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Abstract

In this paper, we address the spectrum portfolio optimization (SPO) question in the context of secondary

spectrum markets, where bandwidth (spectrum access rights) can be bought in the form of primary and secondary

contracts. While a primary contract on a channel provides guaranteed access to the channel bandwidth (possibly at

a higher per-unit price), the bandwidth available to use from a secondary contract (possibly at a discounted price)

is typically uncertain/stochastic. The key problem for the buyer (service provider) in this market is to determine

the amount of primary and secondary contract units needed to satisfy its uncertain user demand.

We formulate single and multi-region spectrum portfolio optimization problems as one of minimizing the cost

of the spectrum portfolio subject to constraints on bandwidth shortage. Two different forms of bandwidth shortage

constraints are considered, namely, the demand satisfaction rate constraint, and the demand satisfaction probability

constraint. While the SPO problem under demand satisfaction rate constraint is shown to be convex for all density

functions, the SPO problem under demand satisfaction probability constraint is not convex in general. We derive

some sufficient conditions for convexity in this case. We also discuss application of the Bernstein approximation

technique to approximate a non-convex demand satisfaction probability constraint by a convex constraint. The SPO

problems can therefore be solved efficiently using standard convex optimization techniques. We then consider a

discrete version of the SPO problem, in which the primary and secondary contracts can bought/sold in discrete

units. We study the submodularity property of the discrete SPO problem and discuss a branch-and-bound algorithm

algorithm to solve it efficiently. Finally, we perform a thorough simulation-based study of the single-region and the

multiple-region problems for different choices of the problem parameters, and provide key insights regarding the

portfolio composition. We provide several insights about the scaling behavior of the unit prices of the secondary

contracts, as the stochastic characterization of the bandwidth available from secondary contracts change.
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I. INTRODUCTION AND BACKGROUND

The number of users of the wireless spectrum, as well as the demand for bandwidth per user, has been

growing at an enormous pace in recent years. Since spectrum is limited, its effective management is vitally

important to meet this growing demand. The spectrum available for public use can be broadly categorized

into the unlicensed and licensed zones. In the unlicensed part of the spectrum, any wireless device is

allowed to transmit. To use the licensed part, however, license must be obtained from appropriate govern-

ment authority – the Federal Communications Commission (FCC) in the United States, for example – for

the exclusive right to transmit in a certain block of the spectrum over the license time period, typically for a

fee. While spectrum management in licensed bands has mostly been controlled by responsible government

bodies, the need for bringing market based reform in spectrum trading is being increasingly recognized [1],

[2], [3]. In order to achieve spectrum-usage efficiency, spectrum markets should allow dynamic trading of

spectral resources and derived contracts of different risk-return characteristics. Providers can then choose

to buy/sell one or more of these spectrum contracts depending on the level of service they wish to provide

to their customers.

We consider a spectrum market in which a wireless service provider (buyer) can purchase spectrum

access rights from another provider (seller) in the form of two types of spectrum contracts: primary

contract and secondary contract. Typically, the buyer will be a smaller local or regional provider, buying

access rights over its operational area from a larger regional or national provider which acts as the seller,

although the framework and results that we present in this paper does not make any such assumption.

Primary contract offers unrestricted access rights on a channel – a specific channel or one of a set of

channels “owned” by the seller. On the other hand, secondary contract offers restricted access rights on

a channel or a set of channels – it provides access to the “leftover” bandwidth on the channel(s) that the

primary users of the channel(s) do not need at that specific time. At their core, primary and secondary

contracts differ in the risk-return tradeoff that they provide. A primary contract represents a risk-free

contract in terms of its bandwidth return characteristics, while the secondary contract is inherently risky

in terms of the bandwidth it can provide. Primary contracts would generally be more expensive (in terms

of cost per unit contract), since they provide full access rights. Secondary contracts would typically be

cheaper due to their riskiness. These two contracts represent two fundamental forms of spectrum access

contracts – analogous to bonds and stocks in terms of the risk characteristics. In financial markets, it is

well known that bonds and stocks help investors achieve their desired risk-return tradeoff on investment.
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Similarly, we envisage that the wireless service providers can efficiently tradeoff the level of service they

wish to provide against their cost by using these two types of contracts.

A key challenge for a provider in this market is to determine an appropriate mix (i.e. a portfolio) of

primary and secondary contracts that can provide the desired level of service to its users at a low cost. We

formulate and study this Spectrum Portfolio Optimization (SPO) problem from the perspective of a buyer.

In standard financial portfolio optimization, the objective is to maximize the expected portfolio return

while satisfying a constraint on the variance of return. In the spectrum market context, minimizing the

cost of the portfolio is a more reasonable objective. Furthermore, the constraint in the SPO problem can

be specified meaningfully in two ways – either in terms of the expected bandwidth shortage, or in terms

of the probability of bandwidth shortage. We refer to these constraints as the demand satisfaction rate

constraint and the demand satisfaction probability constraint, respectively. We study the SPO problem

under the two constraints separately.

The technical contributions of this paper are as follows. Firstly, we show that the SPO problem

under demand satisfaction rate constraint is convex under any assumptions on the user demand and

the bandwidth return distributions. Secondly, we show that the SPO problem under demand satisfaction

probability constraint is not convex in general, and also derive sufficient conditions on the demand

density functions for convexity to hold. The motivation behind showing convexity of the optimization

problems is that convex problems can be solved efficiently using standard techniques such as gradient

descent and Newton’s methods, whereas there are no general techniques for solving non-convex problems

efficiently. We also discuss application of the Bernstein convex approximation technique in cases where

the demand satisfaction probability constraint is non-convex; this technique aproximates a non-convex

probability constraint by a convex expectation constraint. In the next step, we extend the SPO problem

and the convexity results to a multiple-region scenario, where the buyer’s portfolio is intended to serve

a set of disjoint geographical locations, each having its own user demand, using available primary and

secondary contracts that provide access rights only over subsets of all locations of interest. We then

consider an integer programming formulation of the SPO problem, since the primary and secondary

contracts can be bought/sold only in discrete units in an operational spectrum market. We show that the

discrete SPO problem is not submodular and discuss a branch-and-bound algorithm algorithm to solve

it efficiently. Finally, we perform a detailed simulation-based study of the single and the multiple-region

SPO problems and provide insights about the portfolio composition and the price characteristics of the
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secondary contracts.

Economics of spectrum allocation and auction mechanisms have been discussed widely in the literature

[4], [5], [6], [7]. Spectrum sharing games and/or pricing issues have been considered in [8], [9], [10], [11].

Discussions and recommendations for transition to spectrum markets and secondary markets for spectrum

trading have emerged [12], [13], [14]. In [14], the authors consider a spectrum secondary market analogous

to the stock market for dynamically trading their channel holdings. The proposed auction-based market

mechanism is shown to improve user performance and spectrum utilization. However, a clear design of

the contract types and tradeoff analysis using portfolio theory have not been considered before. In [15],

the authors propose a wireless spectrum market with two types of contracts, namely, the long-term and the

short-term contract, and study the structural properties of the optimal dynamic trading strategy. Unlike the

short-term contract defined in [15], the amount of bandwidth available for access from a secondary contract

is a random variable. Moreover, the problem addressed in this paper is the spectrum portfolio optimization

question over a single period and is different from the multi-period trading question considered in [15].

Portfolio optimization problem has been studied extensively in finance since the development of the

mean-variance optimization framework in [16]. Several attempts have been made to improve the model

and the risk measure [17], [18], [19], [20]. In [20], the authors propose a new measure of risk, namely,

the expected shortfall and show that the problem of minimizing expected shortfall subject to a linear

equality constraint is convex. The expected shortfall function considered in [20] measures the shortfall of

return with respect to the α-quantile of the return distribution. But the demand satisfaction rate constraint

that we consider measures the shortfall of the bandwidth return relative to a stochastic quantity, and is

therefore different from the shortfall function in [20]. However, we are still able to make use of some

of their analysis techniques to our problem. Probabilistic constraints have not been studied much, until

recently in [21] and [22]. In [21], the authors study probabilistically constrained linear programs and

present conditions for convexity of the constraint. While we apply some of their results in our context,

we also provide additional conditions for convexity on the SPO problem with the demand satisfaction

probability constraint.

The novelty of our contribution stems from the following aspects. Though the notion of primary and

secondary users and their spectrum access rights have been extensively discussed recently, our modeling

of these access rights as bond-like riskless and stock-like risky contracts, and the rigorous formulation

of the spectrum portfolio optimization problem, are novel. Convexity of various versions of the portfolio
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optimization question have been studied in the finance and optimization literature; however, very limited

results exist on the specific demand satisfaction constraints that appear meaningful in the spectrum access

context. We provide several interesting results for the SPO problem with such constraints in this paper. The

formulation and analysis of the multi-region SPO problem, and the insights obtained from our numerical

studies, also constitute novel contributions of this work.

The rest of the paper is organized as follows. In Section II, we formally define the SPO problems under

demand satisfaction rate and probability constraints. In Sections III and IV, we study the convexity of

the two SPO problems under the two types of constraints. In Section VI, we consider a discrete version

of the SPO problem and study its submodularity properties. In Section V, we study the multiple-region

SPO problem. In Section VI, we study the SPO problem with discrete portfolio constraints. Finally, in

Section IX-A, we present the simulation results.

II. SPECTRUM PORTFOLIO OPTIMIZATION PROBLEM FORMULATION

In this section, we formally define the spectrum portfolio optimization (SPO) problem for a single region.

The formulation and discussion of the multi-region SPO problem is deferred to Section V. Although not

necessary for the mathematical formulation or subsequent analytical treatment of the SPO problem, it

is easy to motivate the development of the framework by considering a (secondary) spectrum market

in which N “higher level” spectrum providers are selling access contracts in the form of primary and

secondary contracts to other “lower level” providers. These seller spectrum providers will typically be

large providers (like VerizonWireless, AT&T, and Sprint in the US for example) who have directly leased

spectrum from the governing body (like FCC), and might want to offer their excess bandwidth in the

form of primary and secondary contracts. The buyers of the contracts can be smaller, possibly local or

smaller regional wireless spectrum service providers who are trying to obtain bandwidth at the cheapest

price to serve their user (customer) demand. We assume that primary and secondary contracts can be

obtained in multiple units. Without loss of generality, we can assume that each unit of primary contract

provides exclusive access to 1 unit of bandwidth in some channel that the seller provider operates on. On

the other hand, each unit of secondary contract provides exclusive access to bandwidth that is a random

variable varying between 0 and 1 unit. While this assumption is for the ease of exposition, it can be

easily generalized. A simple way to view this setting would be to consider a seller provider having C

units of bandwidth, offering C units of primary and C units of secondary contracts. If in any time slot,

the primary contract holders in totality use α < C units of bandwidth, each unit of secondary contract
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has access to 0 < (C − α)/C < 1 units of bandwidth. A buyer holding x units of secondary contracts

with this seller provider will then have access to x(C − α)/C units of bandwidth in that time slot.

Note that we are associating contracts – primary or secondary – with the seller providers, not specific

channels. All primary contracts (no matter which seller provider provides it) can be considered equivalent,

since they offer the same bandwidth return (one unit, guaranteed). This also argues for the fact that they

must be priced the same; without loss of generality, we assume that the cost of one unit of any primary

contract is unity. Secondary contracts offered by different seller providers will differ from one another,

depending on the access pattern of the primary members of the seller provider, and their price per unit will

also differ. However, since each unit of secondary contract offers an average return of less than one unit

bandwidth, and have some risk associated with the return, the price per unit for each secondary contract

should be less than unity (the price of a unit of primary contract).

With this abstraction, the SPO problem can be viewed in the context of a market where a single type of

primary contract, and N different types of secondary contracts, are being offered.1 Each unit of primary

contract sold in the secondary spectrum market offers guaranteed access to 1 unit of bandwidth at a cost

of 1. The secondary contract offered by the provider i can be described by the pair (pi, Bi), where, pi is

the unit price of the secondary contracts offered by the ith seller provider and Bi is the random variable

(varying between 0 and 1) characterizing the bandwidth return from one unit of secondary contract of the

ith provider. From the above discussion, pi < 1,∀i.

In the following, we assume that each seller provider has a large pool of available bandwidth, and so

any amount of primary or secondary contract units can be bought from the providers. This is for ease of

exposition, and can be easily generalized by incorporating into the SPO problem additional upper bounds

on the number of primary and secondary contract units available from a seller provider.

Now we are ready to formally define the SPO problem from the perspective of a single buyer provider.

The buyer’s objective is to create a spectrum portfolio consisting of primary and secondary contract units

from the N seller providers in order to provide service to its customer base. Let xi, 1 ≤ i ≤ N denote

the amount of secondary contract units purchased from the ith seller provider. Since the primary contracts

offered by all the N providers are identical, we only need to keep track of the total amount of primary

contract units bought, which we denote by x0. We assume a relaxation that x0, x1, .., xN are non-negative

real numbers, not necessarily integers. Let the vector x = (x0, x1, .., xN), denote the buyer’s spectrum

1Note that the basic portfolio optimization question in financial markets, while considering multiple risky (stock) assets, assumes only a
single risk-free (bond) asset, for similar reasons.
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portfolio. The buyer wishes to satisfy its customers’ demand for bandwidth using the spectrum portfolio,

x. The customer demand is modeled as a random variable Q, as it is often unknown in advance. The

bandwidth return or the actual units of bandwidth available from a spectrum portfolio x, is uncertain,

due to presence of the secondary contracts. The bandwidth return of the portfolio x, B(x), is defined as

B(x) = x0 +
∑N

i=1 xi ×Bi.

Since the bandwidth return and the demand are stochastic, it is impossible or highly expensive to

construct a portfolio that always offers enough bandwidth to satisfy the customer demand. However, it is

desirable to construct portfolios with low levels of bandwidth shortage. Let us define S(x) = Q − B(x.

Then the bandwidth shortage of a portfolio, denoted by S(x)+, is given as S(x)+ = max(S(x), 0) =

max(Q − B(x), 0). Note that the shortage, S(x)+, is also a stochastic quantity as both Q and B(x) are

random variables.

The spectrum portfolio optimization (SPO) problem for the buyer is to find the least costly portfolio

with low levels of bandwidth shortage. The SPO objective is

minimize C(x) = x0 +
N∑
i=1

xi × pi. (1)

The constraint on bandwidth shortage can be specified either in terms of expected shortage or probability

of shortage. Therefore, we consider two versions of constraints for the SPO problem – the Demand

Satisfaction Rate (DSR) constraint, and the Demand Satisfaction Probability (DSP) constraint, as expressed

below:

DSR Constraint: E[S(x)+] < δ; (2)

DSP Constraint: Pr(S(x) > 0) < ϵ. (3)

Here C(x) = x0 +
∑N

i=1 xi × pi is the cost of the spectrum portfolio x. The DSR constraint ensures that

the expected amount of bandwidth shortage is below a certain acceptable level δ. On the other hand, the

DSP constraint bounds the probability of shortage to a low value ϵ. Note here that Pr(S(x) > 0) is the

same as Pr(S(x)+ > 0). We devote the following sections to the study of the SPO problem under these

two types of constraints.

An alternative formulation (version) of the problem would have been to reverse the constraint and

objective functions. In particular, we could minimize the bandwidth shortage probability (in expectation

or probability) subject to maximum limit on the cost of the spectrum portfolio. The fundamental com-
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plexity/computability of the optimal solution, does not change with this reversal however, as the optimal

solution of one version of the problem could be translated to the optimal solution of the other in polynomial

time. Furthermore, the main complexity of the SPO problem comes from that of the non-linear functions

in (2) and (2), the function in (1) being is a simple linear function. The main theoretical results that we

show in this paper - on the convexity of the SPO problem under the DSR and DSP constraints - are

equally applicable to the alternative (reversed) version of the problem as well.

Finally, note that our cost function in (1) assumes that the price per unit bandwidth remains the same

irrespective of the quantity bought. In practice, however, the per-unit price would vary with the quantity

bought. Since bandwidth is a limited quantity, is is reasonable to assume that the marginal price increases

with the quantity purchased [23]. In other words, if Pi(xi) denotes the total price to be paid for buying

xi units of commodity, we can assume that Pi is an increasing convex function in its argument. Then the

cost function in (1) can be written as C(x) = x0 +
∑N

i=1 Pi(xi), which is a convex function. Therefore,

in that case too, the complexity of the problem is dictated by that of the functions in the constraints (2)

and (2), which is what we address in this paper. For the sake of simplicity, however, in the rest if the

paper we assume that Pi(xi) is linear in xi, as given in (1).

III. SPO UNDER DEMAND SATISFACTION RATE (DSR) CONSTRAINT

In this section, we study the properties of the SPO problem under demand satisfaction rate constraint, and

provide the expressions for certain useful quantities that can be utilized to compute the optimal portfolio

solution efficiently. The objective function of the SPO problem (Equation 1) is linear and therefore convex.

The demand satisfaction rate function (i.e. E[S(x)+]), however, is non-linear in x. Borrowing from the

analysis techniques in [20], we show below that E[S(x)+] is also convex in x. This implies that the

feasibility set represented by the DSR constraint (Equation 2) is also convex, and therefore the SPO

problem under DSR constraint is a convex problem.

Theorem 1: E[S(x)+] is convex in x.

Proof: We show that the Hessian of the function E[S(x)+] is positive semi-definite. We obtain the gradient

and Hessian of E[S(x)+] as follows.

Let g(x) = E[S(x)+] = E[S(x) × I(S(x) > 0)], where I(·) is an indicator function and S(x) =

Q− (x0 +
∑N

i=1 xi ×Bi). Also let random vector B = [B1 B2 ... BN ]. We first obtain ∂g(x)
∂xi

, for i = 1 to
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N . Given i, define u = Q− x0 −
∑

j ̸=i xj ×Bj and v = Bi.2 Note that S(x) = u− xiv. Now,

g(x) =

∫ ∞

0

∫ ∞

xiv

(u− xiv)fU,V (u, v)dudv,

where fU,V denotes the joint density function of the random variables U and V .

∂g(x)

∂xi
=

∂

∂xi

∫ ∞

0

∫ ∞

xiv

(u− xiv)fU,V (u, v)dudv

=

∫ ∞

0

∫ ∞

xiv

(−v)fU,V (u, v)dudv

= −E[Bi × I(S(x) > 0)]. (4)

∂g(x)
∂x0

can be obtained similarly by defining u = Q−
∑

j xj ×Bj .

∂g(x)

∂x0
=

∂

∂x0

∫ ∞

u=x0

(u− x0)fU(u)du

=

∫ ∞

u=x0

(−1)fU(u)du

= −E[I(S(x) > 0)]. (5)

In the above, fU denotes the density function of the random variable U . We next obtain the Hessian of the

shortfall constraint, i.e. ∇2g(x), using a similar approach. First, we find ∂2g(x)
∂xk∂xi

, where k ̸= i and k, i ≥ 1.

Define u = Q− x0 −
∑

j ̸=i,k xj × Bj , v = Bk, w = Bi, which have the joint density fU,V,W (., ., .). Now,

S(x) = u− xkv − xiw and

∂g(x)

∂xi
=

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
wI(S(x) > 0)fU,V,W ()dudvdw.

∂2g(x)

∂xk∂xi
=

∂

∂xk

∫ ∞

0

w

∫ ∞

0

∫ ∞

xkv+xiw

fU,V,Wdudvdw

= fS(x)(0)E[BiBk|S(x) = 0]

∂2g(x)

∂x2
0

can be obtained by defining u = Q−
∑

j ̸=k xj ×Bj , w = Bk, for some k.

∂2g(x)

∂x20
= − ∂

∂x0

∫ ∞

−∞

∫ ∞

x0+xkw

fU,W (u,w)dudw

= −
∫ ∞

−∞
(−1)fU,W (x0 + xkw,w)dw

= fS(x)(0)

∫
fB|S(x)(b|0)db = fS(x)(0),

2Note that the variables u and v depend on i; we drop the suffix i for simplicity of notation.



10

where fB is the joint density function of the bandwidth return vector B. Similarly, we can show that:
∂2g(x)
∂x0∂xk

= fS(x)(0)E[Bk|S(x) = 0] and ∂2g(x)

∂x2
k

= fS(x)(0)E[B
2
k|S(x) = 0]. Thus, the Hessian of the

constraint can be written as,

∇2g(x) = fS(x)(0)× E[AA
T |S(x) = 0], (6)

where A = [1 B1 B2 ... BN ]
T .

Since fS(x)(0) ≥ 0 and E[AA
T |S(x) = 0] is positive semi-definite, ∇2E[S(x)+] is also positive semi-

definite. Therefore, E[S(x)+] is convex.

IV. SPO UNDER DEMAND SATISFACTION PROBABILITY (DSP) CONSTRAINT

Next, we study the convexity properties of the SPO problem under the DSP constraint. We first show

that the DSP constraint is non-convex, without any assumptions on the distribution of the demand Q

and the bandwidth return variables Bi. Later, we present the conditions under which the constraint and

therefore the SPO problem becomes convex.

A. Non-convexity of SPO

We present an example where the feasible set of the SPO problem under the DSP constraint (Equation

3) is non-convex. Consider a simple case, when there are two secondary contracts, i.e N = 2. Let the

B1 and B2 be uniformly distributed between 0 and 1. Let Q have a triangular density function given

by, fQ(q) = 2 × q, 0 ≤ q ≤ 1. Note that Pr(S(x) > 0) = Pr(B(x) < Q), where S(x) = Q − B(x)

and B(x) = x0 +
∑N

i=1 xi × Bi. Consider the portfolio vectors x1 = (0, 1, 0), x2 = (0, 0, 1). We have

Pr(S(x1) > 0) = Pr(B1 < Q) = 2
3
= Pr(S(x2) > 0). Choose ϵ = 0.67, and denote the feasibility set

by X0.67 = {x : Pr(S(x) > 0) < 0.67. We see that x1, x2 ∈ X0.67. However, for the convex combination,

x3 =
1
2
× x1 +

1
2
× x2, Pr(S(x3) > 0) = Pr(1

2
×B1 +

1
2
×B2 < Q) = 17

24
> 0.67. That is, x3 /∈ X0.67. So,

the feasibility set is not convex in general.

B. Conditions for convexity

For a given ϵ, denote the feasibility set (from (3)) by Xϵ = {x : Pr(S(x) > 0) < ϵ}. Using existing

literature, we derive sufficient conditions for convexity of the feasibility set Xϵ.

Theorem 2: Xϵ is convex if the random vector B = [B1 B2 ...BN ]
T and the demand Q have log-concave

and symmetric density functions, and 0 ≤ ϵ ≤ 0.5.
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Proof: We invoke the results from [21] to show this. From [21], we know that the function Pr(xTa < b)

is quasi-concave, if the joint density function of the random vector a and the random variable b are log-

concave and symmetric. This result readily applies to our case, by rewriting the constraint (Equation 3)

as Pr(−B(x) < −Q) ≥ 1− ϵ. Specifically, the function Pr(−B(x) < −Q) is quasi-concave if the joint

density of the random vector B and Q are log-concave and symmetric. This implies that the feasibility

set Xϵ = {x : Pr(−B(x) < −Q) ≥ 1− ϵ}, is convex.

Theorem 3: Xϵ is convex if the random vector −B = [B1 B2 ...BN ]
T and the demand Q have a joint

normal distribution, and 0 ≤ ϵ ≤ 0.5.

Proof: We invoke the results from [24] to show this. From Theorem 3 of [24], we know that the set

Xϵ = {x : Pr(xTa < b) ≥ p} is convex, if the density function of the random vector a and the random

variable b is jointly normal. This result can be applied by rewriting the DSP constraint (Equation 3) as

Pr(−B(x) < −Q) ≥ 1− ϵ.

We also derive another condition for convexity, which only requires a non-increasing assumption on

the distribution function of Q, and none on the bandwidth return variables Bi.

Theorem 4: Pr(S(x) > 0) is convex if the CDF of the demand, FQ, is a concave function.

Proof:

Consider portfolios y = (y0, y1, y2, ..., yN), and z = (z0, z1, z2, ..., zN). Let x = λy + (1− λ)z. Now,

Pr(S(x) > 0) = Pr(S(λy + (1− λ)z) > 0)

=

∫
b

fB(b)P (Q > x0 +
N∑
i=1

xi × bi)db

=

∫
b

fB(b)(1− FQ(x0 +
N∑
i=1

xi × bi))db.

Here FQ is the distribution function of the demand Q. Now, x0 = λy0+(1−λ)z0 and xi = λyi+(1−λ)zi.

Pr(S(x) > 0) =

∫
b

fB(b)(1− FQ(λy0 + (1− λ)z0 +
N∑
i=1

(λyi + (1− λ)zi)× bi))db.

=

∫
b

fB(b)(1− FQ(λ(y0 +
N∑
i=1

yibi) + (1− λ)(z0 +
N∑
i=1

zi × bi)))db.
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If FQ is a concave function we get the inequality,

Pr(S(x) > 0) ≤
∫
b

fB(b)(1− λ× FQ(y0 +
N∑
i=1

yibi) + (1− λ)FQ(z0 +
N∑
i=1

zi × bi))db

=

∫
b

fB(b)(λ+ 1− λ− λ× FQ(y0 +
N∑
i=1

yibi) + (1− λ)FQ(z0 +
N∑
i=1

zi × bi))db

= λ

∫
b

fB(b)(1− FQ(y0 +
N∑
i=1

yibi))db+ (1− λ)

∫
b

fB(b)(1− FQ(z0 +
N∑
i=1

zibi))db

= λPr(S(y) > 0) + (1− λ)Pr(S(z) > 0) (7)

Corollary 1: Pr(S(x) > 0) is convex if f ′
Q ≤ 0 everywhere.

Proof:

Pr(S(x) > 0) = Pr(Q > B(x))

=

∫
b

fB(b)P (Q > x0 +
N∑
i=1

xi × bi)db

=

∫
b

fB(b)(1− FQ(x0 +
N∑
i=1

xi × bi))db.

Here FQ is the distribution function of the demand Q. Since fB(b) ≥ 0 and independent of x, we see that

Pr(S(x) > 0) is convex if FQ(x0 +
∑N

i=1 xi × bi) is concave in x for all b. The second order derivatives

of FQ(x0 +
∑N

i=1 xi × bi) are given by,

∂2FQ(.)

∂x20
= f

′

Q,
∂2FQ

∂x2i
= f

′

Q × b2i ,

∂2FQ

∂xixj
= f

′

Q × bi × bj,
∂2FQ

∂x0xi
= f

′

Q × bi.

For any z ∈ RN+1, zT∇2FQ(.)z = f
′
Q(.)× (z0 +

∑N
i=1 zi × bi)

2. Therefore, Pr(S(x) > 0) and hence Xϵ

is convex, if f ′
Q(.) ≤ 0. This concludes the proof.

In the proof above, Q and B are assumed to be independent of each other. If not, the sufficient condition

for convexity is, f ′

Q|B(.|b) ≤ 0 everywhere, ∀b. It can be shown that the gradient of the DSP constraint,

Pr(S(x) > 0), is given by,

∂Pr(S(x) > 0)

∂x0
= −fS(x)(0)
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,
∂Pr(S(x) > 0)

∂xk
= −fS(x)(0)× E[Bk|S(x) = 0].

We use the above expressions, when we solve the SPO problem numerically in Section IX-A.

Theorems 2 and 3 covers important distributions such as the Gaussian, log-normal, and the uniform

density functions (both B and Q must follow some symmetric, log-concave distribution, although they

need not be the same distribution). Theorem 4 covers concave and other asymmetric decreasing density

functions for Q that are not included in Theorem 2 (the distribution of B can be arbitrary).

Remark 1: Let N = 1. If Q is deterministic, then the DSP constraint reduces to a linear constraint. In

this case, the optimal portfolio consists of entirely primary or entirely secondary contracts. The optimal

portfolio is (Q, 0), if ϵ < FB1(p1) and (0, Q

F−1
B1

(ϵ)
), if ϵ >= FB1(p1), where FB1 is the cumulative distribution

function of B1.

Figure 1a shows the empirical distribution (cumulative) of the total daily traffic of a Verizon Wi-Fi

HotSpot network from [25]. Note that the shape of the cumulative distribution function matches well

with a concave distribution function also shown in the figure. The concave function used for fitting is

1 − e−0.4(x−7.9). Similarly, Figure 1b shows the traffic distribution of a large US-based cellular network

(Refer Figure 1a of [26]). Here, we see that the cellular traffic distribution can be approximated by a

log-normal distribution. From Theorems 2, 3, and 4, we know that the SPO problem is convex if the

distribution function for the demand is concave or log-normal. Therefore, we can formulate the SPO

problem for empirical distributions as a convex programs and study the nature of optimal portfolio, after

approximating the empirical distributions with concave or log-normal distributions.

C. Convex Approximation

In practice, the demand and bandwidth return distributions may not satisfy the properties stated in

Theorems 2 and 3, leading to the DSP constraint being non-convex. The SPO problem under the DSP

constraint is also non-convex in such cases. However, several approximation techniques (inner as well

as outer) have been developed in order to approximate a non-convex probability constraint to a convex

contraint. In this paper, we specifically consider the Bernstein approximation technique developed in [22].

Bernstein approximation finds a convex inner approximation to the original probability constraint such

that it is computationally tractable. The probability of shortage is upper bounded by the expected value

of a (suitably defined) function of the shortage. The (non-convex) probability constraint is then replaced
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Fig. 1: a) Empirical distribution of traffic from a Wi-Fi hotspot along with a concave fit, b) Empirical
distribution of cellular traffic with a log-normal fit.

by a (convex) expectation constraint. The SPO problem under Bernstein approximation can be stated as,

minimize
x,t>0

C(x) = x0 +
N∑
i=1

xi × pi

subject to inf
t>0

[Ψ(x, t)− tϵ] ≤ 0

where Ψ(x, t) = tE [ψ(t−1S(x̄))] and ψ : R → R is a non-negative valued, non-decreasing convex

function (called the generating function) such that ψ(z) > ψ(0) = 1 for any z > 0. We consider

two generating functions - a piecewise linear generating function ψ(z) = [1 + z]+, and the exponential

generating function ψ(z) = ez. Note that ϵ is the bound on demand shortage probability (Equation 3).

V. SPO OVER MULTIPLE REGIONS

Spectrum contracts typically come with clauses that restrict the use of the spectrum to certain geograph-

ical regions. This could be due to licensing or coverage limitations of the seller provider. For example,

a seller provider may only have the license to use a part of the spectrum in certain regions (say certain

counties or states in the United States), and not others. Alternatively, the base stations of the seller provider

may only cover certain sub-areas of the overall area of interest to the buyer, which can span multiple

regions. This adds additional complexity to the SPO problem, since the spectrum portfolio should satisfy

the buyer provider’s requirements for each of these regions. In this section, we formulate the SPO problem

over multiple regions and argue that the results for the single region problem extend to multi-region case

as well.
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Let us assume that the buyer of spectrum contracts operates over a set of K disjoint geographical

regions. The buyer’s objective is to construct a portfolio of spectrum contracts in order to satisfy the user

demand in each of the K regions. Denote the set of regions by R, i.e, R = {1, 2, .., K}. Let there be M

primary and N secondary contracts in the market. Let zi, pj denote the unit price of ith primary contract

and jth secondary contract, respectively. Let Rp
i ⊂ R, 1 ≤ i ≤M denote the set of regions in which the

ith primary contract is valid. Similarly, let Rs
j ⊂ R, 1 ≤ j ≤ N denote the set of regions in which the

jth secondary contract is valid. The user demand for each region is uncertain, denoted by the random

variable Qk, 1 ≤ k ≤ K.

The multi-region SPO problem under DSR constraint can be stated as follows:

Minimize C(x) =
M∑
i=1

yi × zi +
N∑
j=1

xj × pj, (8)

E[{Qk −
∑
i∈Cp

k

yi −
∑
j∈Cs

k

xj ×Bjk}+] < δk ∀k, (9)

E[
K∑
k=1

{Qk −
∑
i∈Cp

k

yi −
∑
j∈Cs

k

xj ×Bjk}+] < δ. (10)

Here {y1, ..., yM , x1, ..., xN} denotes the spectrum portfolio. Cp
k and Cs

k denote the set of primary and

secondary contracts that are valid in the kth region (1 ≤ k ≤ K), respectively. Cp
k and Cs

k can be obtained

from Rp
i , 1 ≤ i ≤ M and Rs

i , 1 ≤ j ≤ N . Note that Cp
k ⊂ {1, 2, ..,M} and Cs

k ⊂ {1, 2, .., N}. The

random variable Bjk represents the bandwidth return of the jth secondary contract in the kth region. For

the multiple region problem, there are totally K + 1 inequality constraints; one DSR constraint for each

of the K regions and one overall DSR constraint for all the regions. The LHS of the (K+1)th constraint

is simply the summation of the LHS of the first K constraints. However, note that
∑K

k=1 δk > δ, else the

last constraint would be redundant; typically, the buyer provider may want have δk > δ/K, for each k.

The motivation of both types of constraints (per-region as well as overall) is as follows. While the buyer

provider would be interested in the ensuring a certain DSR over its overall customer base, it may also

want to ensure a certain DSR (possibly a smaller normalized DSR than the overall DSR) is ensured in

each of its regions of operation, to avoid excessive customer dissatisfaction in each individual region. The

SPO problem under DSP constraint can be defined similarly as above, but by replacing the expectation

constraints with the corresponding probability constraints, and δk and δ by ϵk and ϵ, respectively.
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For both the SPO problems, we see that the kth constraint (1 ≤ k ≤ K) is similar to the constraint for

the single region problem ((2) and (3)) except for the presence or absence of few variables inside the two

summations. First, consider the SPO problem under DSR constraint (8-(10)). Let the kth rate constraint

be denoted by gk; gk involves only some of the yi and xj variables. It can be rewritten as,

E[{Qk −
∑

1≤i≤M

yi × I(i ∈ Cp
k)−

∑
1≤j≤N

xj ×B
′

j}+] < δk, (11)

where B′
j = Bjk, if j ∈ Cs

k, else B′
j = 0. I(i ∈ Cp

k) is the indicator function for the set Cp
k . Now, the

proof technique for the single-region problem can be readily extended to show that gk is convex in yi, xj .

The final constraint (gK+1) is also convex, since it is the sum of several convex functions. Therefore, the

feasible set for this problem is convex, since the intersection of several convex sets is convex. Similarly,

the feasible set for the multiple-region SPO problem under DSP constraint is also convex, if the density

functions of all the random parameters involved are log-concave and symmetric, or the demand variables

Qk have non-decreasing density functions.

VI. SPO UNDER DISCRETE PORTFOLIO CONSTRAINTS

In practice, the primary and secondary contracts can be bought and sold only in discrete units. In such

scenarios, the SPO problem is represented as a discrete (or integer) program. Despite the discreteness

(integrality) requirements in the variables, discrete (integer) programs derived from convex problem can

often be solved efficiently [27]. That is however not the case with the SPO problem, however, as we

argue in this section. We will first argue that the SPO problem is NP-hard. We then argue that it is not

submodular either. These results essentially imply that it is unlikely that an efficient solution to the SPO

problem exists when the allocations are constrained to take a discrete set of values.

NP-hardness of discrete-SPO (both under DSR and DSP constraints) can be established by reduction

from the NP-hard Knapsack problem. Next, lets us assume that that the portfolio x is constrained to be

an integer vector. Now let us consider the special case where the return from all secondary contracts, Bi,

as well as the customer demand, Q, are deterministic. Then the DSR constraint (2) reduces to Q− x0 −∑N
i=1 xi × Bi < δ, or x0 +

∑N
i=1 xi × Bi > Q − δ. In the same setting, the DSP constraint (3) becomes

x0+
∑N

i=1 xi×Bi > Q. The problem of minimizing the objective in (1) subject to constraint (2) or (3) is

then equivalent to the minimization version of the unbounded Knapsack problem [28]. In the minimization

version of the Knapsack problem, the objective of the standard (maximization version) Knapsack problem
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is replaced by minimization, and the inequality in the constraint is reversed. Since the minimization version

of the Knapsack problem can be transformed into an equivalent maximization version in polynomial time,

and the maximization version (standard) unbounded Knapsack problem is known to be NP-hard [29], it

follows that the integral versions of the DSR and DSP problems are NP-hard as well.

In the discrete domain, the equivalent of convexity is the submodularity property. For minimization of

submodular functions under integrality constraints, efficient algorithms exist (that can attain a solution in

pseudo-polynomial time, for example) [27]. However, we show next that the DSR and DSP constraints

are not submodular.

Consider a function g(x) : Zn → R. From Theorems 7.7, 7.20, and 7.21 of [27], the function g is

submodular if and only it satisfies the discrete midpoint convexity defined below:

g(p) + g(q) ≥ g(

⌈
p+ q

2

⌉
) + g(

⌊
p+ q

2

⌋
), For any p,q ∈ Zn (12)

Theorem 5: The probability of shortfall Pr(S(x) > 0) and the expected shortfall E[S(x)+] are not

submodular.

Proof: We provide counter examples demonstrating that both the probabilty of shortfall as well as expected

shortfall violate the discrete midpoint convexity property.

Consider the case where there is a single primary and a single secondary contract. Also, consider the

DSR function, g1(x : E(S(x)). Let the demand Q and the bandwidth return B1 be deterministic. Note

that the DSR constraint is convex for any probability density function. Let Q = 5 and B1 = 1.

Consider portfolios p = (1, 4) and q = (4, 1). Now,

g1(p) = E[max(Q− 1− 4×B1, 0)] = 0,

g1(q) = E[max(Q− 4− 1×B1, 0)] = 0

But,

g1(

⌈
p+ q

2

⌉
) = g1((3, 3)) = E[max(Q− 3− 3×B1, 0)] = 0,

g1(

⌊
p+ q

2

⌋
) = g1((2, 2)) = E[max(Q− 2− 2×B1, 0)] = 1

Thus, we find that the discrete midpoint convexity is violated.

Next, consider the DSP function g2(x : Pr(S(x) > 0). As before let B1 be deterministic with a value
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of 1. However, let Q be uniformly distributed U(0, 5). These density functions satisfy sufficient conditions

for the convexity of the DSP constraint. Now, it can be quickly calculated that,

g2(p) = g2(q) = 0,

g1(

⌈
p+ q

2

⌉
) = 0, g1(

⌊
p+ q

2

⌋
) = 0.2

Thus, we find the DSP function also violates the discrete midpoint convexity condition for submodularity.

In view of the above negative results on the efficient computability of the discrete-SPO problem, we

discuss a branch-and-bound algorithm for solving the problem. The same dynamic problem algorithm is

used to compute solution to the SPO problem under discreteness constraints in our evaluation section

(Section IX-A). It is worth noting that application of dynamic programming to solve similar problems

have been discussed in prior literature. In particular, the integral-SP problem under the DSP constraint is

closely related to the stochastic Knapsack problem, for which a dynamic programming solution approach

is described in [30]. In the stochastic Knapsack problem as discussed in [30], objective and contraint

functions are reversed: the non-linear shortage probability function is set as the objective, while the linear

cost function constitutes a constraint. In the Appendix, we describe a branch-and-bound algorithm that is

tuned to the two versions of the SPO problem that we consider in this paper.

VII. NUMERICAL EVALUATION

We numerically solve the SPO problems using Matlab to study the characteristics of the spectrum

portfolio in a wide range of scenarios. Our goal is examine how the parameters of the problem, namely,

the price of the secondary contracts, the bandwidth return distributions, and the constraints (ϵ, δ) influence

the portfolio composition. The results for the single-region SPO problems are presented in sections VII-A

and VII-B, while the results for the multiple-region problem are presented in section VII-C.

A. Single Primary and Single Secondary contract

We first consider the simplest case of there being a single secondary contract seller in the market. The

bandwidth return B1 and the demand Q are assumed to have truncated normal distributions. B1 has a

mean of 0.5, while the demand Q has a mean of 1.5. The distribution of Q is restricted to the interval

[0, 3]. We obtain optimal portfolio when the key parameters of the problem (ϵ, δ, p1) are changed.

Figure 2a shows the spectrum portfolio composition for different choices of the DSR constraint (δ)

and DSP constraint (ϵ), respectively. The unit price of the secondary contract, p1 = 0.25. In the figure,
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Fig. 2: Number of primary (xE0 , xP0 ) and secondary (xE1 ,xP1 ) contract units in the optimal portfolio for
the SPO problem under DSR and DSP constraint. a) Demand and the secondary bandwidth return are
independent, b) Demand and the bandwidth return are correlated.
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Fig. 3: Number of primary and secondary contract units in the optimal portfolio under DSP constraint for
empirical and fitted distributions.

xE = {xE0 , xE1 } and xP = {xP0 , xP1 } denote the portfolios for SPO problems with DSR and DSP constraints,

respectively. As expected, when δ = ϵ = 0, we observe that the portfolio consists of primary contract units

only. This is due to the fact that the secondary contracts having stochastic returns introduce bandwidth

shortage (or demand violation) even if they are bought in large quantities. Moreover, the number of primary

contract units in both the cases is equal to the maximum possible demand (i.e 3). As the constraint (ϵ, δ)

is relaxed, we find that the number of primary contract units reduces sharply until it becomes zero. On
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the other hand the number of secondary contract units (xE1 , x
P
1 ) increases initially, but starts decreasing

as soon as the number of primary contract units becomes zero. This can be explained as follows: As the

constraint (ϵ, δ) is increased from zero, it becomes unnecessary to meet the demand with probability one.

Therefore, total cost of the portfolio can be reduced, by reducing the number of primary contract units,

while adding the requisite amount of secondary contract units to keep the demand violation below the

desired value. This happens until the number of primary contract units becomes zero. Beyond this point,

the only way to reduce the cost is to reduce the number of secondary contract units, which can be reduced

as ϵ, δ increase.

In Figure 2a, we assume that the primary demand Q and the bandwidth return B1 are independent. We

know that a secondary contract provides access to unused or leftover channels with the seller provider.

Therefore, the bandwidth return of the secondary contract would be negatively correlated with the seller’s

own customer demand. Moreover, the traffic demand of different providers would have similar temporal

characteristics. Hence, we can expect negative correlation between the buyer’s own demand Q and the

bandwidth return B1. Figure 2b shows the optimal portfolio composition for the SPO problem under DSR

and DSP constraint. The degree of correlation between Q and B1 was set to 0.5. Note that the overall

trend in portfolio remains similar Figure 2a. Later in this section, we vary the degree of correlation and

observe the changes in portfolio composition.

Empirical distributions: Next, we study the sensitivity of the portfolio composition to changes in

the distribution of the demand (Q) and the bandwidth return (B1). We obtain the empirical distribution

of the total daily traffic of a Verizon Wi-Fi HotSpot network from [25] (Refer to Figure 12 of [25])

and consider this distribution for the user demand Q. From this, we compute the distribution of B1 as

fB1(b) = fQ(β(1− b)), 0 ≤ b ≤ 1, since bandwidth availability is related negatively to the user demand

(the scaling factor β is used for normalization). The results for SPO problem under DSP constraint are

shown in Figure 3a. We also solve the SPO problem with Q modeled as gaussian and exponential concave

distribution that approximate the empirical distribution. Refer Figure 1a for the concave disctribution. In

both cases, the distribution for B1 is obtained as as fB1(b) = fQ(β(1− b)). The SPO problem under DSP

constraint is convex when distribution of Q is concave. Some small differences notwithstanding, we see

that the general trend in the optimal portfolio composition for the empirical and fitted distributions is the

same. Additionally, we ran simulations with uniform distribution and observed similar results. Therefore,

in the following we only present the results for (truncated) Gaussian distributions.
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Fig. 4: Optimal spectrum portfolio composition for
different choices of the unit price of secondary
contract.
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Effect of Correlation: Figure 5 shows the effect of correlation (negative) between the demand Q and

the bandwidth return B1 of the single secondary contract. Q and B1 have truncated and jointly gaussian

distribution. We obtain the portfolio composition for increasing negative correlation between Q and B1.

When the correlation is high, the bandwidth available from the secondary contract tends to be low with

high probability when the demand Q is high. This increases the possibility of shortage. Therefore, we

find that the amount of primary units in the portfolio increases, as they are risk-free.

ϵ 0.1 0.2 0.3 0.4 0.5
xA0 14 12 10 12 8
xO0 4 10 6 2 0

(a) Primary units

ϵ 0.1 0.2 0.3 0.4 0.5
xA1 0 2 4 0 6
xO1 16 2 8 14 16

(b) Secondary units

ϵ 0.1 0.2 0.3 0.4 0.5
Pr(S(x) > 0) 0 0.13 0.14 0.14 0.18
CostA 14 13 12 12 11
CostO 12 11 10 9 8
% Dev 17 18 20 33 37

(c) Total cost

TABLE I: SPO problem solutions with and without Bernstein approximation to the DSP constraint, p = 0.5

Convex Approximation: Next, we numerically evaluate the performance of the Bernstein approximation

in cases where the DSP constraint is non-convex. For this study, we consider a single primary and a

single secondary contract. The demand and the bandwidth return have empirical distributions discussed

earlier. The disitributions do not satisfy Theorems 2 and 3 and hence the DSP constraint may not be

convex. We solve the Bernstein approximation (Section IV-C) to the SPO problem and obtain the optimal
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portfolio (xA0 , x
A
1 ) and cost (CostA). We also solve the original problem (without any approximations)

through brute-force search (Equation 1 and 3) and obtain the solution ((xO0 , x
O
1 ), Cost

O). The results are

summarized in Table I. We only present the results for the linear generating function, since we observed

better approximation using the linear generating function than the exponential generating function. Tables

Ia, Ib, and Ic, show respectively, the primary units (x0), the secondary units (x1), and the portfolio cost

(Cost) of the two solutions. From the percentage deviation values shown in Table Ic, we observe that

the cost of the approximate solution is within 20− 40% of the optimum in most cases. However, Tables

Ia and Ib show that the portfolio composition could be significantly different for some values of ϵ. The

price of secondary contract was chosen close to the mean bandwidth return (0.61) under the empirical

distribution.

Q̂ xInt0 − x∗0 xInt1 − x∗1 Cost (% dev)
2 0 0.4552 8.2095
4 0 0.2456 1.9256
8 0.0391 0.2029 1.2545
16 0.0393 0.2022 0.5927
32 0.0393 0.2025 0.2886
64 0.0392 0.2028 0.1423
128 0.0391 0.2030 0.0707

(a) Demand is determinstic

Q xInt0 − x∗0 xInt1 − x∗1 Cost (% dev)
2 0 0.4621 10.1825
4 0.2954 −0.7026 3.5430
8 1.1720 −3.9428 2.3836
16 −0.1282 1.3377 1.2468
32 1.2444 −4.0581 0.6808
64 0.0559 0.6854 0.3354
128 −0.0441 0.2946 0.0219

(b) Demand is random

TABLE II: SPO under DSR constraint and discrete portfolio assumption

Discrete Constraints: Finally, we solve the SPO problem under discrete constraints using the branch and

bound algorithm discussed in Appendix. We obtain the optimal portfolio under integral portfolio constraints

and compare it with the non-integer optimum. Table II shows the results for the DSR constraint. For the

results shown in Table IIa, the demand is assumed to be deterministic quantity (Q̂), but the bandwidth

return B1 is a gaussian variable. And for the results shown in Table IIb, both the demand and the bandwidth

return B1 are gaussian random variables. In Table IIa, we increase Q̂ and in Table IIb, we increase the

mean demand Q. Note that the portfolio increases in both cases. We did not observe any trend in the

difference between the integer and the non-integer optimal portfolio solutions for increasing values of

Q̂ or Q. However, the percentage difference in cost due to integral restrictions seems to reduce in both

cases. Therefore, when the portfolios are large, integral restrictions on portfolio does not affect the optimal

portfolio cost significantly.
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B. Single Primary and Two Secondary contracts

We next consider two types of secondary contracts and study how the price and bandwidth return

characteristics of a contract affects the choice of the secondary contract. We only present results on the

SPO problem under the DSR constraint, as the results for the DSP constraint are broadly similar in nature.

As before, the demand has normal distribution between 0 and 3. The price of the single primary contract

is 1. The bandwidth returns of the two secondaries, B1 and B2, have normal distribution between 0 and

1, but with different mean and variance.

We obtain the optimal portfolio x = {x0, x1, x2} as the ratio of the unit prices of the two secondaries,

i.e. p1
p2

, is increased. The results are shown in Figures 6a and 6b. For the results shown in Figure 6a,

B1 and B2 have same mean (of 0.5) but different variances. Figure 6a shows x1 − x2 as p1
p2

is increased

from 0.5 to 2. Each of the three curves corresponds to a fixed choice of the variance (σ1, σ2) of the

bandwidth returns. Consider the curve corresponding to the variance choice σ1 = 0.2σ2. We find that

x1 − x2 > 0, until p1
p2

≤ 1.4. This implies that the contribution of the first secondary contract units to the

overall portfolio is higher than that of the second contract even if the unit price of the first contract is

higher than the unit price of the second contract. This is clearly due to the fact that B1 has lesser variance

than B2. However, if p1
p2
> 1.4, the second contract units are more, since it is much lesser priced. On the

other hand, when σ1 = 2σ2, the first secondary contract is preferred over second contract, only if it costs

lesser than the second contract. These results suggest that secondary contracts that have lower variance

of bandwidth return can be priced higher than those with higher variances, provided they have the same

mean bandwidth return. Moreover, it was observed that the portfolio consisted of non-zero units of both

the secondary contracts for price ratios shown, i.e. x1 ̸= 0, x2 ̸= 0, for 0.5 ≤ p1
p2

≤ 2. This suggests that

it is cost efficient to buy a mix of secondary contract units from multiple sellers, instead of just one,

provided their prices are not very different. x1 or x2 became zero only when p1
p2

is either too high or too

low, respectively.

Next, consider Figure 7. Although the two secondary contracts are sold by different providers, we can

expect positive correlation between their returns B1 and B2. When the coustomer demand for one seller

provider tends to low, it is likely that the demand for other provider is also low. Hence, the amount of

secondary units available from the two providers would be comparable. The optimal portfolio and cost for

different levels of correlation is shown in Figure 7. As the correlation between the secondary returns, B1

and B2 increase, the two secondary contracts behave like a single secondary contract, but with increased
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variance in the banwidth return. Due to increased riskiness in the bandwidth available from secondary

contracts, the portfolio shifts to those with increased primary units.

Figure 6b shows x1 − x2 vs p1
p2

, for different choices of means of B1 and B2, keeping the variance

fixed at 0.1. When µ1 = 0.8 and µ2 = 0.2, we find that x1 − x2 > 0 as long as p1
p2

≤ 1.75. That is, the

secondary contract with 4 times higher mean bandwidth return is preferred even at 75% higher price. We

also observe that the secondary contract with lesser mean is preferred only if it has lower price (For the

curve with µ1 = 0.2, µ2 = 0.8, x1−x2 > 0 only for p1
p2

≤ 0.6). Figures 6a and 6b suggest that the mean as

well as the variance of the bandwidth return of a secondary contract play important roles in determining

the unit price of the secondary contract.



25

C. Multiple Regions

For the multiple-region problem, we consider two simulation scenarios. In the first scenario (Scenario

A), there are totally K regions, K +1 primary contracts, and K +1 secondary contracts. The ith primary

and secondary contract, where 1 ≤ i ≤ K, is valid in the ith region only. In other words, the first K

primary and secondary contracts are single-region contracts each valid in one of the K regions. However,

the K+1th primary and secondary contract is valid over all the K regions. The first K secondary contracts

are identical in terms of their bandwidth return distributions and unit prices. The prices of all the single-

region secondary contracts, p1, p2.., pK , are set to 1. We examine the composition of secondary contract

units in the optimal portfolio, when the price of the K-region secondary contract, i.e. pK+1, changes. The

bandwidth return variables (Bi, 1 ≤ i ≤ K + 1) follow truncated normal distribution with mean 0.5 and

variance 0.25. The prices of all the primary contracts is set to a large value such that the portfolio consists

of only secondary contract units.

Figure 8a shows the simulation results for Scenario A when K = 2 (the effect of larger values of K is

considered later). We only show the results for the multiple-region SPO problem under DSR constraints,

since the results were similar for the DSP constraint. It was observed that the total number of primary

contract units is zero as expected, i.e. y1 = y2 = .. = yK+1 = 0. Moreover, all the single-region secondary

contracts contributed equal units to the portfolio, i.e. x1 = x2 = .. = xK . Therefore, we plot xK+1 and

x1 for different price ratios pK+1

p1
, where K = 2. When the price ratio pK+1

p1
< 2, we find the portfolio

consists of higher quantity of (K+1)th secondary contract units compared to the single-region secondary

contract, i.e. xK+1 > x1. However, when pK+1

p1
≥ 2, single-region secondary contracts are preferred over

the K-region contracts (xK+1 < x1).

In the second scenario (Scenario B), we consider four geographical regions. There are four single-region

and four K-region contracts of both primary and secondary type (K > 1). Each K-region contract covers

K regions out of the four regions, symmetrically. Unlike the previous simulation setup, we have multiple

K-region contracts in this setup and there is overlap in the regions covered by these contracts. We fix

the price of each single-region secondary contract (p1) to 1. All the K-region secondary contracts have

the same price denoted by pK . We again increase the price of the K-region secondary contract pK and

observe the optimal portfolio.

The simulation results for Scenario B is shown in Figure 8b for K = 2. The amount of K-region

secondary contract units xK and the single-region secondary contract units x1 in the optimal portfolio are
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Fig. 8: Optimal portfolio composition when the ratio of the unit price of the K-region secondary contract
to that of the single-region secondary contract is increased; (a) Scenario A (b) Scenario B.

shown. We again observe similar behaviour in xK and x1 when compared to Figure 8a. That is, K-region

secondary contracts have higher weightage in the optimal portfolio whenever the price ratio pK+1

p1
≤ 2.

Figures 8a and 8b show that to compete fairly in the market, the 2-region secondary contracts can be

priced twice of that of the single-region contracts. This “pricing advantage” of the multi-region contracts

is not undue however, as they cover twice the area of the single-region contracts. In general, offering

spectrum contracts over a larger area implies larger licensing cost for the seller provider; moreover, the

infrastructure investment and operational costs that the seller provider incurs will also be proportional to

the area covered.

Next, we consider Scenario A and solve the SPO problem for higher values of K. Figure 9 shows

the simulation results for K = 2, 3, 4. We now plot xK+1 − x1 for different values of the price ratio
pK+1

p1
. For each K, when the price ratio pK+1

p1
< K, we find the portfolio consists of higher quantity of

(K +1)th secondary contract units compared to the single-region secondary contract, i.e. xK+1 − x1 > 0.

However, when pK+1

p1
≥ K, the single-region secondary contracts are preferred over the K-region contract

(xK+1−x1 < 0, if pK+1

p1
≥ K). Therefore, we find that the provider (seller) of K-region secondary contract

can scale up its price upto a factor of K and still enjoy preference over the single-region contracts offered

by smaller providers. This happens due to the fact that the provider can either buy one unit of the K-region

secondary contract or one unit from each of the K single-region secondary contracts to provide the same

service over the K regions at the same cost. The portfolio shifts completely in favor of single-region

contracts only when the price, pK+1, is too high. For the above choice of parameters, xK+1 became zero

when pK+1

p1
> 12, 18, and 24, respectively, for K = 2, 3, and 4. That is, when the price of K-region
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secondary contract is roughly 6K times (or higher) the price of the single-region secondary contract, the

portfolio no longer consists of K-region secondary contract units.

VIII. CONCLUSION

In this paper, we have proposed a secondary spectrum market with two types of spectrum contracts

– primary and secondary – and formulated the spectrum portfolio optimization (SPO) problem in this

context. The two types of contracts vary in their risk-return tradeoffs, as well as their prices, and allows

buyers (local or small regional providers, for example) to balance their cost with customer satisfaction

level. We provide results and conditions on the convexity of the SPO problem, under both demand

satisfaction rate (expectation) and demand satisfaction probability constraints. Convexity of the problems

allows us to compute the optimal portfolios efficiently; we also provide expressions for the gradient that

can be used for this purpose. We have also shown that convexity of the demand satisfaction constraint

implies convexity of the efficient frontier, for both types of constraints. These results naturally extend to

scenarios where the contracts are associated with a spatial dimension, and each contract can only provide

coverage to a certain set of regions (which can differ across contracts). The convexity properties however

do not extend to the integer programming formulation, where the spectrum contracts can be bought/sold

only in discrete units. We have shown that the SPO problem under such constraints is not submodular.

We have used our formulation and results to compute and study the properties of optimal spectrum

portfolio in a wide range of simulation scenarios. Numerical experimentation with truncated gaussian,

uniform, and empirically obtained distributions (of bandwidth availability and subscriber demand), have

shown that the general nature of the variations in the optimal portfolio structure and cost, with respect to
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variations in key parameters like prices and customer satisfaction levels, remain similar across distributions.

The composition of the optimal spectrum portfolio is also strongly influenced by the relative prices of the

primary and secondary contracts, and in the multi-region case, the relative prices of the single-region and

multi-region contracts. Finally, the discrete SPO problem is solved efficiently using a branch and bound

algorithm to show that integrality restrictions on the portfolio does not affect the optimal portfolio cost

significantly when the portfolios are large.
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IX. APPENDIX

A. Branch and Bound Algorithm for DSR and Convex DSP under discrete portfolio constraints

In this appendix, we provide a branch-and-bound algorithm to solve the DSR and the convex DSP

problem under discrete portfolio constraints, which was also used in Section to evaluate our solutions under

discreteness constraints on the spectrum portfolio. The basic idea behind branch-and-bound algorithms for

solving mixed-integer non-linear programs (MINLP), is to relax the integrality restrictions on the original

problem. If the solution to the relaxed problem is integral, then this is solution to original problem.

However, if some variables (say y) are non-integers, then two sub-problems are created by adding bounds

y ≤ [y] and y ≥ [y] + 1 (where [y] is the largest integer not greater than y). The process is repeated
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until an integer solution is found. For convex MINLPs, several global optimization algorithms have been

proposed. In this paper, we implement the algorithm proposed in [31] by adapting it to our problem

context. In [31], the authors solve a sequence of quadratic programming problems before branching; it is

not required that the quadratic problems at the intermediate stages be solved optimally. The SPO problem

(when the discreteness constraints are relaxed) can be stated as,

P : minimize C(x) (13)

subject to: g(x)− α ≤ 0,

x ∈ S,

where C(x) = x0+
∑N

i=1 xi×pi is the porfolio cost, and g(x) represents expected shortfall (E[S(x)+]) or

probability of shortfall (Pr(S(x) > 0)), for the DSR and DSP problems, respectively. α = δ for the DSR

problem and α = ϵ for the DSP problem. The set S does not take into account the discrete (integrality)

assumptions on the portfolio.

Then the branch and bound algorithm requires solving the following quadratic program (QP k) itera-

tively, so as to divide the original problem into sub-problems:

QP k: minimize C(k) +∇C(k)T d+
1

2
d
T
W (k)d (14)

subject to: g(k) +∇g(k)T d ≤ 0,

C(k) +∇C(k)T d ≤ Ubb − θ,

x(k) + d ∈ Ŝ,

where C(k) = C(x(k)) and W (k) = ∇2C(k) + λ∇2g(k). Ŝ denotes the feasibility set after adding bounds

for non-integral solution variables. Ubb denotes current uppper bound on the objective function and θ

denotes the optimality tolerance of the branch-and-bound algorithm. Intially, Ubb is set to ∞ and updated

whenever an integer solution is found at an intermediate step. QP k is solved to obtain the increment d

from the current solution (x(k)).

For the SPO problem, ∇C(k) = [1 p1 p2... pN ]
T and ∇2C(k) = 0. For the DSR constraint, the gradient

(∇g(k)) and the hessian (∇2g(k)) can be found using Equations (5), (4), and (6). For the DSP constraint,
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the gradients can be written as,

∂Pr(S(x) > 0)

∂x0
= −fS(x)(0)

∂Pr(S(x) > 0)

∂xk
= −fS(x)(0)× E[Bk|S(x) = 0]

= −
∫
w × fU,W (x0 + xkw,w)dw,

where U = Q−
∑

j ̸=k xjBj . The Hessian of the probability of shortfall, Pr(S(x) > 0), can be computed

(approximately) numerically, using the above equations.


