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Abstract— Multi-occupant buildings with shared spaces such
as corporate office buildings, university dorms, etc. are occupied
by multiple occupants who typically have different temperature
preferences. Attaining a common temperature set-point that
is agreeable to all users (occupants) in such a multi-occupant
space is a challenging problem. Furthermore, the ideal tempera-
ture set-point should optimally trade off the building energy cost
with the aggregate discomfort of all the occupants. However,
the information on the comfort range functions is held privately
by each occupant. Using occupant-differentiated dynamically-
adjusted prices as feedback signals, we propose a distributed
solution which ensures that a consensus is attained among all
occupants upon convergence, irrespective of their temperature
preferences being in coherence or conflicting. Occupants are
only assumed to be rational, in that they choose their own
temperature set-points so as to minimize their individual energy
cost plus discomfort. We establish the convergence of the
proposed algorithm to the optimal temperature set-point vector
that minimizes the sum of the energy cost and the aggregate
discomfort of all occupants in a multi-zone building. Simula-
tions with realistic parameter settings illustrate validation of
our theoretical claims and provide insights on the dynamics of
the system with a mobile user population.

I. INTRODUCTION

With changes in general living style and consumer ex-
pectations, the demand for comfort levels have grown very
personalized. This personal comfort level expectations pose
a conflicting situation in multi-occupant spaces such as cor-
porate office buildings, student dorms, commercial airplanes
etc., where each occupant has its own range of comfortable
temperature distribution. Arriving at a consensus among all
the occupants of different rooms and zones in a building is
therefore a very interesting and a challenging problem.The
total energy cost also needs to be accounted for when trying
to achieve consensus among the occupants of a building.

Data suggests that nearly 40% of the total energy con-
sumption in US, and 20% of the total energy consumption
worldwide, is attributed to residential and commercial build-
ing usage [1]. So far focus has been on optimizing energy
usage by utilizing variable electricity rates [2], [3], [4],
active and passive thermal energy storage [3], [4], and model
predictive control approach exploiting information through
weather forecast [5], [6]. More recently occupant feedback
at binary/multiple levels [7], [8], [9] and achieving energy
optimization along with occupant discomfort minimization
[10] has been used.
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Achieving a common temperature set-point that is both
energy optimal and acceptable to the occupants requires con-
sensus among all the occupants and the central building man-
agement system. Achieving this in a distributed framework,
where the exact discomfort functions are held privately by
each occupant, remains an open question which we seek to
address in this paper. We pose the collaborative building tem-
perature control problem as a convex optimization question,
and develop a distributed solution approach by utilizing a
consensus algorithm framework. The minimization objective
is an aggregate of all the occupant discomfort functions and
the total energy cost, subject to the constraint of common
zonal temperatures. Pricing per unit temperature change
serves as the feedback signal to the occupants, to drive
them to a consensus on zonal temperatures that optimize the
overall discomfort plus energy cost objective as mentioned
above. The consensus algorithm that we develop, through
the use of the alternating direction method of multipliers
(ADMM), is amenable to distributed implementation and
has the following appealing properties. Firstly, occupants
(or their agents) are only assumed to be rational, in that
they choose their preferred temperature set-points so as to
minimize their personal discomfort plus energy cost, given
the pricing functions. In other words, the occupants are
not required to explicitly declare their discomfort functions
(which can be held privately), but only react rationally to
the pricing signals. On the other hand, the building thermal
management system (BTMS) chooses the zonal temperature
set-points to maximize the overall profit of the building
operator (for the current prices), and the prices are updated
so as to attain consensus among the occupants, and with the
building operator, on the zonal temperatures. Finally, as we
formally show, the algorithm converges to the optimal zonal
temperatures, from which rational occupants would not have
any incentive to deviate.

The paper is structured as follows. The building thermal
model and the control law we use are described in Section
II; the consensus algorithm, which constitutes the main
contribution of this work, is also described in this section.
Section III provides the convergence analysis of the proposed
consensus algorithm. We evaluate our approach through
simulations in Section IV, and conclude in Section V.

II. SYSTEM MODEL AND CONSENSUS ALGORITHM

In this section, we first describe the building thermal
model (Section II-A) and our optimization goal (Section II-
B). We then describe our consensus algorithm (Section II-C),
and how the optimal temperatures derived from the algorithm



(on convergence) can be attained through simple control laws
(Section II-D).

A. Building Heat Transfer Model

Multiple building modeling strategies have been proposed
in the literature, which include the finite element method
based model [11], lumped mass and energy transfer model
[12], and graph theoretic model based on electrical circuit
analogy [13], [14]. The system model selection entails a
tradeoff between computational efficiency and accuracy of
representation of the temperature dynamics. The electrical
analogy approach to modeling multiple interconnected zones
reduces the heat transfer model to an equivalent electrical
circuit network and can be modified to include building
occupancy, room and heating equipment dynamics [14], [15].
In this paper we take this electrical circuit analogy approach,
and combine it with the distributed consensus algorithm to
achieve collaborative temperature control of buildings.

Using lumped heat transfer model, a single zone is mod-
eled as a thermal capacitor and a wall is modeled as an
RC network to obtain 3R2C wall model [13]. The heat flow
modeling is based on temperature difference and thermal
resistance: Q = ∆T/R, where ∆T is the temperature
difference, R is the thermal resistance and Q is the heat
transferred across the resistance. This is analogous to the
current due to voltage difference across a resistor. Also,
note that the thermal capacitance denotes the ability of
a space to store heat: C d∆T

dt = Q. The heat flow and
thermal capacitance model can be written for all the thermal
capacitors in the system, with Ti as the temperature of the ith
capacitor. Consider the system to have n thermal capacitors
and l thermal resistors. Taking the ambient temperature (T∞)
into account, and neglecting any “thermal noise” in the
system, we can write the overall heat transfer model of the
system with m zones as [7]:

CṪ = −DR−1DTT +B0T∞ +Bu, (1)

where T ∈ Rn is the temperature vector (representing the
temperature of the thermal capacitors in the 3R2C model),
u ∈ Rm is the vector of heat inputs into the different
zones of the building, and B ∈ Rn×m is the corresponding
input matrix. Also, note that (T, u) are functions of time
(T (t), u(t)) and accordingly Ṫ = dT

dt . Note that positive
values of u correspond to heating the system while negative
values of u correspond to cooling. In the above equation, C
∈ Rn×n consists of the wall capacitances and is a diagonal
positive definite matrix; R ∈ Rl×l consists of the thermal
resistors in the system and is a diagonal positive definite
matrix as well. Also, D ∈ Rn×l is the incidence matrix,
mapping the system capacitances to the resistors, and is
of full row rank [17], and B0 = −DR−1dT0 ∈ Rn is a
column vector with non-zero elements denoting the thermal
conductances of nodes connected to the ambient.

In our model, the zones are picked such that each of them
has a heating/cooling unit, which in turn implies that B is of
full row rank. Also, since matrix D is of full row rank the

product DR−1DT is a positive definite matrix. The vector
of zone temperatures, denoted by y (which is a function of
T ) can be expressed as, y = BTT.

B. Optimization Objective

Consider a building with m zones, and let Sj represent the
set of occupants located in zone j of the building. Let Di

represent the discomfort function of occupant i, and function
E the overall energy cost. Then a reasonable objective is to
attain (in steady state) the zonal temperature vector y that
achieves the following objective:

minimize
m∑
j=1

∑
i∈Sj

Di(yj) + E(u) (2)

where yj is the temperature of zone j, and u is the heat input
vector that is required to attain those zonal temperatures.
Note that an occupant i located in zone j (i.e., i ∈ Sj)
experiences temperature yj , and therefore its discomfort can
be represented as Di(yj). We assume the discomfort function
Di(yj) as convex in its argument yj . It is worth noting that
the discomfort function need not be “strictly” convex. This
allows for the occupants to be insensitive to temperature
fluctuations over a certain range; or in other words, the dis-
comfort function could be flat over the occupant’s “comfort
range”.

In the above, E(u) is assumed to be a convex function of
the control input vector u. For the sake of definiteness, we
use E(u) to be of the following quadratic form (although
other convex forms of the function E(u) are also allowed
by our framework): E(u) = uTΓu, where Γ is a positive
definite matrix. The Γ matrix captures the weight of the
energy cost relative to the total discomfort cost. In practice,
it could be determined by the actual cost of energy, as well
as additional input from the building operator.

Finally, since the the optimization variable in the objective
function (2) is only the zonal temperature vector y, the
relationship between the heat input vector u and the zonal
temperature vector y needs to be stated to make the formula
meaningful. Using the steady state condition in (1) (i.e.,
setting Ṫ = 0),

u = g(y)
.
= (BTA−1B)−1(y −BTA−1B0T∞), (3)

where A = DR−1DT . Then using (3), we can write the
energy cost E(u) as G(y) = E

(
g(y)

)
. It is easy to see that

the function G(y) is convex in y.

C. Distributed Consensus Algorithm

To develop our consensus algorithm, we first introduce
new notation to denote the choice of zonal temperatures
by the occupants and the building thermal management
system (BTMS); these temperature choices will in general
be different from the actual (current) zonal temperatures.
Let xij denote the desired temperature of occupant i ∈ Sj
located in zone j. Let zj denote the target temperature
of zone j as set by the BTMS. Then vector z represents
the target temperature of the entire building consisting of



m zones. In general, xij for any occupant i ∈ Sj can
differ from zj ; the actual zonal temperature yj could also
differ from these temperatures. On convergence however,
the consensus algorithm ensures that xij for all occupants
i ∈ Sj equals zj , which optimizes the objective function in
(2) subject to (3). The zonal temperatures obtained through
consensus is then attained in the building by utilizing some
temperature set-point based HVAC control system. This
results in the decomposability of the problem into two parts:
(i) the derivation of the optimal zonal temperatures through
the consensus between the ocupants and the BTMS; (ii)
attaining the temperature set-points resulting from (i) in the
actual building. The key novelty of this work is in developing
a distributed consensus algorithm for (i), which we describe
in this subsection. Some standard or existing control laws
that could be utilized to solve (ii) is discussed in the next
subsection (Section II-D).

To develop the consensus algorithm, we re-write the min-
imization objective in (2) in terms of the zonal temperature
choices of the occupants and the BTMS, as:

minimize
m∑
j=1

∑
i∈Sj

Di(xij) +G(z)

subject to xij = zj , i ∈ Sj , (4)

where function G(z) = E
(
g(z)

)
represents the total energy

cost in terms of the target zonal temperature vector z.
We can now solve (4) through the ADMM approach as

described in [18]. To motivate the ADMM based consensus
algorithm, consider the augmented Lagrangian:

Lρ(x, z, p, ρ) =

m∑
j=1

∑
i∈Sj

(
Di(xij) + pij(xij − zj) +

(ρ/2)|xij − zj |2
)

+G(z) (5)

where pij is the dual variable, ρ > 0 is a constant. The
ADMM based consensus algorithm can then be derived as
iterations of coordinate-wise optimization of this augmented
Lagrangian along each xij and z directions, followed by
update of the dual variable in a gradient direction. More
precisely, in our consensus algorithm, in iteration k =
1, 2, . . ., the variable vector z, and the variables xij , pij for
all i ∈ Sj , j = 1, . . .m, are updated as follows:

xk+1
ij := argmin

xij

(
Di(xij)+pkijxij+(ρ/2)|xij−zkj |2

)
, (6)

zk+1 : = argmin
z

(
G(z) +

m∑
j=1

(
−
∑
i∈Sj

pkijzj

+
∑
i∈Sj

(ρ/2)|xk+1
ij − zj |2

))
, (7)

pk+1
ij := pkij + ρ(xk+1

ij − zk+1
j ). (8)

The BTMS iteratively communicates to each occupant i in
any zone j two parameters, pij and zj , based on which the
occupant’s cost (price paid) for a chosen temperature set-
point xij would be computed as pijxij + (ρ/2)|xij − zj |2.

A rational occupant then chooses its personal temperature
preference xij to minimize their individual cost function:

minimize Di(xij) + pijxij + (ρ/2)|xij − zj |2. (9)

The BTMS chooses the target building temperature vector z
so as to minimize

minimize G(z)− 〈p, z〉+ (ρ/2)|x− z|2, (10)

which on convergence (when consensus is attained) would
equate to the total energy cost incurred by the building
operator, when the payments made by the occupants are
taken into account. Finally, the per-unit prices (pij) are
updated in a way that helps in the consensus, i.e., in bringing
xij and zj close to each other in each zone j, for each
occupant i ∈ Sj .

In Section III we present a convergence proof for the
consensus algorithm described above, following the general
line of analysis on the convergence of the ADMM algorithm
as provided in [19].

In practice, it may take several hundred iterations or more
for the consensus algorithm to converge, as we will see in
the simulation results presented later in the paper (Section
IV). Involving humans to carry out the task in (6) and com-
municating the temperature preference to the BTMS would
therefore lead to impractically long convergence times. To
implement the consensus algorithm in practice, the user
(occupant) could input its comfort range (function) into a
software agent (running on the user’s smart-phone, or a PC
in the user’s room/office); this user agent could then be
involved in the interative communication with the BTMS,
and setting the temperature set-point preference (for a given
pricing signal) in the best interest of the individual user
(occupant).

D. Control Law Design

The ADMM algorithm generates consensus among the
building occupants and the BTMS, and converges to the
minimum cost temperature vector z∗ for the building. The
control law design drives all the zones in system (1) to
their corresponding consensus temperature z∗j in steady state.
Using the steady state condition Ṫ = 0 in (1) and (??) we
can obtain the steady state temperature yss as,

yss = BTA−1(B0T∞ +Bu). (11)

The corresponding steady state input uss is given by

uss = g(yss)

= (BTA−1B)−1(yss −BTA−1B0T∞). (12)

There are multiple choices for picking a stabilizing con-
troller for building thermal control, such as hysteresis con-
troller, feedforward controller, proportional feedback con-
troller, etc. Any of these, with suitable adaptation, can be
used to achieve the desired steady state zonal temperatures
for the system in (1). We experimented with a model based
feedforward controller u∗ from the steady state input in



(12), with the steady state temperature yss as the consensus
temperature z∗:

u∗ = (BTA−1B)−1(z∗ −BTA−1B0T∞). (13)

The feedforward controller alone leads to a very slow con-
vergence. To compensate for the slow convergence, we add
a passive feedback component to design the final control law
as:

u = u∗ −K(y − z∗). (14)

Using a smiliar line of analysis as in [16], the stability of
the system can be established.

We present our results with the proposed control law in
section IV.

III. CONVERGENCE ANALYSIS

The convergence proof presented in this section assumes
that the functions D(.) and G(.) are closed, proper, and
convex, and the unaugmented Lagrangian Lo in (15) below
has a saddle point.

Lo(x, z, p) =

m∑
j=1

∑
i∈Sj

(
Di(xij) + pij(xij − zj)

)
+G(z).

(15)
Based on these assumptions we establish the objective con-
vergence, the residual convergence, and the convergence of
the dual variables, for our consesnsus algorithm as descibed
in Section II-C. In doing so, we utilize the convergence
analysis of the ADMM approach as described in [19],
suitably adapted to our model. Consider the objective,

O∗ = minimum
m∑
j=1

∑
i∈Sj

Di(xij) +G(z)

=

m∑
j=1

∑
i∈Sj

Di(x
∗
ij) +G(z∗), (16)

where x∗ij and z∗ denote the corresponding optimal values
of temperature choices. Note that for any zone j, x∗ij = z∗j
for all i ∈ Sj . Also, define residual for zone j as:

rij = xij − zj (17)

We prove our result through a sequence of lemmas, each
involving an inequality.

Lemma 1:

O∗ −Ok+1 ≤
m∑
j=1

∑
i∈Sj

p∗ijr
k+1
ij . (18)

Proof: Since Lo has a saddle point:

Lo(x
∗
ij , p

∗
ij , z

∗
j ) ≤ Lo(xk+1

ij , p∗ij , z
k+1
j ) (19)

Lo(x
k+1
ij , p∗ij , z

k+1
j ) =

m∑
j=1

∑
i∈Sj

Di(x
k+1
ij ) +G(zk+1)

+

m∑
j=1

∑
i∈Sj

p∗ij(x
k+1
ij − zk+1

j )

= Ok+1 +

m∑
j=1

∑
i∈Sj

p∗ijr
k+1
ij (20)

O∗ ≤ Ok+1 +

m∑
j=1

∑
i∈Sj

p∗ijr
k+1
ij (21)

Lemma 2:

Ok+1 −O∗ ≤ −
m∑
j=1

∑
i∈Sj

(
pk+1
ij rk+1

ij

+ρ(zk+1
j − zkj )(−rk+1

ij − (zk+1
j − z∗j ))

)
.

(22)
Proof: From the augmented Lagrangian in (5) and re-

writing the update equation in (8) as:

pk+1
ij = pkij + ρrk+1

ij , (23)

Di(x
k+1
ij ) + pk+1

ij xk+1
ij + ρxk+1

ij (zk+1
j − zkj ) ≤

Di(x
∗
ij) + pk+1

ij x∗ij + ρx∗ij(z
k+1
j − zkj ), (24)

G(zk+1)− pk+1
ij zk+1

j ≤ G(z∗)− pk+1
ij z∗j . (25)

Using (24) and (25) throughout we obtain (22).
Define Lyapunov function V as:

V k = (1/ρ)

m∑
j=1

∑
i∈Sj

|pkij − p∗ij |2 + ρ

m∑
j=1

|zkj − z∗j |2 (26)

Lemma 3:

V k+1 ≤ V k − ρ
m∑
j=1

∑
i∈Sj

|rk+1
ij |

2 − ρ
m∑
j=1

|zk+1
j − zkj |2 (27)

Proof: Using inequalities (18) and (22) we obtain:
m∑
j=1

∑
i∈Sj

(
2rk+1
ij (pk+1

ij − p∗ij) + 2ρrk+1
ij (zk+1

j − zkj )
)

+ 2ρ

m∑
j=1

(
(zk+1
j − zkj )(zk+1

j − z∗j )
)
≤ 0. (28)

Using update relation (23) in (28) and re-arranging terms:

(1/ρ)

m∑
j=1

∑
i∈Sj

(
(|pk+1

ij − p∗ij |2 − |pkij − p∗ij |2)

+ρ|rk+1
ij + (zk+1

j − zkj )|2
)

+ρ
∑
i∈Sj

(
((zk+1

j − z∗j )2 − (zkj − z∗j )2)
)
≤ 0. (29)

V k+1 − V k + ρ

m∑
j=1

∑
i∈Sj

|rk+1
ij + (zk+1

j − zkj )|2 ≤ 0, (30)

V k+1 ≤ V k − ρ
m∑
j=1

∑
i∈Sj

|rk+1
ij |

2 − ρ
m∑
j=1

|zk+1
j − zkj |2

−2ρ

m∑
j=1

∑
i∈Sj

rk+1
ij (zk+1

j − zkj ). (31)

The last term in (31) can be shown to be positive, which
proves the third inequality (27).



Now, since V k ≤ V 0, pkij and zkj are bounded. Iterating
the inequality gives:

ρ

∞∑
k=0

(
(rk+1
ij )2 + |zk+1

j − zkj |2
)
≤ V 0, (32)

which implies rkij → 0 and |zk+1
j −zkj | → 0 as k →∞. Fur-

ther, from inequalities (18) and (22) we have limk→∞Ok =
O∗ or the objective convergence.

Hence, using the inequalities (18), (22) and (27) we
establish convergence of our algorithm.

IV. SIMULATIONS

For the simulation we consider a four-room building from
an example in [20], which is illustrated in Figure 1 below.
Heat transfer to the ambient for all rooms is added to the
model. In the figure, each double headed arrow represents

Fig. 1. Four room example model with occupancy used for simulation.

a thermal connection between the two corresponding sides.
The connection between two rooms through an open door is
represented by a single resistance, and the same through the
wall is represented using 3R2C wall model. Each room or
zone can either be unoccupied or occupied with its maximum
occupancy limit as considered in the formulation through set
S. The simulation results presented in this work have been
obtained with one occupant each in all the four zones.

For this example model of four rooms and eight walls,
we get 20 capacitive elements and 27 resistive elements.
This gives us the dimensions of the incidence matrix, D for
the model as 20 × 27. Using the dimensions of the model
in Figure 1, volumetric heat capacity values and thermal
resistance values as per [7], we can obtain values for the
matrices in equation (1). Using this information we simulate
the model with ambient temperature at T∞ = 18◦C.

Temperature preference of the occupants and the building
operator for the zones is presented in Table I

TABLE I
TEMPERATURE PREFERENCE IN ◦C OF EACH ZONE

Zone Occupant pref Building Operator pref
Zone 1 22◦C 15◦C
Zone 2 20◦C 15◦C
Zone 3 21◦C 15◦C
Zone 4 23◦C 15◦C

For this simulation we assume a quadratic occupant dis-
comfort function of the form: (yj − αij)2, where yj is the
temperature of the zone j and αij is the ideally preferred
temperature of the occupant i in zone j as captured in Table
I.

In Figure 2 we present the result of the distributed con-
sensus algorithm using ADMM approach. Each zone (room)
occupant starts with its ideally preferred temperature set-
point as per Table I and the BTMS with the preferred set-
point of the building operator for the corresponding zones.
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Fig. 2. Convergence of temperature set-point preferences in each zone, for
the occupants and the BTMS.

With each iteration of the algorithm, the difference be-
tween the corresponding zonal temperature preference of the
occupant and that of the BTMS narrows until there is a
consensus in all the zones. The pricing for unit change in
temperature varies with each iteration, as shown in Figure 3.
The price increases for the zone occupant if the temperature
choice is away from the BTMS’ preference and the ambient
temperature. In Figure 3 the per-unit price for occupant 4
(located in zone 4) turns negative. This can be attributed
to the fact that on consensus, the temperature for that zone
moves away from the ambient and building operator’s pre-
ferred temperature for the zone, even beyond the occupant’s
preferred set-point.

0 50 100 150 200 250

−20

0

20

40

60

80

100

120

140

Number of Iterations

P
ri
c
in
g
fo
r
o
c
c
u
p
a
n
ts

 

 

Occupant 1

Occupant 2

Occupant 3

Occupant 4

Fig. 3. Pricing variation for the zone occupants for desired change in the
zonal temperatures.

Next we use the consensus temperature of the zones as
the target temperatures in the building dynamics model in
(1) to simulate the temperature variation of the building for
a 48 hour period. We present our simulation results with the



control law proposed in (14). The corresponding temperature
dynamics for a 48 hour period is presented for the four
zone model in Figure 4. The temperature of each zone
converges to the corresponding component of the consensus
temperature vector z∗, as can be observed in the figure.
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Fig. 4. Temperature dynamics: 48 hour period with proportional feedback
and model based feedforward controller.

Figure 5 presents the temperature dynamics with a real
world working environment schedule. The occupants of each
room/zone walk-in at 7 am on day 1 (start of the simulation),
take an hour long lunch break at 12 pm and leave for the day
at 5pm. The following day the occupants get in at 8 am, take
the lunch break at noon and leave at 5 pm. When the zones
are un-occupied we go into an energy saving mode during
which the zonal temperatures start sliding to the ambient
temperature. The occupancy of the zones can be obtained
through an online occupancy sensor or can be an offline
system scheduler.
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Fig. 5. Temperature dynamics: 48 hour period, real-world user occupancy.

V. CONCLUSION

In this work, we have proposed an approach for collab-
orative temperature control in multi-occupant spaces, that
uses pricing feedback to attain a consensus between the
rational occupants (interested in minimizing their individual
discomfort plus energy cost) and the building operator (ther-
mal management system). Upon convergence, the consensus
algoritm attains temperature set-points that minimize the
sum of the aggregate discomfort of the occupants and the
total energy cost in the building. The temperature set-points
attained on consensus is then used by a control law with

proportional feedback and feedforward components, to drive
the building to the desired (optimal) temperature. Through
simulations, we have demonstrated the convergence of the
consensus algorithm, as well as the control law, to the desired
(optimal) temperatures.
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