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Abstract Most of the current studies and solutions developed for building ther-
mal control have been designed independent of the occupant feedback. An accept-
able temperature range for the occupancy level is estimated, and control input is
designed to maintain temperature within that range during occupancy hours. Con-
sider office floors with cubicles, conference rooms, student dorms, homes, and other
multi-occupant spaces where temperature set-points on thermostats are chosen irre-
spective of the number of occupants and their individual preferences. This existing
approach is not only non user-centric but also sub-optimal from both energy con-
sumption and occupant satisfaction/productivity perspectives. It is thus highly de-
sirable for such multi-occupant spaces to have a mechanism that would take into
account each occupants individual comfort preference and the energy cost, to come
up with optimal thermal setting. Individual occupants feedback and preference can
be obtained through wearable sensors or smart phone applications. In this chapter
we propose algorithms that take into account each occupants preferences along with
the thermal correlations between different zones in a building, to arrive at optimal
thermal settings for all zones of the building in a coordinated manner. First, we
present a control algorithm that uses binary occupant feedback based on singular
perturbation theory to minimize aggregate user discomfort and total energy cost.
A consensus algorithm for attaining a common temperature set-point in a typical
multi-occupant space is presented next that uses Alternating Direction Method of
Multipliers (ADMM) to solve the consensus problem. We use our Watervliet, NY
based test facility to simulate the performance of our algorithms.
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1 Introduction

Data suggests that nearly 40% of the total energy consumption in US, and 20% of
the total energy consumption worldwide, is attributed to the residential and com-
mercial building usage [1]. In 2012 this amount was estimated at $ 416 billions,
much higher than the Industrial (at 33 %) and Transportation (at 27%) sectors. More
than 75% of current electricity consumption is also due to the usage in buildings.
However, even with the existing cost of HVAC systems, the occupant dissatisfaction
associated with the prevailing indoor thermal conditions have been highlighted by
several studies [2], [3]. A more recent news article [4] titled, “This cold war, too,
has roots in the past,” highlights the problem with thermal comfort model that is
being followed by commercial buildings. The occupants (employees) in turn have
to face discomfort with regard to indoor thermal environment leading to direct loss
of productivity and reduced overall satisfaction.

Occupant dissatisfaction associated with the indoor building environment (both
residential and commercial) can be mainly attributed to the existing methods for in-
door environment management employed commonly by the Building Management
Systems (BMS). Most of the multi occupant space environment control systems to-
day are based on set point scheme of thermal management. Either there is a central-
ized control by operation managers of the building, or the occupants set a specific
temperature set point for the indoor environment agnostic of the changes in ambient
conditions and occupancy patterns. However, a static set point does not seem to fit
the dynamic lifestyle that we normally follow. This calls for the design of smart
systems that can achieve desired human comfort levels without putting additional
pressure on energy resources, which the existing set point scheme fails to achieve.

There have been studies based on weather prediction models that use the con-
cept of preheating and cooling [5] to reduce energy consumption. However, this
does not necessarily take into account occupant behavior and/or preferences. Some
of the more recent studies based on human physiology [6] do propose an aggre-
gate or average model for occupants but fails to provide a mechanism to incorporate
individual differences in body metabolism and preferences. Smart and learning ther-
mostats like Google-Nest [7] that claim to learn occupant preference dynamically,
might however fail to perform in multi-occupant spaces.

The framework proposed in this chapter has the following novel components:

• Simultaneous minimization of energy cost and maximization of occupant com-
fort, with the flexibility to modify weights associated with each (say for instance
to incorporate real-time energy pricing).

• Multi-zoning solution that takes into account the thermal correlation among dif-
ferent zones in a residential home or a commercial building.

• Consensus algorithm to enable deployment to multi-occupant spaces (corporate
office buildings, university buildings, etc.). This algorithm drives co-located oc-
cupants to a logical consensus on thermal setting based on individual preferences.

Personalized comfort level expectations pose a conflicting situation in multi-
occupant spaces such as residential homes, research laboratories, corporate office
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buildings, student dorms etc., where occupants have their own range of thermal
comfort and other environmental settings. This range generally depends on individ-
ual occupant body type, external factors such as attire, physical and mental condi-
tion, and level of tolerance; and can also vary depending on other environmental
factors such as time of the day, lighting conditions etc. [8], [9], [10]. This person-
alized thermal comfort range can be best captured by individual occupant feedback
in real time. Further, in shared multi-occupant spaces personal comfort levels are
affected both by the presence of co-occupants and the correlation between tempera-
tures in different zones and rooms occupied [11], [12], [6]. Arriving at temperature
set-points to minimize the aggregate discomfort among all occupants of different
rooms or zones in a building is an important yet challenging problem. With rising
energy cost and emphasis on energy conservation, the total energy cost also needs
to be accounted for when trying to determine the optimal temperature set-points in
different zones of a building.

We present a solution to optimally trade off the overall energy cost with the
aggregate occupant discomfort. Our solution is occupant centric and focuses on de-
signing an algorithm for efficient human interaction and utilizing the feedback. We
start by depicting a high level work flow of the proposed solution for energy efficient
operation of buildings in Figure 1.

Fig. 1 High level process flow depiction of the proposed algorithm. The process runs in a loop
incorporating real-time changes to occupancy pattern, occupant preferences and/or environmental
changes.
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Occupant comfort & sensor measurement: User experience is of utmost impor-
tance, and our solution also starts with the perception of thermal comfort level by
the occupants to the current temperature settings. Simultaneously static sensors if
present in the zones can feed real time zonal temperature (sensors can also be used
to measure humidity and other related comfort parameters) to the central processor.

Occupant feedback through smart phone application: The occupants can use
their smart phones to access our mobile application and provide their tempera-
ture preference feedback. It also shows the percentage distribution of the occupants
based on their preferences for the given zone of the building. The displayed informa-
tion gets auto updated at specific intervals. An update request can also be generated
by the user manually.

Algorithm for Optimal temperature determination: The minimization objective
is an aggregate of all the occupant discomfort functions and the total energy cost,
subject to the constraint of a common temperature set-point for each zone. Pric-
ing per unit temperature change serves as the feedback signal to the occupants, to
drive them to declare their truthful temperature preference that optimizes the over-
all discomfort plus energy cost objective. The occupant feedback obtained through
smart phone application are used by the central server under building management
running the algorithm to determine the optimal zonal temperatures.

HVAC system update: The HVAC system is then set to the predicted optimal
zonal temperature settings. For an integrated system the thermostat(s) can be auto-
matically set to the suggested temperature settings. Our solution is designed to work
for any multi-occupant space such as corporate building, airports, aircrafts, homes,
apartments, etc.

1.1 Existing Solutions Incorporating Occupant Feedback

We briefly review the existing building thermal control studies that incorporate oc-
cupant feedback in some form. The PMV index has been used as the metric for
user comfort integration in multiple studies [32], [33], [34]. Some studies proposed
sensor network solutions to increase the accuracy of PMV calculation [35], [36].
Owing to the complexity of sensor network deployment, a number of studies have
proposed utilizing occupant feedback for thermal comfort integration into the con-
trol logic of building systems. Through custom keyboards in each room, Guillemin
and Morel made use of occupant preferences in the form of temperature set points
[37]. Murakami et al. used binary preference of warmer and cooler along with a
logic to build consensus for controlling the air-conditioning set point [38]. Daum et
al. utilized too hot/too cold occupant complaint along with a probabilistic approach
for determining user comfort profiles [39]. Thermovote [6] utilized a seven level
occupant comfort voting to integrate with the building control logic. Purdon et al.
developed a smart phone interface to receive 3-point scale comfort feedback from
occupants and determine the direction for temperature drift with a system defined
step-size [13]. Some more recent works have conducted experimental study for a
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group of occupants [30], and have presented thermal comfort model for a single
person [31]. However, these are based on thermal complaint behavior using one-
class classifier. Jazizadeh et al. used a fuzzy predictive model to learn occupant
comfort profiles and a complementary control strategy for the HVAC control [40].
Zhao et al. conducted a simulation study tying occupant subjective thermal comfort
feedback with MPC control algorithm for the active HVAC system against a base-
line rule-based control algorithm [41]. Experimental facilities, such as Living Lab
[28] at Purdue University are actively utilized by researchers to understand human
behavior and productivity relationship to indoor environment and personalized con-
trol. Choi et al. have presented HVAC thermal models based on sensing of human
vitals such as heart rate [29].

We start by presenting the overall system model in section 2 that includes the
occupant discomfort function and building heat transfer model. In section 3, we
present our novel algorithm that is developed and analyzed using gradient optimiza-
tion and singular perturbation theory. We use simple feedback from users in the
form of ‘heat up’ or ‘cool down’, which are further consolidated to estimate their
comfort ranges or the discomfort functions. In section 4, we discuss the consensus
algorithm that we developed through the use of alternating direction method of mul-
tipliers. In section 5, we share results from simulation and experimental study based
on our Watervliet based test facility. Finally, we present some concluding remarks
in section 6.

2 System Model

2.1 Occupant Discomfort Modeling

Occupant thermal comfort modeling has been extensively researched and can be
summarized into the following three major approaches: (1) the chamber study
model, based on mapping thermal comfort from environmental and personal fac-
tors to a 7-level comfort value scale, viz. the Predicted Mean Vote - Predicted Per-
cent Dissatisfied (PMV-PPD) [12], [8]; (2) human body physiology based models
such as Gagge’s core to skin model [23], Stolwijk’s comfort model for multi-human
segments [24], and Zhang et al.’s sensation on human body segments [25]; and (3)
adaptive comfort models developed in field study, viz. Humphreys [26] and [27]. Re-
cent work based on thermal complaint behavior using one-class classifier [30], [31]
have also been presented. However, existing work mainly focus on average ther-
mal comfort models instead of individual comfort modeling. Such group comfort
models only capture average behavior and are not particularly useful in maximizing
aggregate comfort for multi-occupant spaces, with individual thermal preferences
differing from each other.

In the current work, therefore, we take into consideration discomfort functions of
the occupants individually - modeled as convex quadratic functions of temperature
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variation based on the PMV-PPD model. Our model captures the difference across
occupants in their comfortable temperature range. For simulation and experimental
study we adopt occupant discomfort function of the form:

Di(y j) =

8
><

>:

(y j � yU
s )

2 if y j > yU
s ,

0 if yL
s  y j  yU

s ,

(y j � yL
s )

2 if y j < yL
s ,

(1)

where yU
s and yL

s are the upper and lower limit temperatures respectively of the user
i located in zone j.

Note that the boundary values can be either explicitly indicated by the user, or
can be conveyed implicitly to the system through user feedbacks in a simple binary
form of whether he/she is feeling hot or cold in the current setting.

2.2 Optimization Objective

Consider a building with m zones, and let S j represent the set of occupants located
in zone j of the building. Let Di represent the discomfort function of occupant i,
and function E the overall energy cost. Then a reasonable objective is to attain (in
steady state) the zonal temperature vector y that achieves the following objective:

minimize
m

Â
j=1

Â
i2S j

Di(y j)+E(u). (2)

where y j is the temperature of zone j, and u is the heat input vector that is required
to attain those zonal temperatures. Note that an occupant i located in zone j (i.e.,
i 2 S j) experiences temperature y j, and therefore its discomfort can be represented
as Di(y j). We assume the discomfort function Di(y j) as convex in its argument y j.
It is worth noting that the discomfort function need not be “strictly” convex. This
allows for the occupants to be insensitive to temperature fluctuations over a certain
range; or in other words, the discomfort function could be flat over the occupant’s
“comfort range”.

In the above, E(u) is assumed to be a convex function of the control input vec-
tor u. For the sake of definiteness, we use E(u) to be of the following quadratic
form (although other convex forms of the function E(u) are also allowed by our
framework):

E(u) = uT G u, (3)

where G is a positive definite matrix. The G matrix captures the weight of the en-
ergy cost relative to the total discomfort cost. In practice, it could be determined by
the actual cost of energy, as well as additional input from the building operator to
determine how much relative weight to associate with the energy cost as compared
to the occupant discomfort cost.
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Finally, since the optimization variable in the objective function (2) is only the
zonal temperature vector y, the relationship between the heat input vector u and the
zonal temperature vector y needs to be stated to make the formula meaningful. We
can express u = g(y) and using that write the energy cost E(u) as G(y) = E

�
g(y)

�
,

where the function G(y) is convex in y. Taking the case of an RC model, we would
express function g(.) in terms of model parameters for the purpose of simulation
later in the chapter.

2.3 Building Heat Transfer Model

Multiple building modeling strategies have been proposed in the literature, which in-
clude the finite element method based model [15], lumped mass and energy transfer
model [16], and graph theoretic model based on electrical circuit analogy [17], [18],
[19], [20], [21]. The system model selection entails a trade-off between computa-
tional efficiency and accuracy of representation of the temperature dynamics. For the
purpose of this study we take the electrical circuit analogy approach, and combine it
with the distributed consensus algorithm to achieve collaborative temperature con-
trol of buildings. A building is modeled as a collection of interconnected zones, with
energy/temperature dynamics evolving according to a lumped heat transfer model.
In the lumped heat transfer model, a single zone is modeled as a thermal capacitor
and a wall is modeled as an RC network. This results in the standard lumped 3R2C
wall model [22]. The heat flow modeling is based on temperature difference and
thermal resistance: Q = DT/R, where DT is the temperature difference, R is the
thermal resistance and Q is the heat transferred across the resistance. This is anal-
ogous to the current due to voltage difference across a resistor. Also, note that the
thermal capacitance denotes the ability of a space to store heat: C dDT

dt = Q.
The heat flow and thermal capacitance model can be written for all the thermal

capacitors in the system, with Ti as the temperature of the ith capacitor. Consider
the system to have n thermal capacitors and l thermal resistors. Taking the ambient
temperature (T•) into account, and neglecting any “thermal noise” in the system, we
can write the overall heat transfer model of the system with m zones as [14]:

CṪ =�DR�1DT T +B0T• +Bu (4)

where T 2Rn is the temperature vector (representing the temperature of the thermal
capacitors in the model), u 2 Rm is the vector of heat inputs into the different zones
of the building, and B 2 Rn⇥m is the corresponding input matrix. Also, note that
(T,u) are functions of time (T (t),u(t)) and accordingly Ṫ = dT

dt . Note that positive
values of u correspond to heating the system while negative values of u correspond
to cooling. In the above equation, C 2 Rn⇥n consists of the wall capacitances and
is a diagonal positive definite matrix; R 2 Rl⇥l consists of the thermal resistors in
the system and is a diagonal positive definite matrix as well. Also, D 2 Rn⇥l is the
incidence matrix, mapping the system capacitances to the resistors, and is of full
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row rank [19], and B0 = �DR�1dT
0 2 Rn is a column vector with non-zero elements

denoting the thermal conductances of nodes connected to the ambient.
In our model, the zones are picked such that each of them has a heating/cooling

unit, which in turn implies that B is of full row rank. Also, since matrix D is of
full row rank the product DR�1DT is a positive definite matrix. The vector of zone
temperatures, denoted by y (which is a function of T ) can be expressed as,

y = BT T. (5)

3 Singular Perturbation Method

In this section we present a novel algorithm using gradient optimization and ana-
lyzed with singular perturbation theory. The user input when combined with the
resulting energy cost, determines the direction in which the energy control input is
adjusted. We consider a multi-zone building, and use a lumped heat transfer model
based on thermal resistance and capacitance for system analysis. Collecting user
feedback before the system has settled down sufficiently close to the equilibrium
value (for a given control input) is problematic however, as such user feedback do
not correctly reflect the effect of the current control input on user discomfort. This
implies that for convergence of our control algorithm to the optimal, sufficient sep-
aration between the user feedback frequency and the dynamics of the system is
necessary. We use singular perturbation theory to analyze the system, with tempera-
ture evolution on a faster time scale and user input on a relatively slower time scale.
With such time scale separation, we establish the stability condition under which
the proposed control algorithm achieves convergence to a desired temperature that
minimizes the sum of total energy cost and the aggregate occupant discomfort. We
run simulations (using parameters of our smart building testbed) as well as conduct
experimental study in the testbed to establish viability and evaluate the performance
of our proposed algorithm.

3.1 Solution Approach

Using equilibrium condition (setting Ṫ = 0 in (4)) we obtain:

T = h(u) = (DR�1DT )�1(B0T• +Bu). (6)

Define, J(u) =U(u,h(u)), (7)

i.e., J(u) is obtained by plugging in T = h(u) from (6) into (2). Note that energy
cost term in (2) is strictly convex in u; and the aggregate occupant term is convex
in T , and therefore convex in u when T is set to h(u), since h(u) is affine in u.
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This implies that J(u) is strictly convex in u. Therefore J(u) has a unique optimal
solution u⇤. Define

T ⇤ = h(u⇤), (8)

which is also unique by definition.
With the goal of driving the system to (u⇤,T ⇤), we propose the control input u be

updated once every D time units as

uk+1 = uk �h
�
G u+YLF(y)

�
, (9)

where h is a scalar that can be loosely interpreted as the “feedback gain” of the
system.

Furthermore, Y 2 Rm⇥m in the above is the Jacobian obtained using (5) and the
equilibrium condition (6), expressed as

Y = (
∂y
∂u

) = BT (DR�1DT )�1B. (10)

Also, L 2 Rm⇥r is the zone-occupant matrix that indicates which occupants are
present in a zone (L js = 1 if s 2 S j, and 0 otherwise), and F(y) 2 Rr⇥1 is the
“marginal discomfort” vector of the occupants, obtained by taking partial derivative
of the occupant discomfort functions with respect to y.

In other words, the sth element of F(y), where s 2 S j, is obtained as

Fs(y j) =
dDi(y j)

dy j
, s 2 S j. (11)

Comparing (9) with (2) provides the motivation of our control algorithm: roughly
speaking, (9) updates u in the gradient direction of U(u,T ), while taking in account
the relationship between T and u at equilibrium, as given by (6). In other words,
it attempts to update u is the direction of �—J(u), where J(u) is defined by (7). In
this interpretation, h represents the constant “step size” associated with the gradient
descent.

Note however that using (2) - (7), —J(u) is expressed as:

—J(u) = G u+YLF(BT h(u)). (12)

From (12) we note that update of u in the gradient direction of J(u) requires
user discomfort feedback at y = BT h(u), the equilibrated zone temperatures corre-
sponding to u. In practice, however, a user s 2 S j will provide a comfort feedback
at the current temperature it experiences, y j = [BT T ] j (different in general from the
equilibrated temperature [BT h(u)] j), which is what we incorporate into our control
algorithm as stated in (9). This implies that our control algorithm as described in (9)
does not exactly move u in the gradient direction (�—J(u)).

The effect of this difference (error) can be analyzed using singular perturbation
theory [43], [44], which in our case requires (for convergence to optimality) that
the occupant feedback be collected after long intervals (i.e. D is large), allowing
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the temperature T to settle down close to h(u) before the next occupant feedback
collection.

Towards developing a singular perturbation model of our system, we first con-
sider a continuous approximation to the evolution of the control input u:

u̇ ⇡ uk+1 �uk

D
=�h

D

⇣
G u+YLF(y)

⌘
. (13)

Note that time step D is the interval at which user feedback is solicited and the
control input u is updated.

A larger D implies a slower evolution of u.
We next express the system evolution in the time scale of the evolution of u

(slower time scale as compared to the time scale at which T evolves).
Define e = 1

D as the perturbation parameter; then t = t
D = et is the slower time

scale. Then

dt
dt

= e =) u̇ =
du
dt

= e
�du

dt
�
; Ṫ =

dT
dt

= e
�dT

dt
�
. (14)

Control input equation (13) can now be expressed in terms of t as follows, using the
fact that y = BT T :

du
dt

=�h
⇣

G u+YLF(BT T )
⌘
. (15)

Similarly, equation (4) modeling the temperature evolution of the building can now
be expressed as:

Ce dT
dt

=�DR�1DT T +B0T• +Bu. (16)

Equations (15) and (16) represent a singularly perturbed system. Note, D "=) e #
leading to steady state condition for temperature evolution. In the next section as we
establish the global asymptotic stability of our system as given by equations (15)
and (16).

Finally, note that implementation of our control algorithm would require that
Fs(y j), the “marginal discomfort” value of user s in zone j at the current zonal tem-
perature y j = [BT T ] j, be reasonably estimated from the discomfort feedback of s
at any time. In practice, the occupants may provide the feedback in some simple
form describing their actual level of discomfort (“I am feeling hot”, “I am feeling
very cold” etc.). This feedback must be processed to estimate the marginal discom-
fort (derivative of the actual discomfort function), as we do in our simulation study
described in Section 5.

3.2 System Analysis

The system evolution is governed by the set of equations (15) and (16). In equation
(16) the coefficient DR�1DT is positive definite which makes the unforced system
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(with u = 0) exponentially stable. We use singular perturbation analysis [44] to es-
tablish the condition for stability of the system.

Theorem 1 There exists an e⇤ > 0 such that (u⇤,T ⇤) is a globally asymptotically
stable equilibrium of the system given by (15) and (16) for all e < e⇤.

We just introduce the Lyapunov functions V (u) and W (u,T ) that is used in the
stability analysis:

V (u) = J(u)� J(u⇤), and (17)

W (u,T ) = (T �h(u))T P(T �h(u)), (18)

where P in the above equation is a symmetric positive definite matrix (the exact
choice of matrix P will be determined at a later stage). We now define a combined
Lyapunov function L(u,T ):

L(u,T ) = (1�a)V (u)+aW (u,T ), (19)

where a satisfies 0 < a < 1.
Detailed analysis involves evaluating the conditions to establish stability using

Theorem 2.1 and Corollary 2.1 from chapter 7 of [44], and can be referred to in our
work [42]. Finally, note that L(u,T ) is minimized uniquely at (T ⇤,u⇤). It follows
therefore that (T ⇤,u⇤) is a globally asymptotically stable equilibrium point for all
e < e⇤, or all D > D ⇤.

4 Consensus Algorithms

In the singular perturbation method, the occupants have no incentive to provide
truthful feedback. A malicious user can gain the system by providing irrational feed-
back. Moreover, users or their agents have to provide constant feedback to maintain
the temperature at their desired levels. We address these drawbacks through our
consensus algorithm developed in this section.

Achieving a common temperature set-point in a distributed framework, where
the exact discomfort functions are held privately by each occupant, remains an
open question which we address in this section. Pricing per unit temperature change
serves as the feedback signal to the occupants, to drive them to a consensus on zonal
temperatures that optimize the overall discomfort plus energy cost. The consensus
algorithm that we develop, through the use of the alternating direction method of
multipliers (ADMM), is amenable to distributed implementation and has the fol-
lowing appealing properties. Firstly, occupants (or their agents) are only assumed to
be rational, in that they choose their preferred temperature set- points so as to min-
imize their personal discomfort plus energy cost, given the pricing signals. In other
words, the occupants are not required to explicitly declare their discomfort func-
tions (which can be held privately), but only react rationally to the pricing signals
by choosing their preferred temperature set- point. On the other hand, the build-
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ing thermal management system (BTMS) chooses the zonal temperature set-points
to maximize the overall profit of the building operator (for the current prices); the
price signals are then updated so as to attain consensus among the occupants, and
with the building operator, on the zonal temperatures. Finally, as we formally show,
the algorithm converges to the optimal zonal temperatures, from which rational oc-
cupants would not have any incentive to deviate. In terms of practical implementa-
tion, occupant feedback could be obtained through a smart phone application, and
the zonal temperature set-points could be calculated by the building operator on a
central server.

4.1 Solution Approach

If the individual occupant discomfort functions are assumed to be known to the
building operator, the optimal zonal temperature vector y⇤ could be computed di-
rectly. Such a centralized approach suffers from several practical limitations, how-
ever. Firstly, reporting the entire discomfort function to the building operator is
complex, and the occupant may not even be able to correctly estimate its discom-
fort function. Secondly, even if we assume that the occupant knows its discomfort
function exactly, there is no incentive for it to report the same truthfully. In practice,
therefore, it may be more desirable to have a mechanism through which the building
operator indirectly learns about the true discomfort functions of the occupants, who
are providing their temperature preference feedback in a simple and convenient for-
mat, acting in best response to some price signals provided by the building operator.
Furthermore, the price signals should be such that it guides the occupants towards a
consensus, i.e., rational users (acting in self-interest) in a zone will end up agreeing
on their temperature choice for each zone. The distributed consensus algorithm that
we describe in the next subsection works according to the above principles.

To provide an overview of our approach, we first introduce new notations to de-
note the choice of zonal temperatures by the occupants and the building thermal
management system (BTMS); these temperature choices will in general be different
from the actual (current) zonal temperatures. Let xi j denote the desired temperature
of occupant i 2 S j located in zone j. Let z j denote the target temperature of zone
j as set by the BTMS. Then vector z represents the target temperature of the entire
building consisting of m zones. In general, xi j for any occupant i 2 S j can differ
from z j; the actual zonal temperature y j could also differ from these temperatures.
On convergence however, the consensus algorithm ensures that xi j for all occupants
i 2 S j equals z j, which optimizes the objective function in (2). The zonal tempera-
tures obtained through consensus is then attained in the building by utilizing some
temperature set-point based HVAC control system.

In the distributed consensus algorithm, the BTMS provides pricing signal pi j and
target zonal temperature z j to each occupant i located in zone j. Based on that, oc-
cupant i chooses its desired temperature xi j and sends it back to the BTMS, which is
then used to recompute the new target zonal temperatures and pricing signals. Fig-



Human-in-the-loop Thermal Management for Smart Buildings 13

Fig. 2 Distributed consensus algorithm flow between the building occupants and the central build-
ing management system.

ure 2 provides an overview of how the distributed consensus algorithm works. Upon
convergence of the distributed consensus algorithm, let x⇤, z⇤ and p⇤ respectively de-
note the (vectors of) occupant temperature choices, zonal target temperatures, and
pricing signals. Then we desire that x⇤, z⇤, p⇤ satisfy the following properties:

• (Individual Rationality) Each occupant chooses its desired temperature so as to
minimize its total cost function, represented as the sum of its discomfort plus the
energy price paid to the building operator:

x⇤i j = argmin
xi j

�
Di(xi j)+ pi j(xi j � z j)

 
.

• (Consensus) For each zone, the temperature choices of the occupants of the zone
agree with each other, and with the target zone temperature set by the BTMS:

x⇤i j = z⇤j , 8i 2 S j.

• (Optimality) The target zone temperatures minimize the aggregate occupant dis-
comfort plus the building energy cost, given by (2):

z⇤ = argmin
z

m

Â
j=1

Â
i2S j

Di(z j)+E(g(z)).

4.1.1 Distributed Consensus Algorithm

To develop the consensus algorithm, we re-write the minimization objective in (2)
in terms of the zonal temperature choices of the occupants and the BTMS, as:
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minimize
m

Â
j=1

Â
i2S j

Di(xi j)+G(z)

subject to xi j = z j, i 2 S j, (20)

where function G(z) = E
�
g(z)

�
represents the total energy cost in terms of the target

zonal temperature vector z.
We can now solve (20) through the ADMM approach as described in [48]. The

ADMM approach blends the decomposability of dual ascent with the superior con-
vergence properties of the method of multipliers, to develop an algorithm that is
amenable to distributed implementation, and also has good convergence properties.

To motivate the ADMM based consensus algorithm, let us consider the aug-
mented Lagrangian:

Lr(x,z, p,r) =
m

Â
j=1

Â
i2S j

⇣
Di(xi j)+ pi j(xi j � z j)+

(r/2)|xi j � z j|2
⌘
+G(z) (21)

where pi j is the dual variable, r > 0 is a constant.
The ADMM based consensus algorithm can then be derived as iterations of

coordinate-wise optimization of this augmented Lagrangian along each xi j and z
directions, followed by update of the dual variable in a gradient direction. More
precisely, in our consensus algorithm, in iteration k = 1,2, . . ., the variable vector z,
and the variables xi j, pi j for all i 2 S j, j = 1, . . .m, are updated as follows:

xk+1
i j := argmin

xi j

⇣
Di(xi j)+ pk

i jxi j +(r/2)|xi j � zk
j|2
⌘
, (22)

zk+1 : = argmin
z

⇣
G(z)+

m

Â
j=1

�
� Â

i2S j

pk
i jz j

+ Â
i2S j

(r/2)|xk+1
i j � z j|2

�⌘
, (23)

pk+1
i j := pk

i j +r(xk+1
i j � zk+1

j ). (24)

The above set of update equations has a nice game theoretic (price-driven
rational-response) interpretation, as follows. The BTMS iteratively communicates
to each occupant i in any zone j two parameters, pi j and z j, based on which the oc-
cupant’s cost (price paid) for a chosen temperature set-point xi j would be computed
as pi jxi j +(r/2)|xi j � z j|2. A rational occupant then chooses its personal tempera-
ture preference xi j to minimize their individual cost function:

minimize Di(xi j)+ pi jxi j +(r/2)|xi j � z j|2. (25)
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The BTMS, acting on behalf of the building operator, would choose the target build-
ing temperature vector z so as to minimize

minimize G(z)�hp,zi+(r/2)|x� z|2, (26)

which on convergence (when consensus is attained) would equate to the total energy
cost incurred by the building operator, when the payments made by the occupants
are taken into account. Finally, the per-unit prices (pi j) are updated in a way that
helps in the consensus, i.e., in bringing xi j and z j close to each other in each zone j,
for each occupant i 2 S j.

4.2 System Analysis

The convergence proof presented in this section assumes that the functions D(.) and
G(.) are closed, proper, and convex, and the un-augmented Lagrangian Lo in (27)
below has a saddle point.

Lo(x,z, p) =
m

Â
j=1

Â
i2S j

⇣
Di(xi j)+ pi j(xi j � z j)

⌘
+G(z). (27)

Based on these assumptions we establish the objective convergence, the residual
convergence, and the convergence of the dual variables, for our consensus algorithm
as described in Section 4.1.1. In doing so, we utilize the convergence analysis of the
ADMM approach as described in [21], suitably adapted to our model. Consider the
objective,

O⇤ = minimum
m

Â
j=1

Â
i2S j

Di(xi j)+G(z)

=
m

Â
j=1

Â
i2S j

Di(x⇤i j)+G(z⇤), (28)

where x⇤i j and z⇤ denote the corresponding optimal values of temperature choices.
Note that for any zone j, x⇤i j = z⇤j for all i 2 S j. Also, define residual for zone j as:

ri j = xi j � z j (29)

We prove our result through a sequence of lemmas, each involving an inequality
(refer to [47] for complete proof of the lemmas).

Lemma 1.
O⇤ �Ok+1 

m

Â
j=1

Â
i2S j

p⇤i jr
k+1
i j . (30)

Lemma 2.
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Ok+1 �O⇤  �
m

Â
j=1

Â
i2S j

⇣
pk+1

i j rk+1
i j

+r(zk+1
j � zk

j)(�rk+1
i j � (zk+1

j � z⇤j))
⌘
.

(31)

Next, define Lyapunov function V for the ADMM algorithm as:

V k = (1/r)
m

Â
j=1

Â
i2S j

|pk
i j � p⇤i j|2 +r

m

Â
j=1

|zk
j � z⇤j |2 (32)

This Lyapunov function satisfies the inequality as stated in the lemma below.

Lemma 3.
V k+1 V k �r

m

Â
j=1

Â
i2S j

|rk+1
i j |2 �r

m

Â
j=1

|zk+1
j � zk

j|2 (33)

Now, since V k V 0, pk
i j and zk

j are bounded. Iterating (33) gives:

r
•

Â
k=0

�
(rk+1

i j )2 + |zk+1
j � zk

j|2
�
V 0, (34)

which implies rk
i j ! 0 and |zk+1

j � zk
j|! 0 as k ! •. Further, from inequalities (30)

and (31) we have limk!• Ok = O⇤ or the objective convergence.
Hence, the inequalities (30), (31) and (33) implies the convergence of our algo-

rithm.

4.2.1 Profit Analysis for the Building Operator

Let the vectors y⇤ and p⇤ respectively denote the optimal zonal temperatures and
the optimal prices. It is easy to establish that the optimal pricing feedback signal p⇤i j
satisfies:

p⇤i j =�D0
i(y

⇤
j). (35)

We can further show that,

Â
i2S j

p⇤i j =
∂G(y⇤)

∂y j
. (36)

Now, we can obtain an expression for the difference of the net revenue from oc-
cupants and the operational cost of maintaining the building at the consensus tem-
perature set-point. Note, that this expression represents the operational profit of the
building operator and is given by:

Â
j

Â
i2S j

p⇤i j(y
⇤
j �T•)� (G(y⇤)�G(T•)). (37)
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Using Taylor series:

G(T•) = G(y⇤)+(T• � y⇤)T —G(y⇤)

+
1
2
(T• � y⇤)T —2G(y⇤)(T• � y⇤), (38)

the building operator’s profit can be further expressed as:

1
2
(T• � y⇤)T —2G(y⇤)(T• � y⇤). (39)

Since G(y) is convex in y, —2G(y⇤)� 0, and (39) is upper bounded by  lmax
2 ||y⇤ �

T•||2, where lmax is the maximum eigenvalue of —2G(y⇤). From (39) we can assert
that if the pricing signals were to be translated to real money (or equivalent credit)
transaction between the building operator and the occupants, he building operator
does not lose money, and instead may end up making a small profit that is bounded
by the convexity of the energy cost function G(y). The expression in (39) equals
zero (= 0) when G(y) is affine in y. Therefore, when G(y) is affine in y, perfect
budget balance is attained, i.e. payments (credits) of the users are just redistributed
between themselves, and the building operator does not make any profit or loss.

5 Simulation Study

5.1 Testbed Layout

We consider our six zone physical testbed of an intelligent building located in Wa-
tervliet, NY for simulation and experimental study of our proposed algorithm and
validating performance of the same. Figure 3 represents the dimensions of the facil-
ity as generated using the BRCM toolbox [45]. BRCM toolbox is used to generate
the RC model of the six zone test facility, mapping it to 31 building elements result-
ing in a total of 93 capacitive elements.

Each zone of the testbed (except for zone 2, which is the hallway) is actuated
with thermo electric coolers. Real time temperature sensing is enabled through J-
type thermocouples spread across the test facility. Sensor data is acquired through
wireless communication in real time to a central server, which also runs the control
loops to operate the coolers and achieve the desired ambient condition. Further de-
tails of the test bed layout, instrumentation, and software architecture can be referred
to in [46].

The simulated occupancy of the building is represented in Figure 4. Zones 1 and
6 are occupied by two occupants each and the other zones 3, 4 and 5 have one
occupant each. Occupants U1 and U2 are in Zone 1, U3 in Zone 3, U4 in Zone 4,
U5 in Zone 5, and finally U6 and U7 in Zone 6.
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Fig. 3 Watervliet based smart building test bed with the building elements as generated by the
BRCM Toolbox. This set up is used for the simulation and experimental study of the solution
framework.

Fig. 4 Layout of the Watervliet test facility with the simulated occupancy pattern of each zone
used for simulation and experimental study.
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All the occupants have their own specific temperature preference as depicted in
Figure 5. Note that the occupants U1 and U2 co-located in Zone 1 have no common
range of comfort preferences, whereas the occupants U6 and U7 co-located in Zone
6 have an overlapping region of comfort preference. This distribution enables us
to capture all possible scenarios in terms of conflicting and common preferences
among co-located occupants.

Fig. 5 Preferred temperature comfort range of each occupant in � C. U6, U7 in Zone 6 have an
overlapping comfort preference, whereas U1, U2 in Zone 1 have no common range.

5.2 Simulation Results

For simulation purpose we consider both heating and cooling actuation in each zone
with a typical power rating of 1000 W. The system dynamics and the control algo-
rithm are simulated using MATLAB and SimuLink. Using the occupancy distribu-
tion as per Figure 4, occupant preference from Figure 5 and the model parameters for
the Jacobian generated using BRCM toolbox, we first simulate temperature dynam-
ics for a 48 hour period with a fixed ambient condition of 30�C. Figure 6 represents
the temperature dynamics for the 48 hour period simulation run.

The temperature of zone 6 settles at 21�C, which is acceptable to both the oc-
cupants U6 and U7, and simultaneously energy optimal being closer to the ambient
temperature. Note that anything between 19�C to 21�C would have been comfort-
able for both U1 and U2 based on their comfort preferences, with 21�C being op-
timal for the given ambient condition. Zone 1 settles around 25.5�C, which tends
to minimize the aggregate discomfort of both users U1 and U2 and simultaneously
minimizes energy consumption considering the thermal correlation among all the
zones. Similarly, the temperature of other zones also settle at a point to minimize
aggregate occupant discomfort and the energy cost. In this simulation we also set
the initial condition of each zone to the ambient temperature as that represents the
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Fig. 6 Temperature dynamics for a 48 hour period simulation with ambient condition higher than
the occupant preferences with occupancy pattern as per Figure 4.

extreme scenario, thus providing a good performance evaluation of the proposed
algorithm. In most practical condition the initial zonal temperatures would be much
closer to the corresponding desired temperatures.

To demonstrate the energy saving in this scenario, we compare it to the prevalent
set point based method of temperature control in buildings. With the given occu-
pant preferences, set point method would consider the mid point of each occupants
comfort range as the zonal set point. In case of multiple occupants an average of
the occupant set point can be used. Using this approach the corresponding zonal
set points are presented in Table 1. Compared to the set point based approach, our
algorithm achieves energy optimal temperature for the zones and in this particular
case results in an energy saving of 12.1%.

Table 1 Temperature set point for each zone when using the set point based method of building
temperature control.

Location Occupant set points
(� C)

Zonal set points (�
C)

Zone 1 24.25, 26.5 25.4
Zone 3 21.5 21.5
Zone 4 24 24
Zone 5 23 23
Zone 6 20.5, 19.5 20
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Next we simulate another case with fixed ambient temperature at 15�C. The cor-
responding temperature dynamics are represented in Figure 7. Note that in this case
the temperature of Zone 6 settles at 19�C, compared to 21�C in Figure 6 as 19�C is
more energy optimal for the ambient condition of 15�C.
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Fig. 7 Temperature dynamics for a 48 hour period simulation with ambient condition lower than
the occupant preferences with occupancy pattern as per Figure 4.

Fixed ambient temperature is an over simplification and does not represent true
variations in ambient conditions. Next, we consider a sinusoidal variation of the am-
bient with T• taking the form: T• = 20�C+5�Csin(2pt/t 0), with t 0 = 24 hr. The cor-
responding temperature dynamics are presented in Figure 8. The control algorithm
lets the zonal temperature vary with ambient till it hits the comfort limit, at which
point appropriate heating/cooling input is applied. This approach is more optimal
than maintaining a fixed set point as it harnesses the ambient variation without the
need to constantly re-adjust the fixed set point. For our particular setup we observed
a relative energy saving of 5.3%.

Another simplification that has been applied to our study so far has been the un-
interrupted occupancy of the occupants throughout the period of 48 hours. We next
consider a typical work environment occupancy schedule of the occupants entering
their respective zones at 9 am in the morning and departing at 5 pm in the evening.
Further, we also consider lunch time and simulate non occupancy during 12 to 1 pm.
In the evening after 5 pm we increase the heat cost factor G . For the lunch break heat
cost factor remains unchanged but due to non-occupancy no occupant feedback is
generated. The results are presented in Figure 9.

Due to increase in energy cost factor after 5 pm, the zonal temperatures tend to
follow ambient variation resulting in immense energy savings. The kink in Zone 1
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Fig. 8 Temperature dynamics for a 48 hour period simulation where ambient condition follows a
sinusoidal variation with period of 24 hours with occupancy pattern as per Figure 4.
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Fig. 9 Temperature dynamics corresponding to 48 hour simulation of occupancy schedule along
with sinusoidally varying ambient with occupancy pattern as per Figure 4. Energy cost is increased
between 5 pm to 9 am with no occupant feedback during lunch time.

and Zone 6 temperatures during lunch time is attributed to thermal correlation as no
occupant feedback is generated resulting in temperature variation as per prevailing
thermal conditions. Compared to a set point based approach (with predetermined
energy saving set point after 5pm) this approach can result in energy savings of
6.1%. Note that if the set point based approach does not implement energy sav-
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ing mode after 5pm then the relative saving through our approach would be even
higher. Compared to scenario in Figure 8 additional energy saving can be attributed
to efficiency during lunch break.

Table 2 Ideal temperature setting in �C of each zone as per its occupant and the building operator
Zone Occupant(s)

pref
Building Operator pref

Zone 1 18.5 & 19�C 15�C
Zone 3 20�C 15�C
Zone 4 21�C 15�C
Zone 5 22�C 15�C
Zone 6 22.5 & 23�C 15�C

In Figure 10 we present the result of the distributed consensus algorithm using
ADMM approach. Each zone (room) occupant agent starts with the ideally preferred
temperature set-point of the corresponding occupant as per Table 2 and the BTMS
with the preferred set-point of the building operator for the corresponding zones.

Each iteration in Figure 10 represents one round of communication (computa-
tion) between (at) the smart applications and the BTMS. So 100 iterations would
represent 100 round-trip communication (100 computation) rounds, and typically
evaluate to a few seconds. The occupant at their end would only see the final (con-
verged) temperature and penalty factor signal, the intermediate values being internal
to the algorithm would not be visible to the occupants.

With each iteration of the algorithm, the difference between the corresponding
zonal temperature preference of the occupant and that of the BTMS narrows and
finally compromise is attained in all the zones. Note that in Figure 10 the consensus
temperature of zone 6 comes down to that of zone 5, irrespective of the zone 6
occupants preferring much higher temperature than the occupant of zone 5. This
is in accordance with the energy cost attributed to maintaining zone 6 relative to
zone 5. The trend can also be reasoned from the penalty factor curve in Figure 11,
as the penalty factor feedback to zone 6 occupants is much higher compared to the
occupant of zone 5. Further, the consensus temperature for both the occupants of
zone 1 and zone 6 converge to the respective consensus zonal temperature.

The penalty factor for unit change in temperature varies with each iteration, as
shown in Figure 11. The penalty factor increases for the zone occupant if the tem-
perature choice is away from the BTMS’ preference and the ambient temperature.
In Figure 11 the per-unit penalty factor for occupant 1 (located in zone 1) turns neg-
ative. This can be attributed to the fact that on consensus, the temperature for that
zone moves away from the ambient and building operator’s preferred temperature
for the zone, even beyond the occupant’s preferred value.

The penalty factor signals in the form of notifications/information can serve as a
means for the building operator to communicate with rational occupants into select-
ing a lower/higher preferred temperature. An occupant of a particular zone might
not be aware of their zone’s thermal correlation and the temperature preference of
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Fig. 10 Convergence of temperature set-point preferences in each zone, for the occupants and
the BTMS. The solid lines depict the occupant temperature preferences, and the dashed ones the
BTMS’ corresponding preferences.

the occupants of their neighboring zones. However, the building operator based on
the energy cost data can share that picture with the occupants, through penalty factor
signal, without disclosing any private information. Using this information, rational
occupants and the building operator can work together to modify their preference
and accommodate users with different and at times extreme (which in general incurs
greater overall operating energy cost to the building) thermal preferences.

6 Concluding Remarks

In this chapter we have demonstrated that the building temperature and energy usage
can be controlled successfully and efficiently through dynamic feedback from the
occupants based on their comfort levels. The collaborative temperature control in
multi-occupant spaces based on the consensus algorithm attains temperature set-
points that minimizes the sum of the aggregate discomfort of the occupants and the
total energy cost in the building. Through simulations we demonstrated the energy
efficiency achievable through our algorithms.

Key to real world implementation would be an end-to-end framework designed
for enabling occupant feedback collection and incorporating the feedback data to-
wards energy efficient operation of a building. A mobile application that occupants
can use on their smart phones and other wearables to provide their thermal prefer-
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Fig. 11 Variation in penalty factor for the zone occupants for desired change in the zonal temper-
atures. A negative penalty factor indicates the corresponding occupant receiving reward from the
building operator.

ence feedback would be needed, that can also use indoor location techniques to tie
the occupant preference to their current thermal zone when relaying the feedback to
central server. Using sensors for real time zonal temperature readings, and based on
the information from mobile application the central server can use real-time learn-
ing algorithm to learn the environment and using occupant feedback calculates the
optimal temperature set point. The entire process needs to be triggered upon change
of occupancy, environmental conditions, and/or occupant preference. The learning
algorithm can be scheduled to run at regular intervals to respond dynamically to
environmental and occupancy changes.
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