policy with a thresh-
analyze their performance. old of m* = £ is within a factor of /i of the optimal perfor-

1) Threshold Activation Policies: Note that the set of all mance over all policies. _ .
possible activation policies can be very large, and the structurdVote that the performance ratigh; approaches unity a&

of these policies can be very complex. Therefore, determiniﬁgcomes large. Therefore the threshold activation policy with a

* N . . . .
the optimal activation policy for the ID and CD models is comtreshold ofin™ = =+ is asymptotically optimal with respect to

putationally very intensive. Therefore, we focus primarily of > for both the ID and CD models. .
threshold activation policies. A threshold activation policy with N€Xt we compare the performance of threshold policies for
parametern, is characterized as follows: an available sensdf€ D @nd CD models. Consider a threshold activation pol-
(i.e., a sensor with non-zero energyik activated if the number 1€Y With a threshold ofn, and assume thaY is a multiple of
of active sensors does not exceadhfter s is activated; other- " First, for the ID model, we define group Longest Undis-
wise, s is not activated. In other words, a threshold policy witfargedtime First (g-LUF) policy as follows. Divide theV
parametern tries to maintain the number of active sensors &£NSOrS intan groups, each group consisting ¢f sensors.
close tom as possible. Note that with such a policy, the numb&fnder the g-LUF policy, at any decision instant, at most one
of active sensors can hever exceed sensor is activated from each group. Within a group, the sen-
2) Scheduling Models: The performance of the thresholdSOT {0 be activated is chosen (from the s_et%’lo‘sensors of that
policies, and their analyses, depend on how the active sendgi@!P) based on a LUF scheduling policy. Note that if none
are chosen from the set of available sensors. Recall that fo?fdN€ Sensors in any group is available (i.e., all the sensors in
threshold with parameten, at mostm sensors are activated at.hat group have run out of energy), then the threshold cin-
any given time. Most common scheduling disciplines (worI@Ot _be met, even if the gll the sensors in the o.ther groups are
conserving as well as non work-conserving) can be used in &¥@ilable. Thus, g-LUF is a non work-conserving scheduling
lecting the sensors to be activated. In the following, we andiSCiPline. LetV(m) denote the time-average utility for the
lyze the performance of threshold policies fdrangest Undis- €D model, with g-LUF scheduling, at threshold
chargedtime First (LUF)scheduling policy. In LUF, at any de- _ -€tSx denote the set of all positive factorsi i.e., all pos-
cision instant, the sensor that is activated first is the one whil{€ intégers which divideV. Then the following result (proof

has not been discharged for the longest time, amongst the '8¢fPPeNdix) shows that the threshold policy under 1D model

of available sensors. In other words, at each decision instaf'?w'i',d g-LUF scheduling performs no quse than a threshold pol-
under CD model and LUF scheduling.

available sensors are ordered according to the last time tf h 4 F S VY ; less thail
were active, and the first sensor in the increasing order is cho- eorem 4:Foranym € Sy, V' (m) is no less thac (m),
sen for activation. Note that the LUF policy tries to achievk®" Vi(m) > Ve(m) Vm € S.

fairness amongst sensors while choosing them for activation .
3) Performance BoundsNow we derive worst-case boundsNé);g dﬂ};ﬁg“{\:ﬂﬁ;hﬂ;s villgrggc?:sl,ert\t:ﬁg;)?srf?r:m?ticgfy Vg)'(tgelgtlég
on the performance of threshold policies (with LUF schedulin be better than that with g-LUF scheduling. Therefore, with

with respect to the optimal policy, for the two correlation mod- . .
. L . LUF scheduling, the performance under ID model is expected
= =3 > 1
els. We definey > 1. For simplicity of exposition, we to be better than that under the CD model. Proof of this fact re-

A
assumey is an integer, andV is divisible by~ (i.e., v 158N hains an open question; however, we support this observation

integer), although our results can be generalized to cases Wr}ﬁfSugh simulation results in the next subsection.
these assumptions do not hold.
First, let us consider the CD model. LE¢t:(m) denote the ¢

. o . . . Simulation Validation
time-average utility for the CD model, with LUF scheduling, at . . . .
thresholdim. In this section, we report results from numerical experiments

Theorem 2:Let m* — g ThenVe(m*) is lower-bounded on the performgnce of threshold polipies for the 1D and (;D
K N models under different parameter settings. The utility function
by z=U(5). ie., ¥ N used isU(n) = 1 — (1 — pg)”, with p; = 0.1. We report the
Ve(m*) > mU(—) . results forv = 16, K = 10,100, andy = 2,4; the results
v obtained for other values of these parameters are similar in na-
The proof outline of Theorem 2 is provided in the Appendixure. For each parameter setting, we compare the time-average
Theorem 2, together with Theorem 1, implies threshold poliaytility of the system for different values of the threshotd)(
with a threshold ofn* = & is within a factor ofKL+1 of the The scheduling policy used in the simulations for both the ID
optimal performance over all policies. and CD models is LUF.
For the ID model too, we can show a result similar to the one Figures 2 - 5 show the time-average utiliti&s(m) and

stated above. Lét;(m) denote the time-average utility for theV-(m) along with U(%), the upper bound on the maxi-

ID model, with LUF scheduling, at threshoid. mum achievable time-average utility. The figures also show
Theorem 3:Let m* = . ThenV;(m") is lower-bounded 71 U(5), the lower bound on the achieved utility for thresh-
by KLHU(%), ie., old policy at a threshold of.* = . The figures show that the
Vi(m*) > K U(ﬂ) performance of the threshold po?icy is maximized at the thresh-

K+1 ‘"~ oldofm* = % or close to it. Moreover, the time average utility
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at the threshold of% is very close to that of the upper bouncthosen threshold, our threshold activation algorithm results in
on the achievable performandé(X ), particularly for largel{. a near-optimal performance even in this general network sce-
The time average utility at this threshold is also greater than thario.

lower bound "5 U () for both ID and CD models, as ex-

pected (Theorems 2 and 3). Also note that the performange Distributed Threshold Activation Policies

under the ID model is better than that under the CD model, atr, 1 qtivate our distributed activation algorithm, let us as-

all values of the thresholch € Sy (Theorem 4). sume thatn; is the target threshold for sensoiin other words,

sensor wants to maintain a utility ot/ (m;) per unit area per
V. ACTIVATION POLICIES IN A GENERAL NETWORK unit time in its coverage area. In other words, if the coverage
SCENARIO area of the sensor is denoted My, then the sensor targets to

In a realistic deployment scenario, nodes may be deployd@rive a utility of|A;|U(m;) per unit time. When the sensor
at random, and therefore, nodes will typically cover differer$ available (i.e., has non-zero energy), then at any decision in-
areas in the physical space of interest. In other words, the c8@nt. the sensor computes the current utility per unit time in |'Fs
erage areas of two sensors may overlap only partially, or mggverage area. If the current utility is less than the targeted util-
not overlap at all. In this section, we extend our threshold achy: then the node activates itself; otherwise, the node remains
vation policy to this very general scenario. in the available state until the next decision instant.

The partial coverage overlap scenario is very difficult to A sensor can compute the utility derived from its coverage
model and analyze, even for the special class of threshold p&ea in the following manner. For a generic area elemert
cies. In this section, therefore, we will try to develop a soludi. letn(A, t) denote the number of sensors coverihgt time
tion heuristically, based on the insights obtained for the identi- Then the utility per unit time in the coverage area of néode
cal coverage case. We develop a threshold activation algoritn¢alculated as
that can be implemented in a distributed manner in a general / U(n(A,t)) dA. (3)
network. We then show through simulations that our solution A;
yields a performance trend that is similar to that observed in th

e ) . .
; . g . Assume that nodé can communicate with all nodes whose
identical coverage case. More specifically, for an appropnatecl

Xverage areas overlap with its own coverage area. Then the



sensor can periodically poll those neighbors to know their alsetween the discharge (recharge) times of the sensors. The de-
tivation state. Assuming that the sensdmows the coverage gree of spatial correlation depends on the sizes of the blocks.
patterns of those neighbors, it can compute the targeted utility
by evaluating the expression in (3). Therefore, the proposed al-
gorithm can be realized in a distributed setting based only on
local information. In practice the decision interval needs to be
chosen carefully to ensure that not too much energy is wasted in
the available state by periodic wakeup and polling, while guar-
anteeing good performance.

Note that the algorithm is motivated by the threshold activa-
tion policy discussed in the previous section, and in the case
of identical sensor coverages, it reduces to a distributed imple-
mentation of the threshold policy described earlier. osf
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The thresholdsn; can be defined globally or locally, and
accordingly we have two variants of our policy: Fig. 6. Performance with global thresholds

« Global threshold policy:In this case, then; = m Vi,
where the fixed thresholak is chosen appropriately.

« Local threshold policyin this case, then,; can be differ-
ent for each, depending on the local neighborhood of the
individual sensor nodes.

In Section V-D, we comment on the appropriate choice of the
local and global thresholds, to yield optimum performance. We
can intuitively expect the local threshold policy to perform bet-
ter, particularly in scenarios where there is a high spatial vari-
ance in the density of nodes in the deployment region. For the
local threshold policy, nodes in areas with larger density can
have a higher threshold, while nodes in a sparser region can o1
set its threshold to a lower value. However, if the nodes are
deployed more or less uniformly, then both these policies are 0085 1 2 s P s o 7 s
observed to perform very well in simulations, although local T

threshold policy performs slightly better.
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Fig. 7. Performance with local thresholds

C. Discharge and Recharge Event Models

We assume that discharge (recharge) of sensors ocBurSimulation Results
through discharge (recharge) events. We consider two correThe performance of the node activation algorithm described
lation models for these discharge (recharge) events. above is evaluated using simulations for a wide range of para-
i) Independent Discharge-Recharge Event Mod&lents are meters for both the cases of global and local thresholds. In the
assumed to occur randomly in the physical space of interagipresentative simulation results presented here, the simulation
and a sensor node gets discharged (by a quantum) only whketup and the parameters used are as follows. A total ef
an event occurs within its coverage area. Events are assurB2densors, each having a circular coverage pattern of radius 12
to occur according to a Poisson process, and are uniformly digits, are thrown uniformly at random in an area of size 50.
tributed in the area of interest. Thus an active sensor gets dige usey = 2 and K = 100. With these parameters, the mean
charged of one quantum of energy if an event occurs within it®verage of the network\(), defined as the average number
coverage area, otherwise not. The recharge process is modelesensors covering any point in the deployment region, is ob-
similar to the discharge process. Thus “recharge events” oceefved to be 9.1. Therefordl /v ~ 2. The utility function
randomly in the space of interest, and a sensor gets rechargedd is given by/(n) = 1 — (1 — p4)", wherep, = 0.1.
by one quantum if a recharge event occurs within its coverageSince the optimal policy is difficult to formulate and compute
area. in this case, we will compare the performance of our algorithm
ii) Block-correlated Discharge-Recharge Event Modelere with respect to an upper bound, computed as follows. Aet
the network is divided into virtual blocks of equal sizes. Hergenote a generic area element in the physical space of interest,
too, discharge (recharge) events occur according to a poissmnl N (A) denote the number of active sensors that cover area
process, and are assumed to be uniformly distributed in teementA. Then the following result can be proved using the
area of interest. However, a discharge (recharge) event ocaame line of analysis as in the proof of Theorem 1:
ring anywhere in the block affects all the sensors located in thisCorollary 5: The optimal time-average utility for a general
block in a similar manner. This introduces spatial correlatiametwork of sensors is upper-bounded by



U N(A) dA (4) [15] W. Ye, J. Heidemann, and D. Estrin, “Medium Access Control with Co-
. ordinated, Adaptive Sleeping for Wireless Sensor Networks¢hnical

A Y . ; !
i ; Report ISI-TR-56,USC/Information Sciences Institute, January, 2003.
Figures 6 and 7 show the performance of the various modg| R.L. Wheeden, A.Zygmundyleasure and Integral, An Introduction to

for global and local thresholds, along with the upper bound On" Real AnalysisMarcel Dekker, Inc., NY, pp. 694-703, 1977.

K .
the performance (UB) and UB;~ <. Let us definey, the local

threshold parameter, as= m /(*2*), wheren; is the number APPENDIX I: PROOFOUTLINES OF THEOREMS

of sensors (including) that cover the point whergis located. Proof Outline of Lemma 1: The proof involves concavity

Note that in Figure 7, the time-average utility is plotted against ) ;
this local threshold parametar arguments and Jensen’s Inequality [16]. Lgtand p be

. easureable functions finite a.e. Bn Suppose, thafp and
From Figure 6, we observe that the peak performancerps PP tp

. . - N ) pare integrable o, p > 0, and [p > 0. If ¢ is convex in
achieved at approxmate(y@N)/y_ - 4): From Figure 6, we an interval containing the range ¢f then Jensen’s inequality
note that the best performance is achieved at 1. A care-

L . States that:
ful examination also reveals that the peak performance with lo-

cal thresholds is better than the peak performance with global [ fp [ao(f)p
thresholds. Local thresholds can be computed with local in- ¢< [» > < To
formation. In contrast, computation of the appropriate global R R

threshold would require global coverage information. Thuget ,,(¢) denote the number of sensors that are discharging at
the use of local thresholds (over global thresholds) is justifialjig,e ¢. SincelU(.) is concave, substituting = U(.), f = n(t)
from both the perspectives of overall performance and COMMihdy = 1 in the above, Jensen’s Inequality implies that:
nication complexity.

Note that in all cases, the peak performance is very close to fOT n(t)dt foT U(n(t))dt
the upper bound. For the block-correlated event models, note U T 2 T ‘
that the degree of spatial correlation increases as the number of
blocks decreases (i.e., the size of each block increases). Th&iece,U(.) is continuous, we have:
fore, the figures demonstrate that the performance of threshold . .
policies degrade as the degree of spatial correlation increases. lim U (fo n(t)dt> > Tim Jo Uln(t))dt

2 =

The performance drop is particularly significant at higher val- P T—00 T

ues of the threshold. ) i
Therefore, it suffices to show that

T
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distributed with mean /1, and each sensor is assumed to have A K

an energy capacity equivalent 6 quanta, the fraction of time >
a sensor is discharging corresponds to the steady state probabil- 1
ity that the server in all/ /M /1/K queue is busy. Therefore, A
we have 5 @
A
o Jy vty YK -1 ——] .
lim —V—r— < —
T—o0 T ’)/K+1 —1 :
. K_1 1 .. . . K u
Sincey > 1, we haveﬂm—l_1 <3 for finite K, implying A
L—»
T Cc
i (t)dt 1
lim 7f0 vit) < —.
T—oo T v Fig. 8. Correlated Discharge Model

Therefore we have
fT ()t N single server queue with vacations. lmto denote the long
Ul tim Jo M9 < U () run proportion of time exactly of the ¢ buffers are non-empty.
T—oo T The long run proportion of the time the server is busy,m ¢,

o determines the time average utility of the systén(m). That
This implies )

is,
T
U ( lim Jg n(t)dt> U <N) Ve(m) = (1—mo,c)U(m). (5)
o g 7 Proof OutlineWe first determine an upper bound onc and
Y Um)dt N then show that fom™ = N/v, Vo (m) > (K/K +1)U(N/9).
I.e.’Th—{noo# = U 5 ) To derive the bound, we analyze the single server queue

with vacations as an equivaled//G/1/K queue. At this
The above theorem implies that the time-average utility undéf/G/1/K queue, we assume that the arrivals form Poisson

anypolicy can not be greater thélt(%). ] process with parameter We letS denote the random variable
corresponding to service times at this queue. Tien X +Y,
Proof Outline of Theorem 2: whereX denotes the service/discharge time (exponentially dis-

The proof is based on the analysis of a queuing system equiibuted with meanl /), andY denotes the vacation time.
alent to the CD model. We describe the queuing system aNdte thatY” is the sum of at most — 1 exponentially distrib-
then prove the desired result. uted random variables (each with melgfu), depending upon
Equivalent queuing systerach sensor is modeled as a singleshether all the othee — 1 buffers polled were non-empty at
server queue with a buffer of sizZ€. The charging process istheir polling instants or not. This implies that p.d.f Bfis a
modeled by a Poisson process with paramateiVe assume mixture of Erlang distributions. We derive our desired result
that arriving quanta that find a sensor fully charged are losising a pessimistic estimate on the vacation time, i.e., we as-
In the CD model operating under a threshold policy with paume that all the — 1 buffers are always non-empty at polling
rameterm, exactlym of the N sensors undergo the dischargénstants. This implies that the p.d.f 6f f(t), is Erlang dis-
process simultaneously. The discharge process at thesmn- tributed with ¢ exponential stages, and that the mean service
sors will be perfectly correlated, i.e. quanta of energy are catime at theM/G/1/K queue isc/p. We denote byrg, the
sumed from each of the: sensors at exactly the same timelong run proportion of the time the server in this queue is idle.
Therefore theN sensors will be partitioned inte = N/m Next, we compare the performance of th&/G/1/K queue
groups ofm sensors, and the system performance can be stwdth an A/ /M /1/K queue that differs only in terms of the dis-
ied by analyzing the queuing process at a representative sergbution of the service times. More precisely,Sf/ denotes
from each group. Hence, performance of the threshold policytime service time in thd//M/1/K queue, then we assume that
the CD model is analyzed using the queuing model of a polling (t) = (11/c)e—**/¢. Note that this implies that the mean ser-
system shown in Figure 8. Thebuffers correspond to repre-vice time at thisM/ /M /1/K queue is alse/u. Further, we let
sentative sensors from each of thbatches. We assume thatr}! denote the long run proportion of time that the server of the
the server polls the buffers periodically using a LUF scheduliny /M /1/K queue is idle. The definitions gof(t) and £ (¢)
discipline. Note that for the CD model, the LUF scheduling dismply thatS <., S™, where<,, denotes the usual stochastic
cipline is equivalent to a round-robin discipline. When a buffesrdering (Shaked and Shanthikumar [12]). Furthef; (f) and
is polled, exactly one quantum (if available) is consumed arfd, (t) denote the tail probabilities &f and S, thenF(t) <
the discharging process takes an exponentially distributed tifAgy (¢) for all + > 0. Then, using the analysis of Lavenberg
with meanl /. Subsequent to polling buffgr the server polls [10] we can show that, < 7{/. Further, since the through-
the othere — 1 buffers, and re-polls buffer after at most — 1 put of the queuing system shown in Figure 8 is at ledshes
exponentially distributed service times (each with méan). the throughput of the individual//G/1/K being considered,
Therefore, with respect to buffgr the system operates like awe have(l — 7 o) > (1 — m)(p/c) > (1 — 735 (n/c),



4 K the time average utility of the systefv; (m) is given by

et 4

V[(m) = Zﬂi)[U(i). (7)

A4

\V]

To determine a bound op;" | m; ;U (i) we analyze the queu-
ing system from the perspective of a single buffer. More pre-
cisely, we analyze the queuing system with vacations using an
equivalent)//G/1/K queue. IfX denotes the random vari-
able corresponding to service times of thi& G/1/K queue,
thenS = X +Y, whereX denotes the service time — exponen-
tially distributed with meari /u, andY denotes the vacation
m time. (Note thafY is a sum of at mosiN — m exponentially
distributed random variables with meagmu). That is, the
AL p.d.f of Y is a mixture of Erlang distributions. As in the analy-
N sis of the CD model, we derive our desired result using a pes-
K simistic estimate on the vacation time, i.e., we assumelhat
has an Erlang distribution withh — m stages. This implies that
Fig. 9. Independent Discharge Model the p.d.f ofS, f(¢) is convolution of the p.d.f of exponential
and Erlang distribution. However, the mean service time at this
M/G/1/K queue s also/u (=" + - = ;7). We denote

\ 4
\4

\4

m,

. y .
L&, To.c < | From the anjaly5|s Oﬂﬂﬁ‘f/l/fi queue by 7, the long run proportion of the time this server is idle.
(Gross ar:d Harris [7]) we have)’ = 1/322y (¢/7)". NOW  Than we compare the performance of the'G/1/K queue
we setm” = N/v. Note that this implies that = v and it an a7/01/1/K queue that differs from tha//G/1/K

my' =1/(K +1). Therefore, queue only in the distribution of the service times.SI¥ de-

(1 - mo.c)U(N/7) notes the service time in th& /M /1/K queue, then we as-

Vo (m™)

M sume thatf (t) = (u/c)e™#'/c. Further, we leti}! de-
2 (L=m ) UWN/Y) note the the long run proportion of time that the server in the
2 w1 1 UN/Y) n (6) M/M/1/K queue is idle. Therefore we have the expectations

of § and SM both equal toc/p. _Further, the definitions of

This proves the desired result. Note thatias— oo, setting S and 5™ implies thatS <, SM. Then using an analy-
m = N/~ yields the maximum possible time average utilitpis similar to that used for the CD model, it can be shown

underany policy implying that the threshold of. = N/yis that@ < 7#)’. Further, since the throughput of the queu-
asymptotically optimal with respect . ing system shown in Figure 9 is at ledsttimes the through-

put of the individualM/G/1/K being considered, we have

Proof Outline of Theorem 3: The proof is based on the analy->_;—1 imi,rit > N(1 — #o)(u/c) > N(1 — 7")(u/c). Fur-
sis of a queuing system equivalent to the ID model. We descrit€r, the strict concavity of the utility functidii(.) implies that

the queuing system and then prove the desired result. @ > % for all i < m. Therefore,
Equivalent queuing systems before, each sensor is modelled m m

asa smgle server queue W|_th a buffer of si¢eUnder a thresh- Z mgUG) > (U(m)/m) Z imig
old policy with parametem in the ID model, at most: of the ] =

N sensors can be discharged simultaneously. However unlike
the CD model, the discharge process at these sensors are in-
dependent. To analyze the performance of this model we c#rom the analysis of an//M/1/K queue we can show that
struct the queuing model of a multi-server polling system (séer m* = N/v, 7} = 1/(K + 1), implying that
Figure 9). Note that in this system, the buffers correspond to
the N sensors. Further, the charging process is modelled by Vi(m*) > UN/Y). n (8)
poisson arrivals and the discharging process by exponentially K+1
distributed service times. The-server group polls the buffers Note that as in the case of the CD model, whén— oo,
periodically using a LUF scheduling policy. Therefore, with resettingm = N/v yields the maximum possible time aver-
spect to a each buffer the system operates like a queuing sysgga utility underany policy implying that the threshold of
with vacations. When a buffer is polled, exactly one quantum = N/~ is asymptotically optimal with respect 6.
(if available) is consumed and the corresponding discharging
process takes an exponentially distributed time with mean  Proof of Theorem 4:
Proof Outline: We compare the performance of the queuing

Proof Outline: The proof is similar to that used to show thesystem representation of the ID model under two different
result for the CD model. We let; ; denote the long run pro- scheduling disciplines, LUF and g-LUF. To understand the g-
portion of time that exactly of the m servers are busy. ThenLUF scheduling discipline, we focus on the system shown in

%

U(m)(1 - 75"
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A K implies thatUEi) > % for all © < m. Therefore,
1
A u . Uiy
([ 11]] Sowl UG = (Um)/m)Y i,
- 1 1=1 1=1
: C > Um)(1 - moc)
a > Volm). g (10)

This proves the desired result.

(m-1)c+1

}“4>

(m-1)c+2
COr
K
=111
>
mc=N

Fig. 10. Comparison of ID and CD Models

Figure 10. In this system, th¥ buffers are divided inten vir-

tual groups ofc buffers. A server is dedicated to each virtual
group and quanta in the buffers belonging to this virtual group
are served by this server exclusively. Within each virtual group,
the server adopts a LUF scheduling policy. We show that when
the network operates under the g-LUF scheduling discipline,
the ID model yields a time average utility that is greater than
that of the CD model.

We letr? ; denote the long run proportion of time that exactly
i of them servers are busy when the system follows the g-LUF
scheduling policy. Then the time average utility of the system,
V7 (m) is given by

m

Vim) = > =fUi). (9)
=1

Next, we note that the stochastic behavior of the server in each
virtual group is identical to that of the server in the CD model.
This implies that the throughput of the system operating under
the g-LUF scheduling policy, given by " | imd pp = m(1 —
mo,c)it- Further, the strict concavity of the utility functid#(.)



