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Abstract—Peering between Internet Service Providers (ISPs) is

playing an increasingly critical role in Internet traffic exchange.

As content delivery networks continue to expand, major content

ISPs are increasingly opting for peering arrangements over

transit services to facilitate faster exchange of traffic. The

satisfaction of the ISP pair and the longevity of the peering

arrangement depend on the stability and performance of these

peering relationships. We introduce meta-peering, a term which

refers to the set of tools needed to help and automate the ISP

peering process – starting with identifying a list of ISPs that are

likely to peer, writing router rules to establish BGP sessions with

them, and extending the service to monitor all these sessions for

notifying any major outages or peering agreement violations.

In this paper, we first make a thorough analysis of recent

trends in ISP peering and describe how meta-peering can be

implemented by integrating some of the existing tools. We mainly

focus on instrumenting the automation of the peer selection

process with an aim to identifying potential peering partners

and peering locations to exchange traffic. Using these direct

peering links greatly reduces energy consumption as traffic

takes much shorter paths to their destinations, going through

reduced number of intermediary devices (e.g., routers, switches)

compared to elongated transit routes, consequently reducing the

environmental impact. Utilizing PeeringDB and CAIDA datasets

to identify possible peering points for ISP pairs, we consider

ISPs’ internal policies to generate a list of acceptable peering

contracts (APCs). We design two methodologies to rank order

each ISP in the APC list and offer guidance on which ones would

be stable and beneficial for the potential peers. A study of more

than 3,000 ISP pairs (mostly active in North America) shows that

our peer selection methods can attain around 80% accuracy in

predicting peering relations.

Index Terms—Peering; Internet Service Provider; Internet

eXchange Point; Network Management; Traffic Engineering.

I. INTRODUCTION

W
ITH almost 120K Autonomous Systems (ASes) [3]
around the world, it is nearly impossible for an in-

dividual AS to connect with all others by establishing unique
physical fiber cable to ensure its global reachability. Organi-
zations capable of maintaining enormous network backbone
are extremely rare [4], restrictive in nature, and require other

This manuscript is based on preliminary work published in [1] and [2].
The key additions are: 1) The GEO-PP method is extended to include another
metric termed similarity score; 2) The performance analysis now includes two
much larger datasets of ASNs; 3) Performance analysis in terms of internal
routing cost is added; 4) Impact of Machine Learning on peering prediction
with the determined metrics as input is studied; 5) An extensive discussion
of the evolution of ISP peering is added.

Dr. Prasun K. Dey was with University of Central Florida during most of
this work.

ASes to meet stringent conditions before committing to con-
nect [5]. In essence, Internet Service Providers (ISPs) have to
collaborate and establish interconnections with each other for
global connectivity. Interconnections between ISPs depend on
multiple aspects such as the size of their ASes, geo-coverage,
traffic-offload costs, and user count, namely the ‘customer
cone’. A smaller ISP (based on its customer cone and/or
market capital), generally purchases transit service from a
larger provider. An ISP can also choose to exchange its traffic
directly with another ISP in a settlement-free manner. This
type of agreement is known as peering and it is typically a
“sender keeps it all” deal. This model allows the sender ISP
to keep all the money it charges from its end-customers, and
hand the traffic over to its peer; while the peer has to carry
the traffic towards the destination without charging the origin
ISP.

Peering is often preferred over transit for better con-
trol on routing, low latency, and most importantly, slashing
cost. Since peering traffic does not have to traverse a transit
ISP’s network and can reach the destination AS directly, the
propagation delays for peering paths are generally smaller. For
instance, by leveraging peering paths, 68% of ASes connected
to 920 access ISPs experienced 10 ms improvements in
latency, and for 91% of those ASes, peering paths outperform
transits [6]. Lack of peering causes extraneous traffic detours
and often results in an increased path stretch, like what
African or Latin American ISPs are dealing with [7], [8].
Such fragmented routing causes local traffic to unnecessarily
traverse other continents (in the above cases, Europe and US
respectively) and degrades the end-to-end performance. This
is sometimes true for the North American ISPs as well. A
study [9] found that mobile client traffic from AT&T Seattle
enters Google’s network in Bay Area due to absence of a
peering point in close proximity. The impact is particularly
significant in the case of content delivery networks (CDNs)
whose traffic dominate the modern Internet. Peering allows
CDNs to cache content closer to the eyeball network meaning
the traffic has to travel significantly smaller routes to the end-
users. Using transit routes would mean each time a content
is requested, that traffic will need to flow through the entire
path stretching from the content provider to the end-user
significantly increasing latency as well as the load on the
networking infrastructure, which will greatly increase the
energy consumption [10], [11]. Despite its reduction of path
lengths, settlement-free peering does not always mean traffic
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Fig. 2: Peering evolution [5], [14]–[17]

delegation at no cost [12]. However, depending on the transit
fee and the total cost involved, narrowed down to per unit, an
1 Gbps peering connection can be cheaper than transit when
exchanging at least 100 Mbps traffic [13].

Integrating peering with inter-AS policy routing deci-

sions is a complex process. Whether peering or transit, an ISP
has to establish new Border Gateway Protocol (BGP) sessions
with each of its neighbor ISPs and monitor them. Blending
BGP with Interior Gateway Protocol (IGP) without conflicting
the external and internal policies is quite complex. Errors due
to human involvement increase the chance of network out-
ages, and thus maintaining these sessions is time consuming
and cumbersome. To ease the process by reducing human
coordination delay, ISPs have already implemented tools for
automating the BGP peering process establishment [18], [19].
Existing tools (e.g., UnivMon [20] , sFlow, and IPFIX) can
also perform network monitoring [21] and identify the routes
causing outage so that stratagems like manual reconfiguration
or temporary shutdown can be initiated.

Although BGP peering process has been notably automated,
choosing the right ISP peer and Point-of-Presences (PoPs) is
more challenging to automate due to the following reasons:

• 99% of peering is handshake [22]. No fixed written rules.
• Although modern switches (e.g., BIG-IP 2000S) offer

better management and application performance by se-
lecting the best route for both in- and out-bound traf-
fic [23], peering with multiple ISPs is a hassle.

• To minimize “bit miles” [24], ISPs end up choosing
suboptimal PoPs in peering deals.

• ASes follow different infrastructure-specific peering poli-
cies. Based on PeeringDB data of 15,078 ASes (Fig. 1),
most ISPs are open to peer, while very few are restrictive.
Finding ISPs willing to peer may be easy, but motivating
ISPs from the Selective and Restrictive groups is difficult.

Considering these issues and the recent automation efforts,
potential peers need to be identified based on the estimated
traffic, customer cone size, peering policy, and cost of peering
at a PoP. Since one of the key motives behind peering is
to reduce cost, there has been extensive research on game-
theoretic modeling of peering [25], and understanding the eco-
nomics behind pricing where multiple ISPs are involved [26].
However, the topic of automated peer selection on a global
scale using (publicly) available data has not received enough
attention. The few works that address issues broadly related
to automated peer selection only consider some specific types

of peering (i.e., remote peering), certain ISP types (access-
content), or are confined to a local area [27]–[29]. In this
paper, we aim to address this gap and focus on answering a
key question in the Internet peering: “To what extent can the
selection of peers be automated?”

Partial automation of ISP peering is already being taken
up by industry leaders. For example, Meta has deployed an
online peering automation framework [30]. Though Meta’s
network is an outlier as it is quite large and, hence, sturdy
against potential harms from mistakingly admitting peering
requests, it clearly shows the appetite for more automation
in peering. We envision the ISP peering process between a
requester (an ISP that initiates the peering process) and a
candidate (an ISP which satisfies requester’s requirements) to
be eventually entirely automated, where the system suggests a
list of potential candidate peers for a requester ISP, identifies
feasible PoP locations, and if both parties agree, automatically
generates BGP configuration. We consider the entirety of every
tool, algorithm and other necessary components needed for
peering automation as Meta-Peering. This requires several
major innovations, such as tools to help ISP administrators
make efficient peering decisions, negotiation protocols for ac-
commodating peering strategies and policies, standardization
and systematization of resolving intra- and inter-ISP routing
policy conflicts with peering decisions, and defence against
attacks to the automated peering process. In this work, we
focus on the first of many steps along this long but important
road: establishing a quantifiable system for selecting potential
peer ISPs. Major contributions of our work include:

• detailing the meta-peering concept and breaking down
the peering process into four phases;

• an approximate timeline of the evolution of peering;
• identifying the most frequently asked peering require-

ments, ISPs’ PoP frequencies, and peering points;
• optimization problem formulation for selecting the best

peering deals with another ISP;
• methodology to estimate the peer ISP’s traffic amount;
• introduction of a new metric called felicity score for a

pair of ISPs to quantify their peering possibility; and
• a publicly available web application1 for access to rec-

ommended peering deals generated using our algorithms.
The rest of the paper is organized as follows: Section II

discusses the peering evolution and discusses our motivation

1Meta-peering website: http://metapeering.net.
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for automated peering. Section III details meta-peering and ex-
plains the peering phases. Section IV expounds the framework
with related terminology and develops the ISP network model.
Section V introduces and describes two meta-peering meth-
ods, namely GEOgraphic Peering Prediction (GEO-PP) and
Routing Cost Aware Peering Prediction (RCA-PP). Numerical
evaluations are presented in Section VI, followed by summary
in Section VII. Also, to aid in the flow of reading, Table I
provides some of the common acronyms used throughout the
paper.

TABLE I: Summary of Commonly Used Acronyms

Notation Description
ISP Internet Service Provider
ASN Autonomous System Number
CP Content Provider
IXP Internet Exchange Point
PoP Point of Presence (usually an IXP)
PPP Possible Peering Points
PPC Possible Peering Contracts
APC Acceptable Peering Contracts
TM Traffic Matrix
GEO-PP GEOgraphic Peering Prediction
RCA-PP Routing Cost Aware Peering Prediction

II. PEERING BACKGROUND AND MOTIVATION

ISPs have the option to establish bi-lateral peering relations
at either private or commercial Internet eXchange Points
(IXPs). They can install dedicated physical links which allows
them to exchange a higher volume of traffic [31]. Similarly,
ISPs can also form multi-lateral peering relations, commonly
known as public peering, with ISPs in a shared environment
within an IXP. ISPs can connect to a central route-server
(RS) where multiple peering relations are entertained simul-
taneously. In either case, ISPs carry their own traffic to a
common PoP [13]. In this paper, our main focus is on bi-
lateral agreements in such public peering settings.

A. History of Peering: An Evolutionary Tale
Fig. 2 portrays the decades long evolution in the principles

practiced among peering entities. In the legacy model, content
providers (CPs) and access ISPs were horizontally separated
and dependent on transit service from upstream providers who
peered only with ISPs at a similar tier. Around 2002, CPs be-
gan to rely on content delivery networks (CDNs) [14] and over
time, CPs established their own large fiber networks. During
2009 [15], they started bypassing both transit providers and
CDNs to peer directly with access ISPs following a “Donut

Peering” model. Traffic ratio between CPs and access ISPs
was noticeably uneven, and for CPs, it was more beneficial to
put caches directly inside access ISPs [16]. Generic peering
policy was not enough, and access ISPs introduced the term
“Paid Peering” to charge CPs [17]. Arguably, peering is a
key ingredient for the Internet ecosystem, and having a more
automated peering process supported by meta-peering tools
will allow ISPs to evolve.

B. Why Automated Peering?

Peering is a handshake, but finding the right ISP is
difficult. To ease the process, network admins typically meet
other ISPs’ representatives in-person at informal events such as
NANOG, Global Peering Forum, or in CEE Peering Days [32].
After discussing the traffic volume to see if peering would
generate enough savings for both the entities, agreements and
peering policies are negotiated. Sometimes, conflicts happen
due to lack of prior knowledge about other ISP’s traffic amount
or strategic business tussles. This may lead to disputes or de-
peering, e.g., Cogent de-peered Level3 (2003), AOL (2002),
and Telia (2008) due to imbalanced traffic ratio, and Sprint
(2008) for not respecting the exchange criteria [33].

Deficiency in number of peer selection algorithm case-

studies implies less preparation of ISP admins for the oppo-
nent ISP traffic behavior. An ISP has the complete knowledge
of its own traffic matrix and router-level network topology.
But, it can only have a rough idea about which ISP is
sending the maximum traffic towards itself and attracts most
of its customer traffic. The key question is, whether they can
estimate each others’ traffic after peering? To avoid future
disputes, ISPs typically undergo a temporary “trial peering”
periods of several weeks to determine the exchanged traffic
amount before provisioning the long-term peering session [34].

Optimal peer selection is a hard problem. Game-theoretic
approaches focus mostly on economic analysis by considering
both routing and congestion cost [25] to study the capac-
ity and pricing decisions made by service providers [35].
Earlier works [36], [37] focused on formulating an optimal
peering problem to determine the maximum peering points
along with their strategic placement or a negotiation-based
platform for ISPs to jointly determine routing path for traffic
exchange. While goal of these studies was to minimize the
interconnection cost without compromising the service quality
and understand the Internet-wide negotiation mechanisms, our
work differs from earlier research as we focus primarily on
automating the peer selection process and suggesting possible
PoPs according to pre-defined ISP specific criteria.
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Fig. 6: Inbound vs. outbound traffic
ratio from PeeringDB

HI MI B MO HO
HI 0.8 2.3 2.6 1.1 0.4
MI 2.9 8.7 11.4 4.6 1.5
B 3.4 14.1 19.2 7.9 2.4

MO 1.0 3.7 5.3 2.2 0.6
HO 0.4 1.2 1.6 0.6 0.1

TABLE II: Peering pairs traffic ratio type
percentage according to CAIDA
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Fig. 7: Peering pairs traffic ratio (based
on Table II)

III. PEERING PROCESS AND CURRENT SCENARIO

Fig. 3 shows three combinations of PoP locations for two
ISPs where they can peer. A and B represents when ISPs are
not located in the same PoP, but willing to peer and essentially
agree on the closest place from both. There is only one way
of peering in such cases. For C, ISPs overlap and there are
at least two common PoPs between them, so they can either
exchange traffic at all of them (case 1) or at only one location
(cases 2 and 3). ISPs can also peer without being physically
present in an IXP and/or connect through a third-party reseller
through Remote Peering (RP) [29]. Despite being an option in
practice, we do not consider RP in our model as they are
opaque and controversial in terms of its performance benefits.

As mentioned earlier, an IXP hosts ISPs inside a physical
location (PoP) equipped with multiple Ethernet switches (to
perform layer 2 functionality) so that they can route traffic
among themselves. An ISP needs to bring its traffic to the
PoP, purchase port capacity from IXP to connect its router
to the interfaces of 1/10/100 GbE switch, and pay for the
colocation costs (e.g., electricity bill, cooling fee, security and
others) [38]. The IXP allocates Meet-Me Room (MMR) for
each of the participating ISPs where it can land its fiber and
house all of its routers to interconnect with other ISPs. Fig. 4
portraits a high-level representative architectural overview of
an IXP and the associated costs that an ISP has to pay. An
IXP also hosts direct connectivity between two ISPs.

Inspired by Norton’s Peering Playbook [5], we break-
down the entire peering process into four phases (see Fig. 5)
and restrict our focus specifically on the automation effort
undertaken in each phases. As mentioned in Section I, meta-
peering encompasses everything including the tools used by
ISPs, algorithms developed by researchers in academia and
associated companies who are contributing to this area and
tackling the issues related to automation.

A. Pre-Peering Phase: Key Peering Metrics
From a purely economic perspective, if the peering cost

(including the connectivity and the maintenance cost) is less
than the transit cost, both the requester and the candidate ISPs
will be interested to form the peering relationship.
More Control: Regardless of economic benefits, an ISP may
be interested in peering with more ISPs to gain control over
its traffic and influence route path selection instead of letting
someone else (upper transit provider) to treat it as hot-potato.
Thus, a requester ISP always looks for such candidate ISPs to

peer who has significant presence in some other area and is
willing to deliver requester ISPs’ traffic there while keeping
their individual traffic local. Also to avoid the “tromboning”
effect and to reduce the latency, requester ISP prefers peering
over transit. Each time an ISP peers with someone new, the
congestion reduces, reliability increases, and therefore, the
end-to-end service quality for the users is improved [39].
Traffic Ratio: A useful metric to consider for identifying
potential peers is the balance of inbound vs. outbound traffic
for an ISP. Fig. 6 presents an interesting overview of the traffic
ratios of all the ISPs present in PeeringDB. CPs are mainly
interested in producing and disseminating the content, as a
result, 90% of them are outbound or balanced in nature; while
access ISPs care about the end-user connectivity, thus, are
mostly (82% of them) balanced to heavily inbound. On the
other hand, transit ISPs serve in the middle to connect CPs
and access ISPs. Almost half of the transit ISPs’ traffic ratio is
balanced. Using this information, a requester ISP, depending
on its business strategies, may identify a peering candidate.

Based on CAIDA’s inter-ISP relationship information, Table
II shows the percentage of peering ISP pairs that have different
traffic ratio type. Balanced ISPs are the most popular for
peering and the maximum number of peering happens if both
of them are balanced (19.149%). If either of them is balanced,
there is a good chance of them being involved in peering. We
populate a peering possibility quadrant in Fig. 7 based on ISPs
traffic nature. Here, ISP1 (or ISP2) can be either requester or
candidate, it does not impact the conjecture.
PoP Frequency: Having more PoPs attracts more ISPs which
are interested in expanding their network connectivity. There-
fore, PoP frequency is also a key metric for identifying
potential peers. Fig. 8a shows the CDF of ISPs’ PoP frequency.
Access ISPs’ target is the end customers and they operate in
specific regions, which is why they have fewer PoPs. Transit
ISPs form the backbone of the Internet: they lay out fiber
across the country and establish PoPs in different locations
to provide transit services to other ISPs. They usually have
more PoPs then any other ISPs. For instance, the maximum
number of PoPs for a particular ISP from access, content, and
transit categories are 59, 324, and 380, respectively. However,
one notable observation from our analysis is that by putting
caches directly inside an access ISP or purchasing racks from
datacenters, CPs are spreading their footprint and increasing
the number of PoPs. In addition to CP, transit and access ISPs,
some institutions also identify themselves as as educational,
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Fig. 8: ISPs’ PoP analysis according to PeeringDB (* one ISP may have multiple ports [40] with different speeds).

government or similar non-profit organizations. We mark them
as others, but exclude them from our study.

Fig. 8b shows the CDF of peering PoP frequency for
ISP pairs using CAIDA AS Relationship – with geographic
annotations dataset [41]. According to the figure, more than
95% of the ISPs, which peer globally, use less than 15 PoPs
located inside the US for exchanging data with their peers.
Customer Cone Size: Traffic volume and advertised IP
address space are vital for deciding the peering partners. A
requester ISP, having a large customer cone tries to peer with
ISPs with higher traffic volume and larger address space.
Earlier work [42] shows a strong correlation between the
advertised prefix count and traffic volume for both the access
and transit ISPs except for CPs – since they do not serve the
end-users directly, not much address space is needed for them.
This validates our use of publicly available BGP-advertised
address space for estimating network’s traffic volume.
Coverage Area: The internal topology of an ISP is proprietary
information, and ISPs are restrictive when it comes to publish-
ing it. As a result, identifying the exact coverage of an ISP is
difficult, and we have to rely on publicly available information
about their PoP locations2. Large interconnection hubs (i.e.,
IXPs) are usually located in bigger business cities or near the
trans-oceanic cable landing points [14]; thus, PoPs may reflect
the business interest of an ISP. If an ISP has more PoPs in
a certain area, that means its customer cone is concentrated
around that region [43]. Further, to support a higher volume
of customers, it increases its presence in nearest IXPs or
private facilities, which ensures higher port capacity [40] for
traffic exchange, and improves infrastructure [14]. On the
other hand, ISPs, thriving for country-wise reachability, mostly
have a presence in coast-to-coast (in the US case), or those
who want to expand beyond a specific country and ensure
global connectivity, they have to have a presence in different
countries. To gain the benefits of more extensive coverage,
ISPs peer. In this regard, geographical footprint coverage acts
as one of the deciding factors to consider, and hence, a larger
overlap between two ISPs will reduce the likelihood of them
peering.

Overall, understanding and evaluating these metrics plays
a critical role in developing robust peering strategies with re-

2Router level information of ISPs are available from CAIDA, however,
the locations are mostly approximate and usually converges around the PoP
locations.

TABLE III: Frequently asked requirements by ISPs

Requirements % of all ISPs
24*7*365 Support 83.33
Minimum traffic volume (inbound or
outbound) 69.44

No static route/ default route 66.67
Do not announce third party routes.
(Only self customer cone) 66.67

Consistent route announcements in all
inter-connecting locations. 63.89

Minimum geographic presence (peering
at least in PoP count) 58.33

Interconnection speed at each point 52.78
Provide security; handle DDoS and abuse 44.44
Traffic ratio (in-bound: out-bound) 44.44
Routes registered in IRR, RIPE, ARIN 33.33
Existing transit customer can not peer 33.33

gards to whom ISPs peer with and what locations do they peer
in. This can vary significantly from ISP to ISP. Larger ISPs
may choose to prioritize metrics like traffic ratio and coverage
overlap to maintain their extensive reach and balance exchange
traffic over their massive network backbones. On the other
hand, smaller ISPs will lean more towards POP frequency and
customer cone size to enhance local connectivity and growth
potential.

B. Peer Selection Phase

ISPs typically outline their criteria for peering and describe
the general guidelines. To sort out the most common prerequi-
sites, we considered top 50 ASes according to CAIDA’s AS-
Rank [44] and utilized PeeringDB categorization. We gathered
peering policies from each ISP’s website and classified them
as interconnection requirements, routing requirements, and
general conditions. Some ISPs do not publish their policies so
we could not find them while some ISPs have multiple entries
in the CAIDA’s top 50 AS list. Furthermore, no CPs were in
the top 50, so we considered some prominent CPs varying
from gaming industry (Blizzard), social media (Facebook) to
CDNs (Limelight). We accumulated peering criteria for 36
ISPs from around the globe.

Table III lists the most popular requirements and shows how
many ISPs ask for them. Most of the ISPs want to ensure that
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the requester operates a 24*7*365 Network Operations Center
(NOC) and provides escalation path for resolving networking
issues. Apart from the listed items in the table, other trendy
desiderata are: omnipresent geographic footprint, adequate
backbone capacity, essential peering port size in PoPs (see
Fig. 8c), maintaining financial stability, and redundancy of the
requester network. Candidate ISP also does not peer with its
direct customer or a customer of any of its peers.

Most of the candidate ISPs look for a similar sized requester
ISP who runs backbone with at least 10 Gbps capacity or has
at least 50% of candidate network’s capacity [45]. Large ISPs
like Telia, Orange, or Liberty ask for 100 Gbps backbone,
while ISPs like Frontier and Blizzard do not set the amount
but make sure that the requester can handle the projected
load without any congestion. Some ISPs expect requester to
announce an aggregated subnet size of /24 or greater (e.g.,
Time Warner and Zayo), some are more specific requiring /30
or above (e.g., Google), while some ISPs (e.g., Swisscom)
are more reluctant and ask for address range of at least /11.
Although it may vary, having a wide geographic presence is
desirable from a requester ISP. Depending on the nature of the
candidate, it may require at least 2 (Cox) to 8 (Charter, GTT)
locations for peering in the US (Telstra requires presence in 8
Australian cities), 2 (AT&T) to 5 (Orange) countries in Europe
or have 50% of the candidate’s (e.g. Verizon) geo-coverage.
C. Establishing BGP Session Phase

Business relationships (direct customer/provider/peer), as
well as the intention to limit the routing table size for
scalability, and to gain control over in/out-bound traffic (by
implementing MED or LocalPref) play vital roles in setting
up a BGP session [46]. Erroneous manual configurations often
lead to instability, generate excessive misconfigured route
announcements, and cause unintentional blackhole routes.

Incidents like inadvertent prefix leak causing service outage
for Google and Cloudflare customers in 2018 [47], or sending
the entire Japan’s Internet into dark for more than an hour
in 2017 [48] amplifies the importance of meticulous BGP
configuration. To prevent such occurrences from happening
and reduce exchanges among ISP admins each time either ISP
expands its geographic presence by joining in a new IXP col-
location center, first-ever “peering-over github” network [19]
has been introduced. Since most of the ISPs keep their
information updated in PeeringDB [42], Coloclue leverages
these information to find out the common IXPs, calculate the
max-prefix and establishes BGP sessions. This is, by far, the
only automation effort towards setting new or updating the
existing BGP sessions between two networks.
D. Post-Peering (Monitoring) Phase

Once the BGP session is established among the neighbors,
an ISP keeps monitoring all the remote BGP services with
its neighbors for ensuring the least amount of BGP outage
or black hole, and it compares the aggregate traffic in both
direction so that the measured traffic-ratio does not violate
the agreement. To automate the process, ISPs can either set
up their internal monitoring system (BGPStream [49]) or can
utilize external services like ThousandEyes [50], or NLNOG
RING [51].

Among other BGP manipulators, Noction Intelligent Rout-
ing Platform (Noction IRP) [52] integrates intelligence to
the routing decisions. By actively probing remote prefixes
for packet loss, latency, throughput, and long-term reliability,
Noction IRP optimizes the performance of the routes and
is able to bypass congestion and outages. With constant
monitoring, it can automatically alert the network admin for
various types of errors instantaneously.

IV. AUTOMATING PEER SELECTION: META-PEERING

The case studies in the previous section (especially in Sec-
tion III-B and III-A) motivates us to look for a framework that
can perform automated peer selection. Having a framework
that is fit for all ISPs may be impossible to find; however,
we perform a significant amount of sanity checks on different
performance metrics using our framework to demonstrate
the huge potential it has. In this section, we discuss the
framework in general, and Section V covers the meta-peering
methodologies proposed.

A. The Meta-Peering Framework

In general, ISP admins possess traffic statistics and detailed
intelligence about their own network, but have limited data
about their competitor ISPs while making the peering deci-
sions. Our framework leverages the publicly available data
and, based on the internal policy of the requester ISP, produces
a guideline for peering contracts. The algorithm contains a
heuristic function that runs for both ISPs independently and
enumerates the possible options separately. Comparing these
two lists, the algorithm generates a final list of peering points.

Fig. 9 presents an overview of our proposed framework.
Considering the PoP locations, traffic matrices, port capacities
in IXPs, or private facilities where both the requester and
the candidate have their presence, the framework suggests to
the network admin whether the candidate may agree with a
particular peering offer or not. Utilizing this tool, the network
admin can also come up with a list of potential ISPs; select
the appropriate ones, and identify possible peering contract
offers to these potential peers. In the figure, each gray box
represents an autonomous module of the framework, which
we shall discuss later. We adopt such a modular approach to
support future extensions by adding newer components. The
algorithm runs from one ISP’s perspective and simulates the
counterpart from publicly available information. Hence, the
heuristic function requires limited shared data and can run
independently without breaching any privacy rules.

B. Terminology

We categorize the input data for the framework as following:
Known data: Population at PoP locations, requester’s own

Traffic Matrix (TM), port capacity at PoPs.
Estimated data: Candidate’s TM. We call it Estimated

Traffic Matrix (ETM).
Outputs: Possible Peering Points (PPPs), Possible Peering

Contracts (PPCs), Acceptable Peering Contracts (APCs).
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Fig. 10: Traffic exchange between ISPs

1) Possible Peering Points (PPPs): We use PeerinDB to
compile the PoP list and identify common PoPs for both
requester and candidate ISPs. Traffic can be exchanged at any
combination of these common PoPs, except for the empty set.
We call the list of all PoP combinations as Possible Peering
Points (PPPs). Let us denote the total number of common PoP
locations (|PPP |) as r.

2) Possible Peering Contracts (PPCs): PPPs give only the
set of locations for possible peerings. After that, we feed TM
and ETM to the Policy generator for generating the list of
Possible Peering Contracts (PPCs). We use TM to compute
the traffic flow at particular PoPs. Let us denote the list of
PPC as PPC.
PPC is the collection of all sets of PPP locations where

the two ISPs may establish peering. For example, if there are
three common PoPs between two ISPs, there would be seven
different PPPs. Assuming the common cities are A, B, and C
for both ISPs, PPPs in this case are: peering at all three cities
(A-B-C), at different combinations of two locations (one of A-
B, A-C, or B-C), or peering at a single location (either A, B,
or C). Since no peering is not a valid option here, we discard
that. The more the common locations, the more PPPs will be
generated. Hence, for r number of common PoP count, the
PPC count will be:

|PPC| = 2r � 1. (1)

3) Acceptable Peering Contracts (APCs): With all the PPCs
being populated, our algorithm sorts them according to the
requestor ISP’s internal policies and sorting strategy. Policy
filter eliminates some impermissible options from the list at
this stage if they do not qualify. We refer to these selected
contracts as APCs and identify the list as APC with |APC| =
z. Note that APC ✓ PPC, and z  2r � 1.

C. ISP Network Model
Analyzing a candidate network to come up with the traffic

volume, routing topology, and link capacities is most critical
when deciding the PPCs. We have used TMs for estimating
the traffic amount between every possible origin-destination
(OD) node pair, in this case, ingress and egress points of
the network to model the candidate’s traffic volume. Existing
TM calculation techniques rely either on statistical estimation
based on routing matrix inference from SNMP link counts
[53] or measuring OD flows for a certain period [54] .

Although achieving a proper balance between these method-
ologies of measurement, inference, and TM modeling has been
heavily investigated [55] , we have taken a simplistic but most
common way to model TM of an ISP network.

We collect the population and router data for each PoP
of the ISP(s) to estimate their TM (ISP pair wise) using
the gravity model. An extensive study on the gravity model
shows that it can be used for practical traffic matrix synthesis
[56]. Moreover, it was found that a tomo-gravity model with
a relativity factor in the gravity model can attain a better
prediction of the traffic in the TM [57]. The gravity model
contains mass and distance in the equation and brings the
metaphor of physical gravity. Based on previous study [55],
we assume the traffic amount between two PoPs should
be proportional to the population of these PoPs. With this
rationale, we use the following derivation where Force, m,
a, G represent the gravitational force, mass of the items,
acceleration due to attraction, and gravitational constant:

Force = G⇤
m1 ⇤m2

d2
(2a)

Force = m1 ⇤ a1 Force = m2 ⇤ a2 (2b)

) a1 = G ⇤
m2

d2
) a2 = G ⇤

m1

d2
(2c)

) T1,2 = G ⇤
m2

d2
) T2,1 = G ⇤

m1

d2
(2d)

where a1 represents the acceleration of m1 towards m2. From
ISP’s business context, for some ISP R the value of m1

should be proportional to the router density of ISP R and
the total population in that area (PoP1). Hence, if the number
of routers of ISP R at PoP1 is RR,1 and the population is
p1, then m1 = RR,1P

k Rk,1
⇤ p1, where

P
k
Rk,1 represents the

sum of all routers corresponding to all the ISPs present at
PoP1. Let T1,2 (T2,1) represents the amount of traffic flow
from PoP1 to PoP2 (PoP2 to PoP1, respectively), and d is the
distance between these two locations (cities). As everyone in
a certain location (city or state) may not have a connection to
the Internet, we define G as the usage factor by combining
the Internet penetration percentage in a specific state [58]
and per-person Internet usage (calculated globally [59]). We
consider statewide Internet penetration for the US only, but it
can be adapted to any specific country. Let sd be the Internet
penetration percentage in the destination states (for the US
regional peering) or countries (for global peering) respectively,
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and u be the per-person usage percentage. We express G as:

G = sd ⇤ u. (3)

The value of G can also be extended to consider the country-
wise per-person network-connected device count, max peak-
hour behavior and other factors to achieve further fine-tuning.
Since, traffic from one PoP to another PoP depends on the
router distribution of the ISPs, hence to incorporate that in the
notation, we denote TR!C

1,2 as the traffic amount that ISP R
is sending from PoP1 to ISP C at PoP2. Assuming s1 and s2
to be the Internet penetration percentage of the two locations
where PoP1 and PoP2 are located (PoPs can be in the same
locations as well, then s1 = s2), we can rewrite Eq. 2 as:

TR!C

1,2 = s2 ⇤ u ⇤
p2
d2

⇤
RC,2P
k
Rk,2

,

and TC!R

2,1 = s1 ⇤ u ⇤
p1
d2

⇤
RR,1P
k
Rk,1

.
(4)

The dimension of the traffic matrix depends on the number
of locations where the ISPs R and C are present. If NR

PoP

and NC

PoP
represents the total number of PoPs that R and

C has respectively, then the TM and ETM both will have a
dimension of NR

PoP
⇥ NC

PoP
. In a real-world scenario, the

requester should possess its own TM and only estimate the
candidate’s network, but here, we relied on the above model
for estimating both the requester and the candidate’s TM as we
did not have TM information available for any ISP. However,
in the following, we still call requester traffic as TM and
candidate’s traffic as ETM.

D. Offloaded Traffic Estimation

During our study, we found only Microsoft to explicitly
mention that they would try to carry the data through their
network to a PoP nearest to the user location. They also expect
the requester ISPs to announce their entire and consistent set
of prefixes in all the PoPs, so Microsoft can take advantage of
choosing the exit point. In contrast, many ISPs do not follow
this practice and simply implement the hot potato technique.
While calculating the ETM of the candidate, we assumed that
the traffic would enter or exit with proper discretion, and, that
the entire volume would be proportionately distributed to the
port capacities between all the common PoPs. As such, we
did not consider the ‘closer to geo-location’ phenomenon here.
We used unit values while calculating data flow for both the
ISPs. Further, instead of simply averaging the total traffic and
distributing it, we utilized the port capacity of each PoP as the
weight factor to calculate the weighted average. This gave us
a better approximation of ETM for ISPs.

Consider Fig. 10, where requester (R) and candidate (C)
both have 4 PoPs individually and PRC1, PRC2 are the
common exchange points between them. Traffic from R can
go to any PoP including PC1, PC2 via PRC1 or PRC2 if they
agree to peer. From R’s point of view, outgoing traffic from
PR1 is

n�rX

j=1

TR!C

PR1,PCj
, (5)

where n is the number of PoPs C has, while r is the number
of common PoPs. These traffic will go via PRC1 or PRC2,
and based on port capacities, we distribute the traffic among
these exit points. Considering vRCk to be the port capacity
of k-th common PoP (PRCk), we formulate the traffic that R
will offload to C via PRCk as:

TR!C

k
=

vRCk ⇤
P

m

i=1

P
n�r

j=1 TR!C

PRi,PCjP
r

k=1 vRCk

. (6)

In general, ISPs do not exhaust the total capacity of a single
port, rather they limit the utilization to a certain threshold.
Should the need arise, additional port is either purchased from
the IXP or new port is activated if ISP owns the switch. Previ-
ous studies [60] found that 95th percentile average utilization
varies from 36% to maximum utilization of 50% at peak hours.
There were incidents when the utilization reached 90%, but
those accounted for less than 10% of the cases [61].

E. Meta-peering as an Optimization Problem
From the discussion (in this section and in Section III) made

on different metrics related to the decision-making of peering
between two ISPs, we can argue that the peering decision
problem can be formulated as an optimization problem. In-
tuitively, the decision of two ISPs to peer is related to the
individual willingness of each ISP, and the longevity of that
relationship depends on some stability metric. Overall, from
the perspective of an ISP, willingness to peer consists of the
traffic exchange benefit, internal routing cost reduction, etc.
On the other hand, the stability of the peering relationship
depends on how these ISPs compare, i.e., in terms of size,
traffic ratio between them, internal routing cost ratio, etc. The
methodologies presented in Section V focus on determining
the willingness and stability of any ISP pair for different
peering contracts (where to peer, what traffic exchange ratio
to follow) and finding the optimum contract. If the optimum
contract is good enough for both parties (ISPs), they should
decide to peer, otherwise, a peering relationship should not
be formed. Thus, for the peering contracts, the optimization
problem is to find the peering contract PCOPT that maximizes
some function F (the Felicity score) that has the willingness
and stability metric as its argument for some ISP pair;

PCOPT = arg max
i2APC

F
�
WR,C

i
, SR,C

i

�
, (7)

where WR,C

i
and SR,C

i
respectively represent the willingness

metric (value) and stability metric (value) for ISP pair (R,C)
when using the ith contract from the APC list. The Felicity
scores calculated for different contracts are compared with a
threshold value to check if the ISP pair (R,C) should peer
or not, detailed later in Section V-D. Also, if the ISP pairs
decide to peer, then the contract with the highest felicity score
provides us with the peering locations (PoPs).

V. META-PEERING METHODOLOGIES

Earlier study [36] found that peering point placement
problems under traffic cost constraints are NP-complete. Our
framework solves the same peering (point) placement issue,



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXX XXXX 9

TABLE IV: Summary of Commonly Used Notations

Notation Description
TR!C
1,2 Amount of traffic that ISP R is sending

from location 1 to ISP C at location 2
NR

PoP
Total Number of PoP(s) of R

NC

PoP
Total Number of PoP(s) of C

NR

Rtr
Number of locations where R has router(s)

NC

Rtr
Number of locations where C has router(s)

WR!C

i
Willingness of R towards C (using contract i)

WC!R

i
Willingness of C towards R (using contract i)

WR,C

i
Pairwise Willingness between R and C
(using contract i)

↵R Affinity score of R (GEO-PP)
↵C Affinity score of C (GEO-PP)
↵R,C Pairwise Affinity score of R & C (GEO-PP)
⇠R,C Pairwise Similarity score of R & C (GEO-PP)
SR!C

i
Stability of R towards C (RCA-PP)

SC!R

i
Stability of C towards R (RCA-PP)

SR,C

i
Pairwise Stability between R and C
(using contract i)

FR,C

i
Felicity score of R & C using contract i

⌧ Threshold value to compare with Felicity score
�, �, � Constants to calculate Felicity score
FR,C Overall Felicity score of R & C

(is compared with T for peering decision)

using one of the two meta-peering techniques proposed in
this work. At first, we introduce the GEOgraphic Peering
Prediction (GEO-PP) method, which performs meta-peering
by focusing on the geographic overlap between two ISPs.

Then, we discuss another meta-peering methodology, called
Routing Cost Aware Peering Prediction (RCA-PP), that ana-
lyzes the peering relationship from the perspective of internal
routing cost. Table IV provides the summary of commonly
used notations for our proposed methodologies.

A. Methodology I: GEO-PP

The operational framework of GEO-PP is depicted in Fig. 9.
It uses the TM of the requester ISP, ETM of the candidate ISP,
PoPs of both of them, population data for ingress and egress
cities, and tolerance information as parameters to generate
the APC. The data regarding PoP information is obtained
from PeeringDB, while population data is gathered from a
population database. This initial APC list is then forwarded to
the willingness calculator where they are sorted and ranked
from both ISPs standpoint (APC

R for requester, APC
C for

candidate), based on some criteria (discussed below). These
ranks are then used to calculate the willingness of peering,
we call them APC willingness scores. The final goal of the
willingness calculator is to obtain the optimum APC list,
APC

⇤, where the individual APCs are ordered in such a
way that maximizes the overall combined willingness score of
the ISP pair, hence preferable for both. Next, the framework
calculates the stability of possible peering relation using two
additional terms, a) affinity score, a measure of the overlap

between the coverage of the two ISPs, and b) similarity score,
a measure of the size similarity of the two ISPs. The affinity
is calculated using the PoP data from PeeringDB, while the
similarity score is measured using the CAIDA customer cone
data. These three metrics are then combined to obtain the
felicity score, which ultimately predicts whether the two ISPs
should peer or not.

1) Peering Willingness: Referring to Fig. 9, the willingness
calculator receives the preliminary APC list, which is then
ranked based on each ISP’s own sorting criteria to formulate
APC

R and APC
C . As a measure of tolerance, we utilize

the ratio of outbound to inbound traffic amount to prepare
the APC

R or APC
C (while eliminating PPCs). These ratios

are essentially peering policy decisions ISPs make and vary
from 1:1.5 (Telstra, CenturyLink) to 1:3 (Liberty Global),
with the most popular being 1:2, maintained by Zayo, AT&T,
GTT Communication and others. The sorting criteria of APC
from the perspective of the ISPs can be one of the following
three options: a) Own: maximize the requester ISP’s out-
bound traffic towards the candidate ISP, regardless of how
much traffic it receives from the candidate, b) Diff: minimize
the absolute difference between in/out-bound traffic for the
requester, or c) Ratio: choose peers with lower in/out-bound
traffic ratio. These three criteria are the most common metrics
ISPs consider when they are trying to decide to peer or not
[62]. Additionally, based on the observation from Fig. 8b, we
set 15 as the max common PoP count for any ISP pair.

To quantify the ‘robustness’ of an APC, we take these lists,
and, for each APC, APCi, we calculate the difference of ISPs’
preferences, the rank of APCi in APC

R and APC
C , and take

the square of it for a positive value. We then normalize this
value by the square of the maximum difference regardless of
any specific APC to include the worst-case scenario when an
APC is most preferred by the requester ISP but is least pre-
ferred by the candidate. In most cases, APC

R and APC
C will

contain the same APCs but in different order of preference. In
case of a scenario when APC

R and APC
C do not include the

same items, the rank of the missing APCi in the counterpart’s
list is set to infinity so that it is preferred the least, while
making sure the list contains the same items. Let, RR

i
and

RC

i
be the rank of a particular APCi in APC

R and APC
C ,

respectively. We calculate the individual willingness scores of
R, WR!C

i
, and C, WC!R

i
, for that particular contract as

follows:

WR!C

i
= 1�

RR

i
� 1

|APC|
, WC!R

i
= 1�

RC

i
� 1

|APC|
. (8)

The combined willingness score for a particular APCi is
calculated as the geometric mean of the individual scores as
follows:

WR,C

i
=
q
WR!C

i
⇤WC!R

i
. (9)

2) Peering Stability: GEO-PP quantifies stability of the
peering relationship between two ISPs based on how ‘affine’
and similar they are to each other. For this, we compute two
corresponding scores as we detail next.
Affinity Score: An ISP will be interested in peering with
another ISP if the relationship would expand its coverage
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(a) Convex-Hull overlapping (b) Polygon overlapping

Fig. 11: Inter-ISP overlap

area; otherwise, there may not be enough incentive to peer
with someone who is covering the same locations or has a
smaller coverage area. We call this interest as affinity score
of an ISP to peer with another ISP. To represent the coverage
area of an ISP, we initially calculated the convex-hull using
all of its PoPs. But, we observed that a bigger convex-hull
may unintentionally cover a smaller ISP’s coverage area and
reduce the affinity score. So, instead of convex-hull, we prefer
a regular polygon to represent an ISP’s coverage area. Fig. 11a
and Fig. 11b present the comparison between the coverage
areas of two ISPs using the two methods. Furthermore, due to
uneven distribution of population, a larger area coverage does
not necessarily indicate that an ISP serves a wide customer
pool in different regions. So to represent the coverage area in
a more pragmatic way, we implement the flood fill algorithm
to calculate the total population in the covered region [63].
We convert the entire coverage area into a grid of five-
square miles cells, and estimate the total population using
the Gridded Population of the World (GPW) [64]. After this,
we calculate the affinity scores ↵R and ↵C , respectively, for
the requester and candidate ISPs as follows. Let AR and
AC be the population in coverage areas of the requester and
the candidate, respectively, and Ao be the overlapped area’s
population. We express the affinity scores based on the overlap
as:

↵R =
AC �Ao

AR [AC

=
AC �Ao

(AR �Ao) + (AC �Ao) +Ao

, (10)

↵C =
AR �Ao

(AR �Ao) + (AC �Ao) +Ao

. (11)

Similar to the combined willingness score, we use geometric
mean to calculate the combined affinity score:

↵R,C =
p
↵R ⇤ ↵C . (12)

Similarity Score: An interesting feature about the affinity
score is that the measure of affinity is relative to the size
of the ISPs. Considering one large and one small ISP, the
same amount of increase in coverage does not equate to equal
increase in both their affinity scores. It is because the affinity
basically refers to the percentage of coverage increase, and
for the larger ISP (in this case), the change in affinity score
will be less compared to the smaller ISP. So, it makes sense
for the ISPs to peer with other ISPs of similar sizes. To
test that statement, we introduce a metric called similarity
score (⇠), which essentially measures the level of similarity
between ISPs. To quantify it, we use the CAIDA AS-Rank
API [44] to accumulate all of the announced prefixes and
covered address spaces to get the total numbers, and come up
with three types of similarity scores, i.e., similarity based on

PoP (⇠pop), similarity based on address (⇠add), and similarity
based on prefix (⇠pre). These scores were calculated in an
identical manner: as a ratio of number of PoPs, IP addresses,
and IP prefixes respectively of the two potential peering ISP
pairs, with the larger value at the denominator. This can be
expressed as follows:

⇠R,C

k
=

min(nR, nC)k
max(nR, nC)k

; k = {pop, add, pre}. (13)

where nR and nC are the number of elements of ISPs R and C
respectively, based on the score criteria, i.e., PoPs, addresses,
and prefixes. Higher the similarity score, the more similar ISPs
are. The overall similarity score of the pair will be the average
of the three types of the similarity scores as follows:

⇠R,C =
1

3

⇣
⇠R,C

pop
+ ⇠R,C

add
+ ⇠R,C

pre

⌘
. (14)

3) Felicity in Peering: Using the willingness (Eq. 9), affin-
ity (Eq. 12) and similarity (Eq. 14) scores, we compute the
felicity score of APCi, which is a measure of the merit of that
particular contract and plays a crucial role in the prediction of
whether the two ISPs would be peering or not, and is computed
as a geometric mean of the above scores. We propose two
different felicity scores, one using only the affinity score as
a measure of peering stability, while the other one uses both
the affinity and similarity scores. This was done to evaluate
the impact of the different stability parameters on the felicity
metric. For the ISP pairing, (R,C), the felicity score for
contract i 2 APC is calculated in two difference ways, as
follows:

Fi

�
WR,C

i , SR,C
i

�
=

h
(WR,C

i )� ⇤ (↵R,C)
�
i 1

�+�

with SR,C
i = ↵R,C , and

(15)

Fi

�
WR,C

i , SR,C
i

�
=
h
(WR,C

i )� ⇤ (↵R,C)
� ⇤ (⇠R,C)

�
i 1

�+�+�

with SR,C
i = {↵R,C , ⇠R,C}

(16)

where Fi(.) is simply the geometric mean of input parameters
using constant exponents �, �, and �. The geometric mean
of the willingness, WR,C

i
, and the stability, SR,C

i
, implies

that peering contracts with high willingness and high stability
at the same time will be preferred. Further, in Eq. 16, the
stability SR,C

i
is a tuple of the affinity and similarity scores,

emphasizing that the ISPs are more likely to peer if they both
have low coverage overlap and similarity in size.

Now, the APCi with the highest felicity may not always
be the most preferable contract for an ISP. For example, it
may propose a peering location where the ISP already has
good coverage and thus provide an insufficient incentive for
that ISP to peer. A better alternative would to be take into
account, the felicity of all the contracts within the APC list
and come up with a combined felicity score. That way, ISPs
will have more options to choose from and select contracts
that may not necessarily have the highest individual felicity
score, but more in line with their operational requirements. To
formulate this combined felicity score, the main task would be
to maximize the willingness score by obtaining an optimum
APC list, APC

⇤, as the affinity and felicity scores remain
constant for all i 2 APC.
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Optimal APC List Formulation: Finding the optimal APC
list refers to the ordering of each APCi within the list in
such a way that maximizes the overall willingness score of
the list and accurately represents the benefit of peering to both
ISPs. Let ji be the rank or order of APCi and is expressed
as ji = R(APCi) where ji 2 J = 1 . . . z. Based on that,
obtaining the optimal APC list, APC

⇤, can be expressed as a
maximization problem for the requester ISP as follows:

J
⇤ = argmax

J

zX

i=1

WR,C

i
⇤WR

i
, (17)

s.t. R(APC1) < R(APC2) < ... < R(APCz) (18)
and z  2r � 1. (19)

The outcome of this optimization is the rank order of all
the APCi for the optimally ordered APC set, APC

⇤ (i.e.,
J

⇤) and occurs when the ordering of APCs in the solution
set is monotonically decreasing in terms of the two ISPs’
combined willingness. A higher combined willingness score
(WR,C

i
) may not always reflect the best APC choice for the

requester based on two hypotheses: 1) the requester will make
the peering attempt, and 2) a rational ISP will always prefer
an APC with maximum benefit. So, Eq. 17 also considers
the willingness score of the requester (WR

i
) for that specific

APCi and the constraint in Eq. 18 assures that the optimal
ordering requirement is satisfied. Using this optimal APC

⇤,
the combined willingness score of the ISP pairing can be
calculated as the average of all the individual willingness
scores within the list.

Finally, the combined felicity score for the pairing using the
overall willingness score is formulated as follows:

FR,C = max
i2APC⇤

Fi

 P
i2APC⇤ W

R,C

i

|APC|
, SR,C

i

!
. (20)

Here, the first argument of Fi(.),
P

i2APC⇤ W
R,C
i

|APC| , is the overall
willingness score for the ISP pairing (R,C). Furhter, SR,C

i
is

fixed for all contracts i 2 APC
⇤ as the stability parameters

remain constant regardless of the changes in the APC list.
Using the combined felicity, the model predicts whether ISPs
pair will peer or not by comparing it with a threshold, ⌧ .
If FR,C

� ⌧ , the ISPs are predicted to peer, while not if
FR,C < ⌧ .

B. Methodology II: RCA-PP
For this specific methodology, RCA-PP, we extend the defi-

nition of Possible Peering Points (PPPs) slightly. In GEO-PP
the PPPs only included the common PoPs, whereas for this
case we also include common router locations of the ISP pairs.
Similarly, we extend the notion of Possible Peering Contracts
(PPCs) along with the Acceptable Peering Contracts (APCs)
in the same way. Moreover, due to this modification, the traffic
matrix for this method is also different than GEO-PP. Let us
denote NR

Rtr
and NC

Rtr
as the locations where R and C has

routers (due to the nature of PoP locations, each PoP locations
also has at least a router from its corresponding ISPs). The
traffic matrix for RCA-PP has a dimension of NR

Rtr
⇥NC

Rtr
.

Fig. 12: Sample peering and transit path for an ISP pair.

1) Cost of Traffic: The cost of peering traffic depends on
the perspective of ISPs. When an ISP carries traffic through
its own network, the ISP tries to minimize the increased
congestion (cost) along with the cable infrastructure (cost) to
facilitate this data transmission. On the other hand, ISPs can
decide to send traffic using transit services by paying a transit
fee (set by the transit provider) as the cost of traffic. Overall,
it is hard to put a dollar cost on the exchanged traffic, but in
general, the cost is an increasing function of the length the
traffic needs to traverse [5].

For illustrative purposes, let us consider the scenario of
Fig. 12. In this scenario, ISPs R and C are peering at two
locations (IXPs), indicated by red crossed circles. These lo-
cations are connected through internal routing paths (depicted
in purple). Alternatively, the ISPs have the option to exchange
traffic through a transit service, traversing a path marked
in maroon dashed lines that involves the transit provider’s
routers (depicted as orange cylinders). As the transit path
often exceeds the shortest available route and, at times, even
surpasses the peering path in length, a parameter called the
path stretch factor is employed to calculate the effective
distance that traffic might need to cover via a transit path.
A detailed discussion on the path stretch factor is provided in
the subsequent section. Now, let us assume that certain traffic
needs to journey from point A (belonging to ISP R) to point B
(belonging to ISP C), and dAB represents the distance between
these two points (refer to Fig. 12). Additionally, let dI denote
the distance covered by the traffic while navigating internal
routes (say dr) within ISP R up to the peering location. We
can estimate the internal routing cost of the ISP as

CI = aI ⇥
X

r

dr = aI ⇥ dI , (21)

where aI is a constant and
P

r
dr = dI is summation of all

the internal routes that the traffic need to traverse to reach
the peering location. Similarly, the transit cost (CT ) can be
expressed as

CT = aT ⇥ dAB ⇥ f, (22)

where f signifies the path stretch factor and aT is a constant.
2) Path Stretch Factor: When data flows on the Internet,

the route does not consistently follow the most direct path
for various reasons. The path stretch factor, f , between two
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endpoints, A and B, can be broadly characterized as the
degree to which the route taken from A to B exceeds the
length of the shortest available path. This can be quantified
as the ratio of the actual path length to the shortest path
length. One illustrative example is given in Fig. 12, where
traffic is compelled to take a more extended route due to
some constraints, e.g., policy considerations. For RCA-PP,
determining a good and representative path stretch, f , for
calculating the transit cost in (22) is necessary.

Several research studies have assessed the router-level hop
path stretch factor in the context of the Internet. Tangmu-
narunkit et al. were among the pioneers, conducting one of
the initial studies [65] to calculate the router-level path stretch
resulting from routing policies. Building upon this work, Gao
et al. expanded the scope to encompass AS-level hop stretch
[66]. While both studies delineate trends in path stretch, they
refrain from presenting global averages. Similarly, Mühlbauer
et al. calculated the path stretch factor on a large-scale
simulated AS-level graph constructed with data from CAIDA
[67]. Their computations showed observed path stretch of 1.3,
2.1, and 2.9 in terms of AS-level hops, router-level hops, and
geographical distances, respectively. Based on these studies,
we chose f = 2 for our study.

3) Peering Willingness: The peering willingness of an ISP
R to peer with another ISP C using some contract i(2 APC)
is denoted by WR!C

i
, and is defined as the ratio of transit

cost to peering cost from the perspective of the ISP R. Hence,
we have

WR!C

i
=

P
t
CT (t, R,C)P

t
CI(i, t, R,C)

=

P
t
aT ⇤ d(AB)t ⇤ fP
t
aI ⇤ dIt(i)

, (23)

where CT (t, R,C) and CI(i, t, R,C) are the transit and
internal routing costs for some traffic flow t that ISP R needs
to send to C, and a sum over all the traffic t gives the total cost.
Also, d(AB)t and dIt(i) respectively represent the geographical
and internal routing distance that traffic t needs to travel in
transit and peering scenarios. Higher value of WR!C

i
means

higher inclination of ISP R to engage in peering with ISP
C using peering contract i. The pairwise peering willingness
between ISPs R and C for contract i is formulated as follows:

WR,C

i
=
q
WR!C

i
⇥WC!R

i
, (24)

and is the representation of the overall peering inclination of
the ISP pair (R,C).

4) Peering Stability: We define Peering Stability for an ISP
R peering with ISP C with a contract i 2 APC, denoted as
(SR!C

i
), as the ratio of the minimum attainable cost using

any of the contracts from APC to the cost of using contract
i. Thus, we have,

SR!C

i
=

min
ĩ2APC

P
t
CI (̃i, t, R,C)P

t
CI(i, t, R,C)

, (25)

where min
ĩ2APC

P
t
CI (̃i, t, R,C) is the minimum cost that

ISP R would have incurred using various peering contracts
from APC, and

P
t
CI(i, t, R,C, ) is the cost when using the

specific contract i. From the perspective of both ISPs, if the
selected solution (i 2 APC) doesn’t deviate significantly from
the minimum achievable solution for both ISPs, then they are

likely to establish a peering agreement. Therefore, in a manner
similar to GEO-PP’s, we define the peering stability for an ISP
pair (R,C) for some contract i as,

SR,C

i
=
q
SR!C

i
⇥ SC!R

i
, (26)

which offers a quantitative measure of the overall stability of
the peering relationship.

C. Felicity in Peering
Finally, the WR,C

i
and SR,C

i
values from the perspective

of both ISPs are used to find the optimum contract given by
Eq. 7 that have the highest felicity score. To calculate the
felicity score we use a very similar equation as used in Eq.
15, and define it in the RCA-PP method for ISP pair (R,C)
with contract i 2 APC as;

FR,C

i
=
h
(WR,C

i
)� ⇥ (SR,C

i
)�
i 1

�+�
, (27)

where � and � are constants but can have very different values
than in Eq. 15. Lastly, the (final) felicity score that is compared
with the threshold ⌧ for peering decision is given by

FR,C = max
i2APC

FR,C

i
. (28)

D. Peering Decision with Meta-peering
GEO-PP and RCA-PP are meta-peering methodologies to

aid us in a two-step decision-making of 1) whether two ISPs
should peer, and 2) where they should peer (if they decide to
peer).

1) Peering Partner Choice: The felicity score indicates the
overall quality of the peering relation between ISPs . The
higher the felicity score, the better matched the ISP pairs for
peering. In the GEO-PP framework, the felicity score between
two ISPs is calculated using either Eq. 15 or 16. We set a
tunable threshold value, ⌧ , on the felicity score, which helps
determine the peering decision; felicity higher than ⌧ means
the ISP pair should peer and vice versa. Similarly, for the case
of RCA-PP, we use Eq. 27 to calculate the felicity score of
some ISP pair for all possible peering contracts and use the
maximum value to decide if the pair should peer or not.

2) Peering Location Selection: If the ISP pairs decide to
peer, the next question is which location(s) to peer. For the
GEO-PP method, the optimal APC list, APC

⇤ is calculated
by solving the maximization problem given by Eq. 17. The
peering locations are then obtained from the optimized list
(APC

⇤). On the other hand, for RCA-PP, the contract with
the highest felicity score provides the PoP location(s) where
the ISP pair should peer to have the higher willingness and
stability.

VI. EVALUATION

The methodology of GEO-PP and RCA-PP are developed
using robust arguments backed up by statistical data. In
this section, we demonstrate the effectiveness of these two
methods by comparing and analyzing their outputs. Initially,
we discuss the significance of each of the metrics that are being
calculated in the proposed methods using real-life examples
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(Sections VI-C1 and VI-C2). Later, we check the balanced
accuracy of the peering prediction using both methods. Finally,
we perform a comparison of the total internal routing costs
using our proposed methods and the original PoP locations.
Both (proposed) methodologies showed promising results in
predicting peering partners and locations.

A. Datasets

To check the performance GEO-PP and RCA-PP, we used
publicly available data from CAIDA [67], PeeringDB [62],
and CEDAC (NASA) [64]. From CAIDA, we accessed data
about routers (i.e., latitude, longitude, and IP addresses),
router-to-ASN assignments, and ASN peering relationships.
Autonomous system number or ASN is a unique number
assigned to each Autonomous Systems (ASes). From Peer-
ingDB, we extracted information on the ASNs, e.g., PoPs
and port capacities purchased at IXPs. Interestingly, CAIDA
also stores the PeeringDB databases and is usually up-to-date,
and one can access the PeeringDB data from CAIDA as well.
Lastly, we used [64] to get population distribution data given
for different grid sizes.

ASNs or ISPs: ISPs are the organizations that provide
different services, i.e., Access, Content, or Transit. Larger ISPs
can own different types of ASNs under their name. Hence, it is
not straightforward to tag an ISP with any specific service. On
the other hand, ASNs always follow a single role, and we can
get the ASN type for any ASN from PeeringDB. Furthermore,
peering policies are ultimately implemented among ASes even
though the contracts are made among ISPs. Due to these
reasons, in our simulation analysis, we used ASNs instead
of an ISP or the whole organization.

ASNs Analyzed: To check the performance of our proposed
methods, we mainly focused on two sets of ASNs. The first
set focuses on the ASNs that are mostly active in the US,
and majority of their PoPs are inside the mainland US. In the
second set, the ASNs are filtered from the global list of ASNs
such that each ASN has a similar number of peering to non-
peering relationship information in CAIDA. In other words,
the second set focuses on maintaining a balanced peering
relationship data. To give numerical values, there are 1,324
ASN pairs in the first set of ASNs and 1,528 ASN pairs in the
second set of ASNs. In the first set, 1,196 out of 1,324 pairs
have a peering relationship and the rest have a non-peering
relationship. Hence, the peering to non-peering data is heavily
imbalanced with a ratio of 90 : 10. Overall, the reasons behind
this imbalanced data are: i) the original dataset from CAIDA is
also imbalanced (with a 70% of peeering data to 30% of non-
peering data), and ii) the peering information in CAIDA on the
large ASNs active in the US are heavily biased as well (with
much more data on peering ISP pairs). On the other hand, the
second set of ASNs has a much better data balance. 709 out
of 1,528 pairs of the second set have peering relationship and
the rest of the pairs have non-peering relationship, i.e., a ratio
of 47 : 53.

Ground Truth: To evaluate the performance of our method
in predicting peering partners and locations, we took aid
from the CAIDA and PeeringDB data. CAIDA maintains a

dataset of ASN peering relationships [68], where it stores
peering relationships between different ASN pairs. CAIDA
uses its methodology, focused on how traffic flows through
the network, to identify peering ASNs, and may not be 100%
accurate. However, without any alternate source, we assume
this to be the ground truth. Our idea is to check if our
methodologies, which only use publicly available data, can
predict these relationships. On the other hand, to get the
ground truth on the peering locations for any ASN pair, we
assumed that if CAIDA says that two ASNs are peering, and
if those two ASNs are present at some location (in a facility or
an IXP), we assumed that location to be a peering location for
that ISP pair, and denote that as the original peering location.

B. Evaluation Procedure

1) Heuristic Method: To evaluate the performance of GEO-
PP using the Heuristic method, we use Eqs. 15 and 16 to find
the felicity scores for individual ASN pairs. When calculating
these scores we use Grid Search [69] to get the best values
for different parameters (i.e., �, �, and �) and threshold, ⌧ ,
that gives the highest accuracy with respect to the ground
truth obtained from CAIDA. Similarly, for RCA-PP, we follow
a similar approach with Eq. 27 and optimize the parameters
to attain the best accuracy. On the other hand, the predicted
peering locations are given directly by the contract i 2 APC
that has the highest felicity score (Fig. 13).

2) Computational Complexity: The computational com-
plexity of GEO-PP is primarily dependent on obtaining the
optimal APC list, APC

⇤, i.e., peering willingness, as the
stability components, affinity and similarity, remain constant
for all individual APCs. The main computational steps for
determining willingness consist of 1) estimating the TM of
both requester (R) and candidate (C) ISPs, 2) calculating the
individual and combined willingness scores and 3) sorting
them based on that. The cost related to the computation of
TM will be dependent on the number of PoPs of both R
and C (let, denoted as NR

PoP
and NC

PoP
respectively) and the

complexity can be expressed as O(NR

PoP
NC

PoP
). For an APC

list with length z, the complexity of obtaining the individual
and combined willingness scores is O(z) and the complexity
of sorting the list according to the scores is O(z log z). Now
according to the discussion in Section III, the maximum value
of z is, z = 2r � 1, where, r is the number of common PoPs
between the ISPs. So, the worst case complexity of GEO-PP is
O(NR

PoP
NC

PoP
+(2r�1) log(2r�1)) ⌘ O(NR

PoP
NC

PoP
+r2r).

This will be heavily influenced by the value of r. For a lower
number of common PoPs, the first term, NR

PoP
NC

PoP
, will play

the determining role, whereas for a higher number of common
PoPs, the second term, r2r, will be the defining factor for the
complexity.

RCA-PP uses a different traffic matrix compared to GEO-
PP, and the complexity of that calculation is O(NR

Rtr
⇤NC

Rtr
).

On the other hand, the calculation of willingness and stability
is done for each contract i 2 APC. For APC i, the internal
routing cost is calculated in two different ways: 1) when both
ASNs are selfish and try to minimize their internal traffic
routing, and ii) when ASNs cooperate to minimize the total
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Heuristic 
Algorithm
(GEO-PP or 

RCA-PP) Grid Search 
(to optimize constants)

Felicity Score 
Calculator

ML Algorithm 
(RF, DT)

Willingness Scores, 
Stability Scores, 
Affinity Score, (for GEO-PP)
Similarity Score, (for GEO-PP)

Heuristic Outputs

Step 1 - Initial Prediction: 

Step 2 - Final Prediction:
Should R and C peer?

Ground truth 
from CAIDA

PoP info
Population data
Traffic matrix
Tolerance (for GEO-PP)
Sorting Criteria (for GEO-PP)

Input (for Heuristic)

Fig. 13: Evaluation workflow of GEO-PP and RCA-PP.

routing cost, i.e., minimize the system cost. Hence, if the
peering contract i has NPoP (i) number of PoP location, then
RCA-PP needs to make 2⇥NR

Rtr
⇥NC

Rtr
⇥NPoP (i) decision

making. Thus for a total of |APC| = z number of contracts,
the computational complexity is 2⇥NR⇥NC ⇥NPoP (i)⇥z.
So overall the computational complexity for the RCA-PP
method is O

⇣
NR

Rtr
NC

Rtr
+NR

Rtr
NC

Rtr
NPoP (i)z

⌘
, and that can

be upper bounded by the value of O

⇣
NR

Rtr
NC

Rtr

�
1 + r(2r �

1)
�⌘

⌘ O

⇣
NR

Rtr
NC

Rtr
r2r
⌘

.
3) Machine Learning: The felicity score calculations for

both GEO-PP and RCA-PP were done by a geometric mean
function on willingness and stability metrics. To check if we
can improve the peering partner prediction accuracy, we use
machine learning method on top of our willingness and stabil-
ity metric as an alternate solution to the felicity function. For
this prediction method, the willingness and stability metrics
are used as the input for the machine learning (ML) model
(i.e., Random Forest) to perform peering partner prediction as
a binary classification (Fig. 13).

C. Analysis of GEO-PP and RCA-PP metrics
1) GEO-PP: A higher felicity score in GEO-PP indicates a

better matching between the ASNs. This can be easily under-
stood by looking into the constituent components that make
up the felicity score: the willingness, affinity, and similarity
scores. A higher felicity score indicates 1) a selection of APCs
that offer more beneficial traffic exchange agreements and
alignment of routing policies, i.e., higher willingness scores,
2) a more significant increase of the total coverage area, i.e.,
higher affinity scores, and/or 3) a higher similarity (in terms
of IP address and PoP counts) between the ASNs. Thus, ISPs
will prefer peering agreements that offer better felicity scores
due to the increase in the (inherent) utility associated with it.
So, by setting a threshold on the felicity score, we can get a
rough estimation of whether two potential ISP pair will peer
or not (peer if the felicity score is higher than the threshold).

To check the individual relationship of the willingness
(WR,C =

P
i2APC⇤ W

R,C
i

|APC| ) and stability metrics (↵R,C and
⇠R,C) to the felicity score, we plot them against each other
using a threshold value of, ⌧ = 0.1 and obtain trend lines
for each case as depicted in Fig. 14. The trend-lines exhibit
similar characteristics in both datasets, so we only report the
results for the balanced dataset here. Both willingness and
stability show positive trends with respect to the felicity score,
with the stability metrics showing a stronger trend. This can
be attributed to the much narrower spread of the willingness

score, as for majority of the pairs, the peering willingness
was between 0.5 (50%) to 0.7 (70%). This also indicates that,
without considering the peering stability, most of the ISP pairs
would prefer to peer than not. As for the peering stability, the
combined affinity and similarity scores showed stronger trends
compared to only using affinity. This makes sense as discussed
earlier in V-A1 that the affinity score is relative to the size of
the ISPs and an equal amount of increase in coverage does
not necessarily indicate an equal increase of affinity scores
i.e. peering stability.

The relation of the similarity metrics to the felicity score
is illustrated in Fig. 15. All three of them show positive
trends with ⇠R,C

add
and ⇠R,C

pre
exhibiting stronger relations. This

indicates that the more similar the ASNs are in these two
aspects, the higher the felicity score (more likely the ISPs are
to peer). As for ⇠pop, it shows a marginal positive trend. This
can be attributed to the fact that the datasets appear to be
heavily skewed in terms of the number of PoPs belonging to
the ASNs, meaning most of them are similar in terms of PoP
count, which explains why there was not much of a positive
trend, and using a more diverse dataset in terms of PoP count
should alleviate this issue.

2) RCA-PP: The calculation of willingness and stability
for this method is computationally very expensive when done
with higher granularity. We used the methodology described in
Section V-B and V-D to calculate the WR,C

i
and SR,C

i
for all

contracts i 2 APC for 73 ISP pairs using a gridded map of the
US. In the simulation, instead of using all possible contracts
(APC), we used a greedy method to reduce the number of
contracts. The greedy algorithm used is an iterative algorithm
that finds the best PoP location given a set of PoP locations
already chosen, and adds the new PoP location to the previous
set of PoPs. We specifically considered three different types of
ASN pairs, i.e., Access-Access, Access-Content, and Content-
Content.

From Fig. 16, we see that with the increase of peering
points, the peering willingness of Access-Content and Content-
Content type ASN pairs increases rapidly and reaches around
80% and 70% respectively. The results for Access-Access type
ISPs are not provided because it took tremendous computa-
tional power to analyze those with the proposed methodology,
and for the few cases it was analyzed, the pairs showed
very low peering willingness. On the other hand, peering
stability (SR,C

i
) of different types of ASN pairs showed

a gradually decreasing trend with the increase of peering
locations. The main reason behind this was that with more
options to exchange traffic, both ASNs tried to minimize their
own cost, thus decreasing the stability of the relationship.
However, even with the selfish decision-making of the ASNs,
the stability values remained quite high, with an average of
97% for Access-Content pairs and 89% for Content-Content
pairs (Fig. 17). In the figure, the shaded region shows the
standard deviation of the SR,C

i
in the lower limit (since the

average is really close to 100%, the upper limit is not shown
here).

While peering willingness serves as a useful indicator for
assessing mutual incentives for peering, it doesn’t distinguish
between public and private peering. In instances where an ISP
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Fig. 14: Analysis of Peering Willingness and Stability Fig. 15: Analysis of Similarity Metrics

Fig. 16: Peering Willingness (RCA-PP) - multiple peering
points.

Fig. 17: Peering Stability (RCA-PP) - multiple peering points.

pair (R,C) has a similar volume of traffic to exchange, result-
ing in comparable peering (and transit) costs, and WR,C

i
> 1,

they are likely to opt for public peering. Conversely, for highly
asymmetric traffic, typical in Access-Content ISP pairs, if the
peering costs are also highly asymmetric, a high WR,C

i
might

only lead to a preference for private peering, involving some
monetary exchange.

In summary, the Access-Content type ISP pair showed
high peering willingness and stability for a range of peering
location(s), thus making it the ideal pair to have a peering rela-
tionship. Moreover, although the A�A type ISP pair showed
the highest stability for single-point peering, it exhibited low
peering willingness.

D. Comparison of GEO-PP and RCA-PP
1) Peering Prediction Accuracy: The accuracy of our pro-

posed methodologies in predicting whether two ASNs should
peer or not is discussed in this section. Since we have a dataset

Fig. 18: Performance of GEO-PP (with heuristic only, no ML)

that is really imbalanced, all our performance calculation
is done with balanced accuracy instead of just accuracy.
Balanced accuracy is defined as the average of each individual
class’s accuracy, and is a better representation of performance.

GEO-PP: The prediction process in GEO-PP follows Fig.
13 and operates in two main steps, 1) obtaining an initial
prediction through the felicity score, and 2) fine-tuning the
predictions using a simple machine learning approach. For
the felicity calculation, we considered both Eqs. (15) and
(16). To obtain the optimum value of the weights, we used
the grid search method [69], and the resultant values were,
� = 0.36, 0.30, � = 0.16, 0.20, � = 0.48, 0.40 and threshold,
⌧ = 0.2, 0.2 for the US-based and balanced datasets respec-
tively. The results of step 1 are depicted in Fig. 18. The felicity
score with the willingness and affinity score performs well
in predicting peering relations in both the datasets. However,
including the similarity score when calculating the felicity
score showed considerable improvement in the prediction
accuracy of non-peering relations. Overall, the felicity score
using the combined affinity and similarity scores as a stability
metric (Eq. 16) outperforms the other one with a modest
balanced accuracy of 64% and 66% respectively.

The willingness and stability metrics (WR,C =P
i2APC⇤ W

R,C
i

|APC| , ↵R,C , and ⇠R,C), as well as the optimized
felicity score using both affinity and similarity as the stability
metric (Eq. 20), are then fed into a machine learning
(ML) algorithm as training data, for which we consider
two approaches in GEO-PP: Random Forest Classifier and
Decision Tree Classifier. For the willingness score, we use
the average value of the scores in all three sorting criteria
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Fig. 19: Feature Importance: GEO-PP

for each ISP pair, as 1) for 87% of the pairs, the scores
are within 0.1 of each other and 2) RCA-PP does not use
similar sorting criteria. The feature importance of these
parameters is depicted in Fig. 19. The felicity score exhibits
the strongest impact with regards to the final prediction
followed by the similarity metric ⇠R,C

pre
. The similarity metric

⇠R,C

add
, willingness and affinity come after them and show

similar level of impact, particularly in the balanced dataset,
with ⇠R,C

pop
showing the least importance.

The output from step 2 is illustrated in Fig. 20 and 21.
The model performed quite well with the balanced dataset
reaching a peak balanced accuracy of 79.9% and 78.5% with
the two ML approaches (Fig. 21), but struggles with the
US-based dataset, only reaching a modest accuracy of 66%
and 64% respectively (Fig. 20), which is just a marginal
improvement from the heuristic approach of step 1. The reason
behind it can be directly attributed to the skewness of the
US-based data with regards to the CAIDA ground truth. As
mentioned earlier, the US-based data has a 90-10 split in
terms of peering and non-peering ASN pairs, which reflects
why our accuracy is quite average, as class imbalance or bias
in training data can cause the model to produce erroneous
predictions by exhibiting the same bias in the decision-making
process. So although the model can reach accuracies of up
to 98% when predicting peering relations in that dataset,
it fails to replicate that for non-peering relations, dropping
the balanced accuracy. That’s why it has to be noted that,
we can improve the performance of our model in terms of
predicting peering relations in both datasets by lowering the
threshold, ⌧ , to less than the optimal value (0.2) found for the
balanced accuracy, and reaching an accuracy of 90% for both.
However, this will fail to predict majority of the non-peering
relations correctly, lowering the balanced accuracy, which is
why we used balanced accuracy instead of a regular accuracy
calculation.
RCA-PP: RCA-PP mainly generates two metrics by analyzing
the router distribution of the ISP pairs, which are WR,C

i
and

SR,C

i
. Moreover, these two metrics are generated from the

individual peering willingness and stability of each ASN in
the ASN pairs (i.e., WR!C

i
,WC!R

i
, SR!C

i
, and SC!R

i
). To

check if these metrics can be used to predict whether two
ASNs should peer or not, we perform a similar study as was
done for GEO-PP (previous subsection) with more than 3,000
ISP pairs. Due to the requirement of high computational power
to run RCA-PP, we used a modified version of RCA-PP when

generating these metrics. In the modified version, we assumed
that the traffic matrices are only confined to the largest cities
(42 densely populated area) and the PoP locations were also
confined to the largest 148 IXPs in the US. We use the output
of RCA-PP as the input to ML-based Random Forest (RF )
and Decion Tree (DT ) models, and the output of the models
are binary classification indicating if the ASN pair should peer
or not.

The output from the RF and DT models are shown in
Figs. 22 and 23 for the sets of the US-based ISPs and the
balanced dataset respectively. For the US-based dataset (Fig.
22), we see that with less training data, the models were biased
and has very high (or low) accuracy when predicting peering
(or non-peering) relationship. However, with the increment
of training data, the peering prediction accuracy decreased
slowly while the non-peering prediction accuracy improved
faster, thus helping the overall balanced accuracy to go up.
Overall, on average, the balanced accuracy improved with
training data; however, the highlighted area (in orange), which
portrays the error interval, started to expand when training data
increases to more than 50%. From this observation, it is likely
that having training data of around 50% may be the optimum
choice to train the ML models. Fig. 23 shows the same set
of results for the balanced ISP dataset. Overall, the prediction
performance (balanced accuracy) shows a similar trend to that
we had for the US-based ISPs set. However, there are two main
differences; firstly, the accuracy is modestly high with low
training data, and with the increase of training data, the models
do not gain much leverage, and the final accuracy becomes
around 66% with 90% training data. Secondly, both class
accuracies overall showed a steady or increasing accuracy
value, whereas, for the US-based ISPs, the peering relations
accuracy decreased (green star) to compensate for the increase
in accuracy for the non-peering relationship (blue square). For
this set, similar to the US-based ISP set, 50% training data
seems to have better error intervals while ensuring close to
the best average accuracy achievable.

Since RCA-PP focuses on the internal routing cost, and
although it is good for understanding the trends in different
types of ISP pairs’ peering relationships, it could not perform
well in predicting when two ISPs should peer. This observation
also tells us that when deciding if two ASNs should peer, they
focus on more than just the internal routing costs. To find
the importance of the WR,C

i
and SR,C

i
on decision-making,

we looked into the feature importance of these two metrics.
Fig. 24 shows the feature importance of all the metrics when
computed individually from one ASN’s perspective and when
the metrics are calculated pairwise. From the figure, it is
evident that SR,C

i
does not have much effect on the peering

decision making of two ASNs. On the other hand, WR,C

i

has significant importance on the peering relationship of two
ASNs.

Overall Comparison: To test the effectiveness of the pro-
posed framework (both heuristic and ML), we compare our
algorithms with other state-of-the-art approaches from the
literature. To the best of our knowledge, there is no other prior
approach that aims to automate the peering decision process.
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Fig. 20: Performance of GEO-PP (US-based ISPs). Fig. 21: Performance of GEO-PP (Balanced Dataset).

Fig. 22: Performance of RCA-PP (US based ISPs). Fig. 23: Performance of RCA-PP (balanced dataset).

Therefore, we develop a baseline method to determine if two
ISPs will peer using only the similarity metric. It is based
on the idea that ISPs of similar sizes are more likely to peer
than those with size discrepancies. This holds true in real-life
examples as Tier 1 ISPs have always peered with each other
in a settlement-free manner, while being much more selective
when peering with providers of lower tiers, with a similar
trend followed by Tier 2 and 3 ISPs [5]. The reasoning here
is that ISPs will get into peering agreements only if it allows
a roughly equal exchange of benefits, which is possible when
they have similar levels of networking infrastructure (i.e. size)
[70]. To quantify this concept, we take the weighted geometric
mean of all three similarity score parameters and compare it
with a threshold to identify whether or not the ISPs will peer.
Similar to our heuristics, we use the grid search method to
determine the values of the weights and threshold that will
yield the highest accuracy. For the ML approach, we compare
our models with the work in [71] which uses all available
data parameters from PeeringDB to formulate 18 different
features and predict peering relations through the Random
Forest algorithm.

The results are shown in Fig. 25. In case of the heuris-
tic approaches, GEO-PP outperforms both RCA-PP and the
similarity baseline with balanced accuracies of 66% and 64%
in the US-based and balanced dataset respectively, using the
felicity scores given by Eq. 16 (compared to 53% and 53.5%
for RCA-PP, 62% and 60% for similarity baseline). When
using the ML-based approach, both our algorithms perform
much better with accuracies of 66% and 80% for GEO-PP
and 66% and 67% for RCA-PP in US-based and balanced
datasets respectively. So GEO-PP outperforms RCA-PP in all
cases. This can be attributed to two factors. Firstly, there is no

Fig. 24: Feature Importance - RCA-PP

Fig. 25: Overall Performance Comparison of GEO-PP (with
Heuristic and Machine Learning)

metric in RCA-PP that represents the similarity between two
ASNs. From our observation of the feature importance, it is
evident that the similarity between ISPs (in size, geographical
coverage, or IP address) and possible extension of the service
area (affinity score) are crucial for any ISP pair when deciding
to pair up for peering. Secondly, the WR,C

i
and SR,C

i
metrics
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are calculated with the modified RCA-PP method to reduce
computational complexity, which may have hindered the actual
potential of the RCA-PP method. As for their comparison with
the state-of-the-approach in [71], GEO-PP outperforms it in
the balanced dataset but lags behind in the US-based case.
This can be attributed to the following: 1) ISPs usually require
potential partners to peer at a minimum number of locations
from a predefined list of IXPs, and 2) the requirement is
more prevalent in ISPs operating in the US compared to those
with global scope [70]. This data is not publicly available for
vast majority of providers so we could not include it in our
methodologies. PeeringDB includes a naive representation of
this requirement through a binary parameter without listing the
actual values which is considered as a feature in [71]. So due
to a combination of this, GEO-PP loses out in the US-based
dataset but outperforms the state-of-the-art on the balanced
dataset. The reason we did not include that specific parameter
from PeeringDB in our model is that as it is a naive binary
implementation (only specifies if a particular ISP requires
multiple locations to peer, without disclosing the actual value),
it would not generalize well as evident by the reduction in
accuracy of [71] when moving from the biased US-based
dataset to the neutral balanced dataset. Another contributing
factor to that is the number of features in [71] is 18 compared
to 6 and 4 for GEO-PP and RCA-PP respectively, reducing
the likelihood of over-fitting in the proposed approaches.
This indicates that our model is more robust in situations
where there is a balance between the peering and non-peering
relations in the training data. Additionally, the approach in [71]
cannot predict peering locations that both of our algorithms
can, which is another advantage of our framework.

2) Internal Routing Cost: We calculated the internal routing
costs using the PoP locations suggested by our proposed meth-
ods and the original PoP locations (extracted from PeeringDB
using the method discussed in Section VI-A). Fig. 26 shows
the predicted and the original PoP locations for the ASN-
11686 and ASN-21928 pair (as an example). In the figure,
the stars (in black line) point to the original PoP locations of
this ASN pair (In total 9 locations). The green squares and red
circles depict the predicted PoP locations using GEO-PP and
RCA-PP respectively. GEO-PP predicts PoP locations from
the locations where the ASN pairs are already peering; thus,
the prediction is always a smaller subset of the original PoP
locations (as can be seen in the figure). On contrary, RCA-
PP can suggest peering locations outside the original PoP
locations if there are locations that have routers from both
ASNs. However, RCA-PP can only suggest up to four peering
locations (an upper bound set by us to control computational
complexity). The main takeaway from the above discussion
is that in most cases, both our methods only suggest a few
locations for peering, whereas, in actuality there could be
many common PoP locations for the respective ISP pair.

Fig. 27 shows the cost comparison analysis for the proposed
methods. The figure is a histogram where the (total internal
routing) costs for each ASN pairs for the two methods are
normalized by dividing their respective values by the original
internal routing cost (using the original PoP locations) calcu-
lated by the method discussed in Section V. From the figure,

Fig. 26: Predicted PoPs (Green: GEO-PP, Red: RCA-PP) with
inferred PoPs from PeeringDB (Black)

Fig. 27: Cost Comparison of our methods with original

it is evident that the proposed methods with their proposed
PoP locations have internal routing costs less than or equal
to the original cost calculated with the original PoP locations
for the majority of the cases. Moreover, we see that almost
always the internal routing cost of RCA-PP is smaller than
the original cost, suggesting the achievement of the objective
of the method, which is minimizing the cost. Furthermore,
although GEO-PP has some occurrences that have cost greater
than the original, that cost is still within (20%) of the original
cost (having a bar in the range 1-1.2).

The comparison between the original (ground truth) and the
predicted PoP locations is done in terms of their total number,
and is shown in Fig. 28. Similar to Fig. 27, the total number
of predicted PoP locations is divided by the original number
of PoP locations to achieve a normalized PoP value. Hence,
having a value less than or equal to one means the predicted
number of PoPs is less than or equal to the original number
of PoPs. From the figure, we see that GEO-PP almost always
predicts PoP locations less than the number of original PoP(s),
whereas RCA-PP in 20% cases (Fig. 28) predicts more PoPs
than the original. This increased number of PoP prediction is
because RCA-PP has the freedom to choose locations where
just the routers of the ASN are present. Also, this increased
PoP locations helped RCA-PP to decrease the internal routing
cost, which we observed in Fig. 27.

VII. SUMMARY AND CONCLUSION

We introduced “meta-peering” as a combined effort towards
automating the entire peering process among ISPs. As part
of the automation process, we focused on the peer selection
technique and formulated the peer selection sub-process as an
optimization problem. Using PeeringDB and CAIDA datasets,
we estimated the traffic matrix of an ISP, identified its PoPs,
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Fig. 28: Comparison of (Suggested Peering Points to Original
PoP(s) - our methods to original

and then described a framework to suggest the best candidates
for a requester ISP along with its best peering locations. We
introduced the concept of felicity score to represent the interest
of peering between an ISP pair. We found that ISPs mostly
(more than half of them) prefer to offload as much traffic
as they can, and similarity between two ISPs play a major
role in the decision making of peering partner(s). Our felicity
score calculations warrant further investigation and feedback
from the ISP community to establish more precise and stable
metric sets for peer selection. Moreover, we provide a web-
service with basic features for test purpose.

We have proposed two meta-peering methods, namely GEO-
PP and RCA-PP to select the peering partner and peering
point(s). When making a peering decision, i.e., whether two
ISPs should peer, GEO-PP focuses more on the geographi-
cal overlap (quantifying the business competition) and size
similarity between the two ISPs. On the other hand, RCA-PP
focuses on the internal routing cost from the perspective of
the ISPs. Our study confirmed that the similarity between two
ISPs is crucial when deciding peering partner. The willingness
factors calculated by both methods showed promising signif-
icance, followed by the geographical overlap between ISPs.
However, the stability metric proposed by RCA-PP, which
focuses on the deviation of cost from the minimum cost attain-
able by the ISP pairs, did not have much significance in peer
selection decisions. The peering partner prediction accuracy
of both methods improved when the willingness and stability
metrics (calculated by the proposed methods) were used as an
input to an ML algorithm, and the output of the ML algorithm
was to predict if the ISP pair should peer or not. Overall, GEO-
PP and RCA-PP predicted approximately 74% and 67% of the
peering relationships (from CAIDA’s determination) correctly
(considering both datasets) when aided by ML. Our analysis
also showed that both the proposed methods are very good
at predicting peering locations. In most cases, the predicted
PoP locations resulted in a decrease in internal routing cost
while ensuring the total number of predicted PoP count is not
greater than the actual PoP count found from PeeringDB.

Our work can be extended on two primary directives. The
first directive involves the amalgamation of the proposed
heuristic methodologies to check whether this integration en-
hances overall performance. Additionally, further exploration
of various peering metrics outlined in Section III-A and their

incorporation into our proposed heuristics is possible. Lastly,
the results of the RCA-PP were obtained from a modified
version of RCA-PP (due to computational complexity), and
further experiments can be done on that to check its actual
performance. The second directive centers on developing data-
driven peering models. This choice is motivated by two princi-
pal factors: 1) the abundant availability of publicly accessible
data on ISPs, and 2) some preliminary work has shown
promising results [71]. Hence, ML-based models where the
input encompasses either complete or partial data on ISPs,
and the output is peer selection, could be a plausible objective
using the extensive measurement datasets.
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“A practical approach to assignment-free Dynamic Origin–Destination
Matrix Estimation problem,” Transportation Research Part C: Emerging
Technologies, vol. 134, p. 103477, 2022.

[55] K. Swetha, U. Prabu, G. Angel, and Y. Lahari, “Traffic Matrix Estimation
Techniques-A Survey on Current Practices,” in 2023 International Con-
ference on Sustainable Computing and Data Communication Systems
(ICSCDS). IEEE, 2023, pp. 661–668.

[56] P. Tune, M. Roughan, and C. Wiren, “Hierarchical Traffic Matrices:
Axiomatic Foundations to Practical Traffic Matrix Synthesis,” in 2018
Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC). IEEE, 2018, pp. 1591–1600.

[57] H. Zhou, L. Tan, F. Ge, and S. Chan, “Traffic matrix estimation:
Advanced-Tomogravity method based on a precise gravity model,”
International Journal of Communication Systems, vol. 28, no. 10, pp.
1709–1728, 2015.

[58] “Internet usage penetration in the United States in November 2021, by
state,” Statista, 2021, Accessed: Sep 10, 2024. [Online]. Available: https:
//www.statista.com/statistics/184691/internet-usage-in-the-us-by-state/

[59] “Cisco Visual Networking Index: Forecast and Trends, 2017–2022
White Paper,” CISCO, Feb. 2019, Accessed: Sep 10, 2024. [Online].



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXX XXXX 21

Available: https://cloud.report/Resources/Whitepapers/eea79d9b-9fe3-
4018-86c6-3d1df813d3b8 white-paper-c11-741490.pdf

[60] N. Feamster, “Revealing utilization at internet interconnection points,”
arXiv:1603.03656, 2016.

[61] BEREC, “Draft berec report on ip-interconnection practices in the
context of net neutrality,” BEREC, Tech. Rep., 2017, Accessed: Sep 10,
2024. [Online]. Available: https://www.berec.europa.eu/sites/default/
files/files/document register store/2012/12/BoR %2812%29 130 IP
IC Assessment NN Report publication2.pdf

[62] PeeringDB, “PeeringDB Website,” Accessed: Sep 10, 2024. [Online].
Available: https://www.peeringdb.com

[63] V. Kshirsagar, “Flood Fill Algorithm Explained (with C++ & Python
code),” 2023. [Online]. Available: https://favtutor.com/blogs/flood-fill-
algorithm/

[64] C. for International Earth Science Information Network CIESIN
Columbia University, “Gridded Population of the World, Version 4
(GPWv4): Population Count, Revision 11,” NASA Socioeconomic Data
and Applications Center (SEDAC), 2018, Accessed: Sep 10, 2024.
[Online]. Available: https://doi.org/10.7927/H4JW8BX5

[65] H. Tangmunarunkit, R. Govindan, S. Shenker, and D. Estrin, “The
Impact of Routing Policy on Internet Paths,” in Proceedings IEEE
INFOCOM 2001. Conference on Computer Communications. Twentieth
Annual Joint Conference of the IEEE Computer and Communications
Society (Cat. No. 01CH37213), vol. 2. IEEE, 2001, pp. 736–742.

[66] L. Gao and F. Wang, “The Extent of AS path Inflation by Routing
Policies,” in Global Telecommunications Conference, 2002. GLOBE-
COM’02. IEEE, vol. 3. IEEE, 2002, pp. 2180–2184.

[67] CAIDA, “CAIDA Data,” Accessed: Sep 10, 2024. [Online]. Available:
http://caida.org/data

[68] “The CAIDA AS Relationships Dataset,” June 2024, https://
www.caida.org/catalog/datasets/as-relationships/.

[69] P. Liashchynskyi and P. Liashchynskyi, “Grid Search, Random Search,
Genetic Algorithm: A Big Comparison for NAS,” arXiv preprint
arXiv:1912.06059, 2019.

[70] A. Nikkhah and S. Jordan, “Analysis of the Requirements of Settlement-
Free Interconnection Policies,” IEEE Transactions on Network and
Service Management, vol. 20, no. 4, pp. 4028–4046, 2023.

[71] S. Mustafa, P. K. Dey, and M. Yuksel, “Peer Me Maybe?: A Data-Centric
Approach to ISP Peer Selection,” in NOMS 2022-2022 IEEE/IFIP
Network Operations and Management Symposium. IEEE, 2022, pp.
1–9.

Md Ibrahim Ibne Alam received his B.Sc. and
M.Sc. degree in Electrical and Electronics Engineer-
ing from Bangladesh University of Engineering &
Technology (BUET), Dhaka, Bangladesh in 2014
and 2017 respectively. He is currently pursuing his
Ph.D. degree in Electrical Engineering at Rensselaer
Polytechnic Institute. His research interests include
Game theory in networked systems, peering process
between ISPs, pricing policy at IXPs, optimization
of MAC protocol, and Machine Learning with a
focus on Federated Learning and NLP.

Anindo Mahmood is a Ph.D. student at the Depart-
ment of ECE in the University of Central Florida. He
received his M.S. degree in Electrical Engineering
from the University of Texas Rio Grande Valley
in 2022. His research interests include peering in
computer networks, machine learning techniques for
wireless communication and spectrum sharing.

Prasun Kanti Dey received his B.Sc. degree in
Computer Science and Engineering (CSE) from
Bangladesh University of Engineering and Technol-
ogy, Bangladesh. He received his M.Sc. in CSE from
University of Nevada- Reno, Reno, NV in 2016
and Ph.D. in Computer Engineering from University
of Central Florida in 2019. He is currently with
MathWorks Inc. as a Senior Software Engineer.
His research interests include network management
and security, SDN and distributed systems, network
measurement and performance analysis, and network

economics. He is a member of both ACM and IEEE.

Murat Yuksel is a Professor at the ECE Department
of the University of Central Florida (UCF), Orlando,
FL, and a Visiting Scientist at MIT Lincoln Labs.
He served as the Interim Chair of ECE at UCF from
2021 to 2022. Prior to UCF, he was a faculty member
at the CSE Department of the University of Nevada,
Reno, NV. He received his B.S. degree in computer
engineering from Ege University, Izmir, Turkey in
1996, and M.S. and Ph.D. degrees in computer
science from Rensselaer Polytechnic Institute, Troy,
NY, in 1999 and 2002, respectively. His research

interests are in the areas of networked, wireless, and computer systems with
a recent focus on wireless systems, optical wireless, spectrum sharing, network
economics, network architectures, and network management. He has been on
the editorial boards of Computer Networks, IEEE Transactions on Commu-
nications, IEEE Transactions on Machine Learning in Communications and
Networking, and IEEE Networking Letters. He has published more than 200
papers at peer-reviewed journals and conferences, and is a co-recipient of five
Best Paper, one Best Paper Runner-up, and one Best Demo Awards. He is a
senior member of IEEE and ACM.

Koushik Kar received his Ph.D. in electrical and
computer engineering from the University of Mary-
land at College Park in 2002 and has been a faculty
member at Rensselaer Polytechnic Institute since
then. He has held short-term visiting researcher ap-
pointments at Bell Laboratories and IBM Research.
His primary research expertise is in developing and
analyzing low-complexity and decentralized opti-
mization algorithms for communication networks
and other networked systems. Dr. Kar received the
CAREER Award from the National Science Foun-

dation in 2005, and won multiple best paper awards. He has served on the
editorial board of journals such as IEEE/ACM Transactions on Networking
and IEEE Transactions on Mobile Computing, and has been a Technical
Program Committee Co-Chair for international conferences such as ACM
MOBIHOC 2016 and IEEE LANMAN 2020.


