
Sensing Together: Cooperative Task Adaptation and
Scheduling for IoT-Nets using Renewable Energy

Elizabeth Liri∗‡, K. K. Ramakrishnan∗, Koushik Kar†, and Flavio Esposito‡
∗Dept. of Computer Science and Engineering, University of California Riverside, Riverside, CA, USA
†Electrical, Computer, and Systems Engineering Dept., Rensselaer Polytechnic Institute, Troy, NY, USA

‡Computer Science Dept., Saint Louis University, St. Louis, MO, USA

Abstract—IoT devices used in various applications, such as
monitoring agricultural soil moisture, or urban air quality as-
sessment, are typically battery-operated and energy-constrained.
We develop a lightweight and distributed cooperative sensing
scheme that provides energy-efficient sensing of an area by
reducing spatio-temporal overlaps in the coverage using a multi-
sensor IoT network. Our “Sensing Together” solution includes
two algorithms: Distributed Task Adaptation (DTA) and Dis-
tributed Block Scheduler (DBS), which coordinate the sensing
operations of the IoT network through information shared using
a distributed “token passing” protocol. DTA adapts the sensing
rates from their “raw” values (optimized for each IoT device
independently) to minimize spatial redundancy in coverage, while
ensuring that a desired coverage threshold is met at all points
in the covered area. DBS then schedules task execution times
across all IoT devices in a distributed manner to minimize
temporal overlap. On-device evaluation shows a small token
size and execution times of less than 0.6s on average while
simulations show average energy savings of 5% per IoT device
under various weather conditions. Moreover, when devices had
more significant coverage overlaps, energy savings exceeded 30%
thanks to cooperative sensing. In simulations of larger networks,
energy savings range on average between 3.34% and 38.53%,
depending on weather conditions. Our solutions consistently
demonstrate near-optimal performance under various scenarios,
showcasing their capability to efficiently reduce temporal overlap
during sensing task scheduling.

Index Terms—multi-sensor IoT; distributed scheduler; energy
efficiency; task adaptation; cooperative sensing; comb placement
problem

I. INTRODUCTION

IoT devices are used in various application areas, such as
agriculture and urban monitoring. They are typically resource-
constrained with limited battery, memory, and computation.
One technique for energy management includes using renew-
able energy sources like solar combined with solar prediction
mechanisms to maximize device lifetime. Micro-local condi-
tions at each device like shade/foliage affect its received solar
energy, limiting the accuracy and effectiveness of a central-
ized energy management solution. Therefore, decentralized,
lightweight IoT energy management solutions that are adaptive
to local device conditions are highly desirable

Multi-sensor IoT devices can monitor different phenomena,
e.g., in agriculture, IoT devices may have temperature sensors
and cameras, but this means more energy used per IoT device.

We thank the US NSF for their generous support through grants CNS-
1818971 and CPS 2133407.

However, if multiple IoT devices cover the same geographical
area, cooperative sensing ensures more energy-efficient op-
erations. Cooperative sensing allows multiple IoT devices to
coordinate their sensing operations, reducing the duplication
of sensing tasks and temporal overlap between neighboring
devices. While comprehensive coverage depends on the num-
ber of sensors, energy efficiency remains paramount. Saving
energy reduces operational costs and environmental impact,
while enhancing the system longevity and reliability. Inter-
device communication costs are high, so distributed and coop-
erative sensing solutions should minimize this cost in addition
to being adaptive and independent of deployment patterns.

There are a number of examples of IoT energy management
solutions that include renewable energy, such as Signpost [1],
FarmBeats [2], and SEMA [3]. However, these do not leverage
cooperation between IoT devices to use energy judiciously
and perform sensing without duplication. Cooperative sens-
ing is a scheduling problem, and has also been used for
energy management by avoiding duplication of sensing. For
example, [4] uses a partially observable Markov decision
process for target tracking, [5] uses cooperative monitoring
with mobile applications and [6] uses a frequency scaling
power minimization approach for scheduling. However, these
solutions are complex [4], aimed at less constrained devices
and do not account for limited renewable energy sources [5],
or require additional hardware [6]. Our distributed solution
is simple to implement and is designed to operate efficiently
on energy-constrained IoT devices by minimizing inter-device
communication.

Our goal is to provide an on-device energy management
solution that addresses the constraints of limited renewable
energy sources and achieves energy savings from cooperative
sensing between multiple IoT devices. Our distributed solution
eliminates the need for a centralized controller to schedule
each IoT device and we aim to optimize energy utilization
while maximizing sensing efficacy.

Our ”Sensing Together” solution presented here needs initial
sensing rates for each sensor at each IoT device. These can
be provided and optimized at each IoT device by existing
solutions such as SEMA-A [3]. Through distributed coor-
dination, our Sensing Together cooperative sensing solution
saves energy by adapting the sensing rates to reduce spatial
and temporal overlap using two algorithms: Distributed Task
Adaptation (DTA) and Distributed Block Scheduler (DBS).



DTA adapts the sensing rates of each sensor in an IoT device
to minimize redundancy in spatial coverage, subject to meeting
a minimum coverage threshold at all points in the monitored
area. Adaptation is done through distributed coordination using
a distributed token passing protocol run over a Distributed
Hash Table (DHT) structure, using two traversals in opposite
directions (forward and reverse) to balance energy used in all
devices. We theoretically show that DTA meets the coverage
threshold at all points, as long as the IoT devices in the
network have enough energy to achieve it.

DBS minimizes temporal overlap by moving the sensing
patterns around in time. We reduce the sensing task scheduling
question to a novel block scheduling problem and present an
algorithm for minimizing temporal overlap. We theoretically
show that the algorithm finds the optimal solution to the block
scheduling problem in O(∆2) time, where ∆ is related to the
token size. The token size determines the degree of coordi-
nation between devices, and captures the balance of energy
savings versus computation and communication complexity.

Our on-device experiments show execution times of less
than 0.6s per device on average. In small network simulations
using experimentally measured values, DTA achieves energy
savings of 5% per IoT device on average; however, in areas
with more redundancy due to overlapping coverage areas,
energy savings for some devices exceeded 30%. In large
networks, our results show an average energy savings of 3.34%
on cloudy days and up to 38.53% on sunny days. Higher
energy availability on sunny days means more frequent sensing
resulting in higher redundancy across neighboring devices;
DTA reduces this redundant sensing. Furthermore, in various
scenarios, DBS consistently demonstrated performance close
to the optimal solution, showcasing its capability to efficiently
reduce temporal overlap during scheduling.

II. RELATED WORK

Examples of IoT energy management solutions include
SEMA [3], Signpost [1], and FarmBeats [2]. Each solution
incorporates a renewable energy component, IoT device sens-
ing operations, and an energy management system. SEMA [3]
offers an on-device energy management system utilizing an
approximate Model Predictive Control approach to optimize
information utility and sensing operations while minimiz-
ing energy consumption. Signpost [1], designed for urban
monitoring, features a solar prediction component leveraging
historical data, modular sensors, and a sensor virtual battery
management system. FarmBeats [2], aimed at farm monitor-
ing, incorporates a weather-aware solar prediction mechanism
and conserves energy through duty-cycling of base station
components. SEMA’s solar prediction approach considers local
device conditions without relying on weather forecasts like
FarmBeats. Signpost employs a uniform solar prediction for
all devices in a given area. In terms of energy management, the
mechanisms used by SEMA and Signpost operate at the device
level, whereas FarmBeats manages energy at the base station
level. Furthermore, SEMA accounts for the specific energy
needs of individual IoT applications, while Signpost assumes

uniform energy requirements for all applications. However,
none of these solutions utilize cooperative sensing to harness
information from neighboring devices, a fundamental feature
of the solution we present here.

The solutions in [7]–[10] use a task scheduling approach
to manage energy at the IoT device. Authors in [7] use a
dynamic programming approach for scheduling. [10] uses
a Mixed Integer Linear Programming (MILP) formulation to
define the sensing problem. Jarvsis [9] uses a hierarchy of
control tasks operating in the Cloud/Fog. LSA [8] determines
whether all task deadlines can be met before scheduling.The
solution in [10] runs on a centralized node and not on the
IoT device, and both [10] and [7] are complex solutions. The
communication cost in [9] can be significant, and individual
IoT devices cannot be scheduled independently. Moreover,
none of these solutions take advantage of cooperative sensing.
Our algorithms are designed to be simpler, employ tokens for
inter-device communication, and reduce communication costs
by sharing minimal information between neighbors.

Cooperative sensing solutions for energy management have
been proposed in [4]–[6], [11]–[13], and a comprehensive
survey on cooperative sensing in IoT networks is in [14].
For scheduling, [4] used the partially observable Markov
decision process while [11] used a randomized myopic policy,
selecting devices with the highest energy levels to perform
sensing in each time slot. Authors in [6] use a power min-
imization approach where nodes receive task requests with
estimated task execution times and schedule the tasks by
scaling the CPU core’s operating frequency ensuring task
completion within the estimated time. In [12] a near-optimal
transmission scheduling policy to maximize throughput using
cooperative sensing is presented while [5] uses cooperative
monitoring with mobile applications. Our previous work [13]
minimizes overlapping sensing times between IoT devices
by only sharing free time slots. Information is shared using
tokens and devices independently schedule their start times.
[6] requires additional hardware for frequency scaling, [4] is
complex, and [5] targets mobile phones which may not be
as strictly energy-constrained and also have more compute
capability. These limitations hinder the effectiveness of their
solutions on more energy-constrained IoT devices. While [13]
is lightweight and distributed, it ignores potential overlaps in
sensing times later in the sensing period and thus fails to fully
exploit the benefits of cooperative sensing.

The algorithms we develop in this paper are hardware-
independent, less complex, and optimized for efficient op-
eration on energy-constrained IoT devices while accounting
for any available renewable energy. They are lightweight,
distributed, and take full advantage of cooperative sensing by
considering all sensing operations within the sensing period.

III. SYSTEM DESIGN

A task refers to a distinctive sensing modality used by an
IoT device’s sensor e.g., a temperature task for a device with
a temperature sensor. Each task is characterized by a task
parameter such as number of measurements/sensing operations



Fig. 1: Sensing Together: Architecture Overview.

per epoch (15 min period). Task parameters have minimum
and maximum values e.g. the maximum temperature task
parameter value is 15. Existing energy and task management
solutions can determine the maximum task parameter values
possible at each IoT device independently based on its avail-
able device energy. However, geographical and temporal over-
lap can cause redundant data and unnecessary transmissions,
wasting energy at the device. Cooperative monitoring allows
IoT devices to share information and coordinate sensing to
address these challenges. Our goal is to develop a lightweight
and efficient distributed cooperative monitoring solution that
minimizes inter-device communication overhead. We show our
“Sensing Together” solution architecture in Fig. 1. We rely
on any existing solution to provide the initial task parameter
values and have used the SEMA-A algorithm from [3] in
this work. We propose two on-device distributed algorithms
that reduce spatio-temporal overlap in two token rounds using
our token passing protocol: A Distributed Task Adaptation
(DTA) algorithm (§ IV) that adapts the task values based on
neighbors task information and a Distributed Block Scheduler
(DBS) (§ V) that schedules task sensing operations. Next, we
review SEMA-A in [3] (§ III-A), describe the abstractions
forming the basis of our algorithms in § III-B, and discuss the
communication setup in § III-C.

A. Decentralized Task Value Computation and IoT Hardware

There are three main differences in the SEMA-A imple-
mentation used in this work for decentralized task value
computation. First, in [3] image quality was the image task
parameter; however we fixed the image quality, and used
number of images taken per epoch ni (ranging from 1–30).
Second, instead of the night algorithm, we always use the
SEMA-A algorithm for task selection. Third, we only consider
image, temperature, and humidity tasks. The prototype IoT
device used in [3] is based on a Raspberry Pi Zero W,
supports WiFi and has multiple sensors including a camera and
temperature and humidity sensors (see Fig. 1). It is powered
by a Li-ion battery and solar panel.

1) Task Energy and Utility Characterization: The utility
function in SEMA-A is a simple concave utility function of the

form Uk = 1−e−fk/x, where fk is the task parameter for task
k, and x is a task-dependent utility constant.The task energy
models were determined by executing multiple experiments
and fitting a curve. The total energy used per device is the sum
of the base (idle) energy for device operations and additional
energy for each task Ek characterized by its variable task
parameter fk. For the image, temperature, and humidity tasks,
the equation for the additional energy used has the form,
Ek = fk(Ek,base+Eus

k,base), where k = i, t or h for image,
temperature, and humidity; sk,base is the size of the sensor
data uploaded, and Eu (Joules/MB) [15] is the TCP upload
transmission energy per MB. For image Ei,base= 0.80943J,
si,base=3.516MB, (see [3] for more details).

2) Model Predictive Control (MPC) Formulation: [3] uses
a Model Predictive-based approach for IoT energy manage-
ment that caters to local environmental conditions at each IoT
device. The goal is to choose task parameters that maximize
the sensing utility over a time horizon of M epochs (till
06:00am the next day), subject to battery charging charac-
teristics/limits and renewable energy supply predictions. This
is given by the MPC formulation in Eqns. 1-5, where task
k has a sensing optimization variable fk with a minimum
value fk

min, a utility function Uk, and an assigned weight wk.
Emin and Emax are the minimum and maximum battery levels
allowed. R(m) represents the energy pushed into or taken out
of the battery during epoch m and has a maximum value
of Rmax(m) i.e. recharge limit of the battery. Ek(f

k(m))
represents the total energy required by task k in epoch m when
its task value is set to fk. The predicted solar energy available
during epoch m is S(m) (given by the solar prediction
mechanism proposed in [3]), the base energy required by the
device while idle is Ebase and Ŝ = S(m) − Ebase. The
maximum battery voltage is vmax, epoch duration in seconds
is e (we use 15 min epochs from [3]) and the current flowing
into the battery is I . Here, all tasks have equal weight.

max
fk(m)≥fk

min

M∑
m=m0

∑
k∈K

Uk(f
k(m)), (1)

subject to:
E(m) = min [E(m− 1) +R(m), Emax] , ∀m, (2)

R(m) = min

[
Ŝ(m)−

∑
k∈K

Ek(f
k(m)), Rmax(m)

]
,∀m,

(3)
Rmax(m) =

IeE(m)vmax

Emax
, ∀m, (4)

E(m) ≥ Emin, ∀m. (5)
The MPC formulation represents a convex optimization prob-
lem, but without any specific structure that would allow it to be
solved efficiently within the small computing and memory ca-
pabilities of a typical IoT device. However, under a reasonable
approximation that the charging limit Rmax(m) does not vary
appreciably with the battery charge level, an assumption that
is experimentally justified in [3], an algorithm, SEMA-A, that
solves the MPC in low time complexity is proposed. SEMA-A
rewrites Eqns. 1- 5 transforming the optimization problem into
an energy allocation problem (Eqn. 6) and a sensor scheduling
problem (Eqn. 7) where g(m) =

∑
k Ek(f

k(m)).



max
g∈G,g(m)≥gmin

M∑
m=m0

V (g(m)), (6)

where V (g(m)) = max
g(m),fk(m)≥fk,min

∑
k∈K

Uk(f
k(m)). (7)

SEMA-A uses this bi-level decomposition and a novel com-
bination of a recursive dynamic programming-like procedure
and an incremental max-min fair allocation method to solve
the approximate MPC problem in cubic time complexity
(O(M3 + MK2)), where K is the total number of tasks
and M is the total number of epochs. While the details of
the SEMA-A algorithm are not necessary to understand the
contribution of this paper, it is worth noting that SEMA-
A runs independently on each IoT device and provides the
initial task values (which are also the upper bounds). Using
these task values (without adaptation) and scheduling sensing
times without any coordination would result in high spatial
and temporal coverage overlap which we address with our
DTA and DBS algorithms.

B. Spatial and Temporal Coverage Abstraction

Let IoT device i have an ID si and fk
i represent task

k’s value computed by the device independently (using the
SEMA-A algorithm). We adapt the fk

i value cooperatively
through token-based coordination using DTA and then sched-
ule the sensing operations using DBS. Since our cooperative
sensing objective is to minimize the sensing overlap, the spatial
and temporal coverage model has to be chosen accordingly.

Spatial Overlap Abstraction: Geographical coverage over-
lap determines which devices are neighbors and their over-
lapping coverage amount. Two IoT devices are coverage
neighbors (or simply neighbors) if they have non-zero overlap
in their coverage areas. If we discretize the area of interest
into a set of grid points, two IoT devices are neighbors
if their coverage areas share at least one grid point. While
discretization is unnecessary for our framework, we use it for
ease of exposition. Based on task type, coverage area shapes
may differ; e.g., temperature and image tasks have circular and
conical shapes respectively. Devices may thus have different
sets of neighbors per task. The goal of DTA (Section IV) is to
reduce the amount of overlap coverage between all neighbors
that sense the area in an epoch, across all the grid points.

Temporal Overlap Abstraction: If we view sensing (an
instantaneous operation for each task) at an IoT device as
a spike on a timeline, then the scheduling question involves
finding where to place the spikes so the sensing instances per
grid point are spaced out to provide the best temporal coverage
of the grid point. To reduce computation and communication
complexity for coordination, we assume that every epoch the
fk
i spikes at device i are uniformly spaced in time, with an

interval wk
i = e/fk

i between them (e is the epoch duration).
This lets us view the sensing process for a task at an IoT
device as a comb (Fig. 2a). Thus, with multiple IoT devices
(multiple combs) running the same task, scheduling all task
executions to maximize temporal coverage becomes equivalent
to a comb placement problem, where the combs are placed
to maximize the inter-spike gap at each grid point. (see

Fig. 2b). The optimal comb placement problem is still quite

(a) Task executions as a comb (b) Comb placement problem

(c) Comb to brick to block (d) Block overlap

Fig. 2: Task Abstractions

complex to formulate and solve since each comb (device)
has a different number of spikes (determined by DTA) and
therefore different inter-spike times. Towards developing a
low-complexity solution, we “spread out” the spike from one
execution to the next, forming a “brick”. The spreading out
of the spike is reasonable because for example in periodic
sensor measurements, data obtained from one measurement is
considered valid/fresh until the next periodic measurement is
due. Therefore multiple spikes transition into multiple bricks
placed side by side, since the task executions are uniformly
distributed within the epoch. The multiple bricks side by side
can then be represented by a single block characterized by a
device ID si, a start time Sk

i when the first brick starts, an
end time T k

i when the last brick ends, and a block height
1/wk

i where wk
i is the task period representing the number of

seconds between successive task executions (sensing actions).
Tasks with higher number of task executions have shorter inter-
task intervals, and hence higher block height. Fig. 2c shows
this comb-to-brick-to-block task abstraction.

The task scheduling problem is now framed as a block
placement problem where we only consider temporal overlap
with neighboring nodes. Therefore at a given node, our goal is
to place the current node’s block on top of its neighbor’s blocks
to minimize total overlap with the blocks of all its neighbors
aggregated across all commonly covered grid points.

C. Communication Protocol Overview

Our algorithm does not depend on deployment, but requires
devices to communicate with neighbors (i.e., nodes with
overlapping coverage) using the underlying wireless network.

Inter-device communication: We assume the devices com-
municate with their neighbors using a logical, circular Dis-
tributed Hash Tables (DHT) network [16]. Communication
between neighbors in the DHT may be either through an access
point or a relay (if using device-to-device communication).
Therefore, we assume the DHT can be constructed such
that the peering relationship reflects the coverage neighbor
relationship as described in Section III-B. Each IoT device



(a) (b) (c)

Fig. 3: Token 1 (N-S direction)

(a) (b) (c)

Fig. 4: Token 2 Case 1 (S-N direction)

(a) (b) (c)

Fig. 5: Token 2 Case 2 (S-N direction)

knows the address of its next live neighbor and is resilient
to connectivity changes as is typical with DHTs. Connectivity
among neighbors is maintained independently of our sched-
uler. WiFi is used in [3], however, our protocol is independent
of the communication technology. Other technologies like
LoRA, BLE, etc., can be used for extra energy savings.

Token Passing: We use token-passing to share information
between IoT devices and assume that existing token ring
techniques (IEEE 802.5) [17] can address challenges like
handling lost or duplicate tokens and leader election. The
token carries information from upstream nodes (IoT devices
that have already run our algorithms). The upstream nodes’
information carried in the token includes si and task informa-
tion including Sk

i , wi and fk
i . We assume the token is large

enough to carry sufficient geographical neighbor information
for all upstream neighbors of the current device.

IV. TASK ADAPTATION

SEMA-A determines the upper bound task parameter values
for each device. We introduce the term “coverage threshold”
(CT ) representing the minimum number of measurements
(sensor readings) required per grid point, per epoch, and per
task. For instance, a temperature task with CT = 9, requires a
minimum of 9 temperature measurements over each covered
grid point per epoch. The application determines the value
of CT which only applies to grid points covered by the IoT
network. The measurements to achieve CT can be provided
by a single IoT device or multiple devices working together.
This requires coordination between neighboring devices, when
multiple devices cover the same grid points.

The coverage value, denoted by ckg , is the current total
number of measurements for task k in an epoch over grid
point g. It is determined by adding the total number of task
executions (i.e., fk

i values for all i devices) for task k from
all devices covering grid point g in an epoch. For example,
if we have 3 IoT devices (s1, s2, and s3) covering grid point
g = 10 and they have maximum temperature task values 5, 6,
and 2 respectively (where k = t for the temperature task). If
CT = 9 then one solution to meet this threshold is to use task
values 4, 3, and 2 at s1, s2, and s3 respectively. This means
that during an epoch s1 takes 4 measurements, s2 takes 3
measurements and s3 takes 2 measurements resulting in total
grid point coverage of grid point 10, ct10 = 9. The mechanism
by which this is done is discussed later in this section.

If ckg > CT (over coverage), energy is wasted because the
extra measurements are not required. If ckg < CT (under
coverage), the grid point is under-covered and insufficient

sensing information is being provided. Our target is to ensure
that for all covered grid points every epoch ckg = CT (threshold
coverage), which satisfies the coverage requirements without
wasting energy. Using the neighbor’s task information, DTA
adapts the task values at an IoT device to achieve this. Tokens
traverse the network in two rounds and share information
between IoT devices.

A. Forward Traversal of Token (Token 1)

The token travels say in a North-South direction in the
network, as determined by the communication architecture
(Section III-C). Consider an example where the token travels
through devices in ascending ID order. IoT device 5 (s5)
covers grid points 1-4 which are also covered by other IoT
devices 1-4. Figs. 3a-3c illustrate the algorithm’s operation
for task k when the token arrives at s5. DTA extracts the
neighbor’s task k information from the token, saves it, and
determines the current coverage of all its grid points. This
is shown by the blue bars in Fig.3a, with coverage values
ck1 = 7, ck2 = 5, ck3 = 4 and ckg4 = 1 for grid points 1-4.

DTA finds the difference between the coverage values and
CT for each grid point, (shown by the red bars d1 − d4 in
Fig.3b). DTA then finds the mean of the differences, i.e. d =
mean(d1, d2, d3, d4) = mean(2, 4, 5, 8) = 4.75 ≈ 4, and the
updated intermediate task value for s5 f̃k

5 is the minimum
of the upper bound task value fk

5 from SEMA-A and d i.e.
f̃k
5 = min(fk

5 , d). Fig. 3c shows the updated coverage values
with the new f̃k

5 for s5 included. Here we assumed f̃k
5 = d

and therefore the updated coverage values are ck1 = 7 + d =
11, ck2 = 5+d = 9, ck3 = 4+d = 8 and ckg4 = 1+d = 5 for grid
points 1-4 respectively. The token is updated with s5 data and
forwarded to the next node. This distributed approach allows
each device to adapt its values based only on information from
its upstream neighbors.

B. Reverse Traversal of Token (Token 2)

The second token travels in the reverse direction carrying
information from devices that were “downstream” when using
token 1 to nodes that were previously “upstream”. Once the
token arrives at a device, it uses the “upstream” neighbor
information saved when processing token 1, the “downstream”
neighbor information carried in token 2, and its own intermedi-
ate task value f̃k

i to calculate the current grid point coverage.
In our example, information from IoT devices 6, 7, and 8
(which were previously downstream) is now carried to IoT
device s5 which combines this information with the previously



received information from IoT devices 1-4. The device now
has information from all its neighbors.

Case 1: All grid points coverage is greater than CT .
This is an over-coverage case illustrated by the blue bars
in Fig. 4a, which represent the current coverage per grid
point and exceed the coverage threshold CT . Note that these
coverage values are calculated including the intermediate task
value f̃k

5 at s5. DTA finds the excess coverage per grid point
represented by d1 = 4, d2 = 3, d3 = 1 and d4 = 2 and
shown by the green bars in Fig. 4b. DTA then finds the
maximum excess coverage value that can be removed while
ensuring all coverage remains at least CT (d3 in this case).
The final task value is the intermediate value determined in
the forward round minus the maximum excess coverage that
can be deleted i.e.

≈
fk
5 = f̃k

5 − d3, reducing over-coverage.
Fig. 4c shows the final grid point coverage with the updated

≈
fk
5

values. In this case since d3 = 1 the updated coverage values
are ck1 = 13− d3 = 12, ck2 = 12− d3 = 11, ck3 = 10− 1 = 9
and ck4 = 11− d3 = 10 for grid points 1-4 respectively.

Case 2: At least one grid points coverage is less than
CT . This is an under-coverage case shown by the blue bars in
Fig. 5a. DTA finds the under coverage per grid point (d2 = 4,
d3 = 2, and d4 = 6 shown by the red bars in Fig. 5b).
DTA then finds the maximum under-coverage difference (d4
here) and tries to minimize this. Therefore the final task value
is the minimum of the upper bound (from SEMA-A) and
the intermediate task value plus the maximum under-coverage
difference, i.e.

≈
fk
5 = min(fk

5 , f̃
k
5 + d4), which reduces under-

coverage. Assuming the final task value
≈
fk
5 = f̃k

5 + d4 the
updated coverage values are then ck1 = 9 + 6 = 15, ck2 =
5 + 6 = 11, ck3 = 7 + 6 = 13 and ck4 = 3 + 6 = 9 for grid
points 1-4 respectively. Note that although we do have over-
coverage because the final task value

≈
fk
5 affects coverage of

all grid points covered by si, we prioritize ensuring we meet
the coverage threshold over reducing the over-coverage.

C. Analysis

In the token forward traversal, each device only ensures
an average coverage level of CT over all the grid points in
its coverage area; individual grid points can still be short of
the required coverage threshold CT . This deficit is made up
during the token reverse traversal. The following result argues
that, if the network has enough energy, each grid point will
be covered up to CT at the end of the reversal traversal step.

Theorem 1. The desired coverage level (CT ) for task k at
grid point g is satisfied at the end of the reverse traversal of
the token, as long as

∑
i∈Ng

fk
i ≥ CT .

Proof. Let Ng be the nodes in the DHT covering grid point g.
Also, let f̂k

g =
∑

i∈Ng

≈
fk
i be the total coverage of grid point

g for task k at the end of the reverse traversal step. Since each
node i ∈ Ng schedules up to rate fk

i to meet the threshold
CT in the reverse traversal step, the only way the threshold
CT may not be met is if

∑
i∈Ng

fk
i < CT , which contradicts

the assumption. This proves the result.

Theorem 1 is more of a feasibility result showing our solution
attains threshold CT if it is possible to attain it with the
task parameters given by the SA algorithm. One goal of task
adaptation is to avoid coverage redundancy. This depends on
the level of coordination, determined by the number of devices
whose task parameter information is carried by the token,
which we denote by ∆. Extreme values, ∆ = 0 represents
no coordination while ∆ = NDHT (number of DHT devices)
represents full coordination among all the DHT devices. Under
uniformity assumptions on the device deployment pattern and
DHT topology, it can be argued that the amount of redundancy
(over the required CT ) goes down with ∆ as O(1/∆). On the
other hand, the message length grows as O(∆), capturing the
trade-off between efficiency and message complexity.

V. SCHEDULING

Intuitively, the sensing times of neighboring IoT devices
should be staggered as much as possible to minimize the
possibility that those devices are all sensing the same area
simultaneously. For complexity reasons, we use uniformly
distributed sensing times for the K sensors (tasks) at a device
(see Section III-C), with frequency given by SEMA-A and
further adapted by DTA (see Section IV). In the block sensing
model (Section III-B), the only variable to optimize is the start
time of the sensing block subject to fitting the entire block in
an epoch. Here, we describe how to do it optimally (under
the protocol constraints) and in a computationally efficient
manner.

A. Block Scheduling Model

For each IoT device sensing pattern, represented as a block
(Section III-B), our goal is to minimize the temporal coverage
overlaps by multiple sensors covering the same area. Since
the sensors are scheduled sequentially according to their DHT
position, when a sensor is scheduled, our objective is to place
its sensing block to minimize coverage overlap with all prior
sensing blocks whose positions have already been chosen. The
sensor block is scheduled in the DTA reverse traversal step,
once the task value is finalized. Therefore, when the token
reaches device i, it carries information on the starting time
Sk
u and task frequency information

≈
fk
u for ∆ sticks traversed

immediately before stick i in the DHT. Since the sensing
points

≈
fk
i and their inter-sensing interval wk

i are known, the
width and height of the sensing block are known for each task
k. Therefore, only the start time Sk

i (and end-time T k
i ) needs

to be optimized, given the start times of the ∆ devices in the
DHT traversed immediately before device i, to minimize their
spatial overlaps in coverage with i being scheduled. For device
u, let αiu denote its spatial coverage overlap with i.

Let Oiu(S
k
i ) denote the overlap of the two devices when

the start time of task k sensing block for i (currently being
scheduled) is Sk

i (variable), while the position of the sensing
block of u is fixed (pre-determined) (see Fig. 2d). The overlap
is calculated by considering the shaded area formed by over-
laying the sensing blocks of i and u, and counting when they



Algorithm 1 Distributed Block Scheduler Algorithm

Require: token; bi = [si, Si,dline, Ti,dline, fk = 1
wk

i

]

output← []
blocks← createDeltaBlocks(token)
wall← createWall(blocks)
y ← getTransitionPoints(wall)
for j = 0 .. len(y) do
S1 ← y[j];T2 ← y[j];S2 ← T2 − wk

i fk {Place block bi
start and end boundaries at transition point}
for S in [S1, S2] do

if 0 ≤ S ≤ Sdeadline then
bi ← updateStartT ime(S)
overlap← calcOverlap(bi, blocks) {Eqn.9}
output.append([S, overlap])

Sk
i ← getMinOverlap(output)

overlap. The optimization goal is to choose Sk
i that minimizes

overlap with all ∆ devices scheduled prior to i, i.e.,

S∗k
i = argmin

Sk
i

∑
u

αiuOiu(S
k
i ), where (8)

Oiu =

(
1

wk
i

+
1

wk
u

)[
min(T k

i , T
k
u )−max(Sk

i , S
k
u)
]
+
; (9)

T k
i = Sk

i + wk
i ∗ fk

i . (10)
Here, αiu represents the geographical coverage overlap be-
tween devices i and u (0 indicates no overlap at all) and
[z]+ = max(0, z). In general, the function Oiu(S

k
i ) is neither

convex nor concave. This implies that standard convex opti-
mization tools cannot solve this problem. Further, even though
Sk
i is a scalar, it varies over a continuous space, making it a

one-dimensional continuous optimization problem. However,
we can utilize the linearity of the problem to develop an
algorithm that computes the optimum block start time S∗k

i

in (8)-(10) in time complexity O(∆2), described below.

B. Distributed Block Scheduling Algorithm

The DBS algorithm (Algorithm 1) describes scheduling of
a single task, and is run separately for each task at a device.
To explain the operation of DBS, we use the example of
device s5 (i = 5) scheduling task k. Device s5 has four
already scheduled neighbors (s1-s4) with their information in
the token. When device i (5) receives the token, for each task k
it extracts the information (Sk

j , w
k
j ) for each of the ∆ (4 in this

example) device j included in the token. Device i generates
blocks b1 − b4 for the prior ∆ devices (Fig. 6b), with respect
to which it must place its own block (see Fig. 6a) optimally.

The optimal placement of device i’s block can be visualized
as follows. The Block Scheduler arranges the prior ∆ blocks
along a timeline to create a “wall structure” where blocks
with overlapping time spans are placed one on top of another
(see Fig 6c). The figure assumes that the weights αiu are the
same for all prior blocks u, else they would have to be scaled
accordingly. From the figure, it is clear that time points where
the wall height changes (ti, t2, · · · ) – or “transition points”
(Fig 6d) – correspond to the start or end points Sk

u, T
k
u of all

the prior blocks u. Clearly, there are up to 2∆ such transition
points. As the block of device i slides along this time axis,
the total value of the overlap function changes only when
the block’s start time Sk

i or end time T k
i , hits a transition

point. The steps where Sk
5 = t1, S5,dline and T k

5 = t3, t4 are
illustrated in Figs.7a-7d

Theorem 2. There exists an optimum solution S∗k
i such that

either S∗k
i or T ∗k

i is a transition point, i.e., either S∗k
i or T ∗k

i

equals Sk
u or T k

u for some prior block u.

Proof. For the sake of contradiction, assume that all optimum
solutions of (8)-(10) are such that neither S∗k

i nor T ∗k
i are

transition points. Consider any such optimum solution.
Consider any prior block u among the ∆ prior blocks. From

(9), we see that increasing Sk
i “slightly” (from S∗k

i ) would
increase Oiu linearly with slope βiu, where βiu is either 0,
(1/wk

i + 1/wk
u), or −(1/wk

i + 1/wk
u), until either Sk

i or T k
i

reaches a transition point. This continues until this increase
in Sk

i is large enough (say δ+u > 0) for either Sk
i or T k

i

to become a transition point. Since Oiu is linear, decreasing
Sk
i “slightly” (from S∗k

i ) would then naturally increase Oiu

linearly with slope −βiu; this continues until the decrease in
Sk
i is large enough (say δ−u > 0) for either Sk

i or T k
i to become

a transition point. Let β =
∑

u αiuβu.
First consider the case β > 0. In this case, we increase

Sk
i by δ+ = minu δ

+
u , which results in either Sk

i or T k
i

becoming a transition point, while the objective function in (8),∑
u αiuOiu(S

k
i ) strictly increases (from

∑
u αiuOiu(S

∗k
i )).

This contradicts the assumption that S∗k
i is optimal.

For the case β < 0, the argument is similar. In this case,
we decrease Sk

i by δ− = minu δ
−
u , resulting in either Sk

i or
T k
i becoming a transition point, while the objective function in

(8),
∑

u αiuOiu(S
k
i ) strictly increases from

∑
u αiuOiu(S

∗k
i ).

This again contradicts the assumption that S∗k
i is optimal.

Finally, for the case β = 0, we either increase Sk
i by δ+

or decrease it by δ−, which keeps the objective function the
same at

∑
u αiuOiu(S

∗k
i ) (optimum), but results in either Sk

i

or T k
i becoming a transition point. This also contradicts our

assumption that in all optimum solutions, neither S∗k
i nor

T ∗k
i are transition points. Since all the three cases lead to

a contradiction, this proves the result.

Theorem 2 allows us to find S∗k
i by only computing the

overlap function (8) corresponding to the 4∆ transition points.
Each computation of the overlap function takes O(∆) time,
which implies that the optimum starting time of block i can
be found in O(∆2) running time. This method is illustrated
in Figure 7, and at a high-level in Algorithm 1.

VI. EVALUATION AND RESULTS

We use on-device and simulation experiments to evaluate
the performance of our algorithms. For the simulations, we
estimated energy use and coverage based on measured device
data over several days (under different weather conditions).
We consider a small network as a base case and then study a
larger deployment. The evaluation metrics are total experiment



(a) Current block (b) Prior ∆ blocks

(c) ∆ blocks wall (d) Transition points

Fig. 6: Construction of the wall for blocks

(a) S5 = t1 (b) T5 = t3

(c) T5 = t4 (d) S5 = S5,dline

Fig. 7: Placing block b5 at transition points Fig. 8: DTA and DBS Execution time

TABLE I: Token and tasks epoch communication energy

Min Max
Energy(J) Data(B) Energy (J) Data(B)

Image 1.318998 3.516x106 39.569936 105.48x106

Temp 0.000103 275 0.001547 4,125
Hum 2.063x10−5 55 0.000309 825
Token 0.000178 474 0.000263 700

(a) Non-uniform deployment (b) Average overlap

Fig. 9: Baseline results without task adaptation

energy used and average total temporal overlap. We compared
the performance of “Sensing Together” against several sched-
ulers described next.

A Random Scheduler (Random) that selects a random start
time from 0 to the task start deadline, as the token travels
to each device. This ensures all task executions are completed
within the epoch. A Centralized Optimal Scheduler (NLP) that
operates at the sink, and uses data from all devices. A Gurobi
optimizer solves the Non-linear Program which is the best
case bound. The optimization problem for a single task k is
given by min

∑
pq α

k
pq max

(
0, Ok

pq

)
for any two devices sp

and sq . It minimizes the overlap between all IoT devices in
the network while ensuring the overlap between any two IoT
devices p and q (which is calculated using Eqns. 9 and 10) is
always positive. An Iterative Distributed Scheduler (It. Dist.)
that repeatedly randomly schedules an IoT device using DBS
until the solution converges. It also uses all of the neighbor’s
information, not just upstream neighbors like DBS, without
placing any token size restrictions. An Alternate Scheduler
(Alt.) which alternately schedules the task start times to be
0 or the start deadline (limit) as the token travels between
devices.

A. On-device Experiments

We deployed our Sensing Together solution onto three
devices. The initial token size is 474 Bytes and increases by

approximately 113 Bytes each time another device processes
it. An increase in the token size results in a slight increase
in the total execution time for the DTA and DBS algorithms.
However, 80% of the time it is less than 0.6s. Fig. 8 shows the
cumulative distribution on all the devices over several days.

The communication energy for the tasks and token was
calculated using the equations described in Section III-A1.
Table I shows that the maximum token communication energy
(in this 3-node network) is comparable to the lowest energy
task (humidity) operating at maximum frequency. The last
node in the DHT transmits the largest token and so uses the
maximum token communication energy. The energy for trans-
mitting the token from the current device can be calculated
from 0.000178+ (∆) ∗ 4.2391 ∗ 10−5. Here, 0.000178J is the
minimum token transmission energy, 4.2391 ∗ 10−5J is the
additional energy required every time we add 133B of data to
the token. These results show that our algorithm design cou-
pled with a small token size gives a feasible solution enabling
operation directly on the devices with minimal execution time
and communication energy.

B. Simulation Experiments - Baseline Results

As a baseline experiment, we use a small network of 8 IoT
devices deployed in a 10m x 10m grid. Each IoT device’s ID
corresponds to its grid point location and the IoT device IDs
are 22, 46, 59, 66, 67, 73, 75, and 79. Each IoT device runs
three tasks (image, temperature, and humidity sensing) with
the variable parameter being frequency of execution. We use
coverage threshold value CT = 9 for all tasks. The coverage
area radius is 2m for all tasks (see green circles and red cones
in Fig. 9a). The experiment duration was 48 hours and we
show results for a cloudy day solar profile for both days. We
slightly varied solar patterns and the starting battery energy
(which was approximated at 6,000J) for each IoT device. We
use a non-uniform deployment (Fig. 9a) where some devices
may have overlapping coverage (e.g., device 66). We first run
the experiment with the DTA algorithm disabled and compare
the performance of the five different schedulers. DBS results
in the graphs are marked as “Block”.

1) Schedulers without DTA Adaptation: Without DTA,
all IoT devices use the initial task values from SEMA-A.
The average temporal overlap of the schedulers (averaged
across multiple experiment runs) is in Fig. 9b. Temporal
overlap, measured in seconds, indicates the total time during



(a) Average overlap (b) Total energy (c) Battery energy

(d) Image task values (e) Epoch energy (f) Legend for Figs. 10c-10e

Fig. 10: Baseline Experiments with Task Adaptation (DTA)

an experiment when any two neighboring IoT devices are
simultaneously performing sensing operations. Lower values
are preferable. Neighboring IoT devices are those sharing
spatial coverage of at least one grid point. The minimum and
maximum temporal overlap values are determined by the task
values at each device. DBS performs best with a low overlap
value, close to the optimal (NLP) solution. The Iterative
Distributed and Alternate schedulers perform slightly worse,
while the Random scheduler has much worse performance.
The Iterative Distributed Scheduler exhibits slightly poorer
performance compared to DBS because its final converged
overlap value is influenced by the initial “seed” chosen during
simulation. Therefore, we averaged the results across multiple
Iterative Scheduler iterations to get the final converged value
which yields higher average overlap values. The solid lines
in Fig. 10c show the starting battery energy levels per device
and battery discharge pattern. The battery slowly discharges
throughout day 1 for all devices till they all shut down
temporarily early on day 2. However, high task values are still
used for all tasks on day 1 (see Fig. 10d for the image task,
no adaptation case). As more solar energy becomes available
on day 2 even on this cloudy day, the IoT devices can charge
their batteries, restart and perform sensing tasks. But on this
cloudy day, the batteries cannot be sufficiently charged, and
therefore only minimum task values are used. Between epochs
79-81 on day 2, all the IoT devices shut down again and do
not recover (again, until the next day).

2) Benefit of Task Adaptation: Fig. 10a shows the average
overlap for all tasks when DTA is added to the schedulers.
Now, DBS performs best with values close to the optimal. The
Random Scheduler performs the worst. Fig. 10b compares the
total energy used per device using DBS and with (orange) and
without (blue) DTA. Adaptation provides energy savings at all
devices enabling them to operate over the 2 days (dashed lines
in Fig. 10c show the battery changes at each device (legend
in Fig. 10f)). In particular, device 66 has much higher energy
saving due to its overlap i.e., all its grid points are also covered

(a) Image task (no adaptation) (b) Image task (with adaptation)

(c) Legend

Fig. 11: Image grid point coverage with/without adaptation

by its neighboring devices (see Fig. 9a).
Cooperative sensing with adaptation allows a device with

overlaps e.g. device 66 to conserve energy by using min. task
values, and thus DBS+DTA allows all tasks to be run over 2
days. Fig. 10d compares the initial image task values with no
adaptation from SEMA-A (solid lines) and the final adapted
task values (dotted lines) from DTA (similar results were seen
with the other tasks). On day 2 when some neighbors use lower
task values due to lower energy availability e.g., devices 46
and 67 between epochs 1 and 71, DTA at device 66 increases
its task value. Thus, ensuring the coverage threshold is still met
for all its grid points. This shows how DTA uses cooperative
sensing to meet the coverage threshold, enabling higher-energy
IoT devices to compensate for devices with lower energy and
conserve energy at devices when the threshold is already met
by upstream neighbors.

The energy per epoch (see Fig. 10e) shows a recurring
sawtooth pattern during day 2, between epochs 1-8 when the
devices intermittently power down. This is because, within
an epoch, the battery charges enough to power up the device



momentarily. But, after this stored energy is immediately
allocated to task execution, the battery is depleted, leading
to device shutdown. As more solar energy becomes avail-
able during the day, the battery can be charged more, thus
mitigating this sawtooth pattern. However, with DTA (dotted
lines), the total energy per epoch remains relatively fixed and
stable. Experimental results also show energy savings at the
IoT devices range from 0.16% to 36% with an average of 5%.

We compare the grid point coverage per epoch with DBS
with and without DTA (see Figs. 11a- 11c for the image task
results). Similar results were seen with all tasks. Red and green
indicate under-covered and over-covered grid points respec-
tively. Blue shows grid points that are at the target coverage
threshold. Using DTA (task adaptation) significantly reduces
over-coverage (green) and under-coverage (red), providing the
highest number of grid points at the coverage threshold (blue).
In terms of percentages, for the image task, DBS without DTA
shows 53.5% of grid points are under-covered while 46.6% are
over-covered. DBS+DTA reduces under-coverage and over-
coverage to 20.9%, and 10% respectively, and increases the
percentage of grid points at the coverage threshold to 69%.

C. Simulation Experiments - Large Network Results

We used a non-uniform deployment pattern in a
100mx100m grid, 100 sticks and CT = 9. Due to the network
size and centralized scheduler runtime we only compared DBS
with the Random and Alternate schedulers and enabled the
DTA for all. We evaluated the performance during cloudy
and sunny weather. Energy saved per device on sunny days is
higher than on cloudy days due to the higher initial task values.
On average, adaptation yielded per-device energy savings of
3.34% on cloudy days vs. 38.53% on sunny days. The max-
imum energy savings observed for an individual device was
44.92% on a sunny day. We also evaluated DBS, Random, and
Alternate schedulers with different CT values. DBS always
performs best, then Alternate, then Random Schedulers.

VII. CONCLUSION

In this paper, we presented a cooperative sensing solution
that utilizes distributed coordination between multi-sensor IoT
devices. Spatial redundancy is minimized (while meeting a
minimum desired coverage level) through a distributed token
passing algorithm (DTA). DTA utilizes a DHT and a two step
(forward and reverse) token traversal process to balance energy
consumption among all the devices traversed by the token.
The reverse token traversal process also optimizes the exact
sensing instants using our DBS algorithm, which runs in time
that is quadratic in token size and minimizes temporal overlaps
between sensors with overlapping coverage. For both DTA and
DBS, the token size trades off computation and communica-
tion complexity with the efficiency of sensing operations. Our
on-device experiments demonstrate that our algorithm coupled
with a small token size requires minimal execution time and
communication energy. DTA simulation results show average
energy savings of 5% per IoT device in small networks under
various weather conditions. Some devices with overlapping

coverage areas achieve energy savings above 30%. Further,
DBS consistently achieved performance close to the optimal.

REFERENCES

[1] J. Adkins, B. Ghena, N. Jackson, P. Pannuto, S. Rohrer, B. Campbell,
and P. Dutta, “The signpost platform for city-scale sensing,” in 2018
17th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN). IEEE, 2018, pp. 188–199.

[2] D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra, S. Sinha,
A. Kapoor, M. Sudarshan, and S. Stratman, “Farmbeats: An iot platform
for data-driven agriculture,” in 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). Boston, MA: USENIX
Association, Mar. 2017, pp. 515–529.

[3] E. Liri, K. K. Ramakrishnan, K. Kar, G. Lyon, and P. Sharma, “Invited
paper: An efficient energy management solution for renewable energy
based iot devices,” in Proceedings of the 24th International Conference
on Distributed Computing and Networking, ser. ICDCN ’23. New
York, NY, USA: Association for Computing Machinery, 2023, p.
20–27. [Online]. Available: https://doi.org/10.1145/3571306.3571387

[4] Z. Zhang, J. Wu, Y. Zhao, and R. Luo, “Research on distributed
multi-sensor cooperative scheduling model based on partially observable
markov decision process,” Sensors, vol. 22, no. 8, 2022.

[5] S. Hemminki, K. Zhao, A. Y. Ding, M. Rannanjärvi, S. Tarkoma,
and P. Nurmi, “Cosense: A collaborative sensing platform for mobile
devices,” in Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems, ser. SenSys ’13. NY, USA: ACM, 2013.

[6] S. R. Sarangi, S. Goel, and B. Singh, “Energy efficient scheduling in
iot networks,” in Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, ser. SAC ’18. NY, USA: ACM, 2018, p. 733–740.

[7] A. Caruso, S. Chessa, S. Escolar, X. Del Toro, and J. C. López,
“A dynamic programming algorithm for high-level task scheduling in
energy harvesting iot,” IEEE Internet of Things Journal, vol. 5, no. 3,
pp. 2234–2248, 2018.

[8] C. Moser, J.-J. Chen, and L. Thiele, “Dynamic power management in
environmentally powered systems,” in 2010 15th Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 2010, pp. 81–88.

[9] M. De Benedetti, F. Messina, G. Pappalardo, and C. Santoro, “Jarvsis: a
distributed scheduler for iot applications,” Cluster Computing, vol. 20,
no. 2, pp. 1775–1790, 2017.

[10] C. Delgado and J. Famaey, “Optimal energy-aware task scheduling
for batteryless iot devices,” IEEE Transactions on Emerging Topics in
Computing, vol. 10, no. 3, pp. 1374–1387, 2021.

[11] J. Yang, X. Wu, and J. Wu, “Optimal scheduling of collaborative sensing
in energy harvesting sensor networks,” IEEE Journal on Selected Areas
in Communications, vol. 33, no. 3, pp. 512–523, 2015.

[12] O. M. Gul and E. Uysal-Biyikoglu, “A randomized scheduling algorithm
for energy harvesting wireless sensor networks achieving nearly 100%
throughput,” in 2014 IEEE Wireless Communications and Networking
Conference (WCNC), 2014, pp. 2456–2461.

[13] E. Liri, K. Ramakrishnan, and K. Kar, “Energy-efficient distributed task
scheduling for multi-sensor iot networks,” IEEE Network, vol. 37, no. 2,
pp. 318–324, 2023.

[14] S. He, K. Shi, C. Liu, B. Guo, J. Chen, and Z. Shi, “Collaborative sensing
in internet of things: A comprehensive survey,” IEEE Communications
Surveys & Tutorials, 2022.

[15] E. Liri, P. K. Singh, A. B. Rabiah, K. Kar, K. Makhijani, and K. K.
Ramakrishnan, “Robustness of iot application protocols to network
impairments,” in 2018 IEEE International Symposium on Local and
Metropolitan Area Networks (LANMAN), 2018, pp. 97–103.

[16] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
ACM SIGCOMM Computer Communication Review, vol. 31, no. 4, pp.
149–160, 2001.

[17] ANSI, Local Area Networks: Token Ring Access Method and Physical
Layer Specifications–802.5. USA: John Wiley & Sons, Inc., 1985.


