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Abstract—In this paper, we study the efficiency of equilibrium
charging schedules of self-interested plug-in electric vehicles
(PEVs) in an environment where a monopolistic aggregator sets
time-dependent prices to maximize its own profit. Computing
profit-maximizing prices is not only NP-hard, they can also lead
to bad equilibrium charging schedules. In this work, we present
a polynomially computable pricing policy that is efficient both
in terms of social welfare (economic efficiency of the charging
schedules) and seller profit (profit made the aggregator). We
show that the economic efficiency and aggregator profit under the
proposed pricing scheme (with respect to their maximum possible
values) can be expressed in terms of a regularity (convexity)
measure of the utility functions associated with the PEVs.
Our numerical studies show that in practice these performance
measures are within a small constant factor of the corresponding
optimum values. Our pricing policy, which is time-dependent but
non-discriminatory across users for any given time-slot, can thus
be used to provide a good balance between system and aggregator
objectives in PEV charging.

I. INTRODUCTION

In recent years, we are witnessing increasing deployment of
plug-in (hybrid) vehicles (PEVs), which can reduce the cost
of fuel consumption, greenhouse gas emissions, as well as
improve vehicle engine performance efficiency. However, large
scale penetration of PEVs would imply a considerable increase
in the overall load on the electric grid, particularly during
peak demand hours. This can overload the distribution network
transformers, increase system losses, and reduce operational
grid efficiency [1], [2], [3], [4], [5], [6]. Therefore, effective
management of the electricity demand from PEVs will be
crucial for maintaining the stability and operational efficiency
of the power grid in the near future [7]. Fortunately, PEVs
provide significant flexibility in terms of their energy con-
sumption rates and schedules, which can be utilized towards
reducing the variability of the aggregate demand over time. In
recent literature, the question of PEV charging coordination
question has been addressed utilizing a variety of techniques,
particularly game theoretic models (e.g. [8], [9], [10], [11])
and optimization methods (e.g. [12], [13], [14]).

Coordination of PEV charging under varying levels of PEV
penetration through controlling the price dynamics has also
recently been studied in [15]. A congestion pricing based
distributed framework for controlling PEV charging has also
been studied in [16]. While [17] proposes a dual pricing policy
for maximizing system utility, [18] explores a non-linear

pricing scheme for the same purpose. Auction mechanisms
that attains social optimality while ensuring truthful bidding
by PEV agents have been analyzed in [19]. While these pricing
strategies may result in socially optimal charging schedules
(thereby attaining Walrasian equilibria in the system), the
question of profit-maximizing pricing for PEV charging has
received very little attention in the literature.

Our work is motivated by the consideration that in dereg-
ulated markets, a PEV aggregator may be more interested in
maximizing its individual profit rather than optimizing system
performance (social utility). Furthermore, Walrasian prices that
result in socially optimal charging schedules (such as those
proposed in prior work [17], [11], [20]) may not lead to
maximum profit for the aggregator (seller); see Sections II and
V for examples. Conversely, prices that maximize aggregator
profit are not only NP-hard to compute, they can also result in
poor social utility (economic efficiency) of the charging sched-
ules (see Appendix). Given this inherent dichotomy between
maximizing system utility and maximizing aggregator profit,
there is a need for a pricing policy that attains a good balance
between these two conflicting objectives, in the context of PEV
charging.

Towards this end, we make the following contributions in
this work. We consider the problem faced by an aggregator that
has to choose time-of-the-day prices (in the granularity of 15
mins to an hour, say) for PEV charging in a distribution grid.
In response to these per-unit time-of-the-day charging prices
set by the aggregator, the PEV agents in the network deter-
mine their charging schedules to maximize their individual
utilities subject to their charging constraints (i.e., constraints
on the times they can be plugged in). We impose the realistic
requirement that the price for charging in a time slot is non-
discriminative, i.e., PEVs charging in any given time slot pay
the same per-unit price. Such realistic constraints crucially
distinguish our model from conceptually similar works [21],
[22]: for example, in [21], the authors also look at optimizing
both profit and social welfare in charging markets albeit by
means of user-specific (discriminative) pricing menus in an
online setting where users are available at all times.

While the profit-maximizing price setting problem in our
model is NP-hard, we present a polynomial-time algorithm
for computing prices that guarantee an approximation factor of
O( 1

1−α ) with respect to the optimum profit that the aggregator



can derive, where α is some measure of the regularity (convex-
ity) of the utility functions associated with the PEV. We further
show that the social welfare (economic surplus) attained by our
solution is within a factor O( 1

1−α ) of the the optimal social
welfare in the system. For a large class of “reasonable” utility
functions, this factor is a small constant. Furthermore, our
simulation results (in distribution networks with up to several
hundred PEVs) show that in practice, the performance attained
by our algorithm is within a small constant (about 2 or 3)
of the optimum aggregator profit as well as optimum social
welfare. Therefore, the proposed pricing policy can provide
a way of balancing the two conflicting goals of optimizing
system efficiency and maximizing aggregator profit.

The paper is structured as follows. In Sections II and III
we describe our system model and outline some analytical
properties of the model that will later be used to analyze the
performance of our algorithm. Section IV describes the pro-
posed algorithm and provides bounds on its performance, with
respect to optimum aggregator revenue as well as optimum
social welfare. In Section V we study the proposed algorithm
through simulations, with respect to these two performance
criteria. We conclude in Section VI.

II. SYSTEM MODEL AND PRELIMINARY ANALYSIS

We model the market as a bipartite graph whose vertices are
B, T , the set of buyers and time slots respectively. An edge
(i, t) in this graph models the constraint that buyer i ∈ B is
available at time slot t ∈ T . We make no assumptions on the
structure or density of the graph. As each time slot represents
a fixed, contiguous time window, we assume that each PEV i
can only purchase at most a fixed upper bound `it from each
slot t ∈ Bi; moreover, we assume that `it > 0 if t ∈ Bi. We
refer to these as the capacity constraints.

Each time slot t is associated with a doubly convex produc-
tion or generation cost function Ct(x) (with derivative ct(x)),
which denotes the cost that the seller incurs while procuring x
units of energy. That is, both the cost function and its derivative
are convex and non-decreasing. Each buyer i is represented by
means of a concave valuation or utility function ui(x), which
denotes this buyer’s valuation for purchasing x units of energy
from any combination of slots. Important to our analysis is the
derivative of this function, which is generally referred to as the
inverse demand function, i.e., u′i(x) = λi(x). We assume that
λi is continuous for all i ∈ B, and that Ct(x) is continuously
differentiable for all t ∈ T .

One of our objectives is to understand how the nature of the
PEV utility curve affects profit and social utility. To obtain a
nuanced understanding along these lines, we assume that the
derivative of the utility function, i.e., the inverse demand is
parameterized by a single quantity α.

Definition ([23]) A buyer i is said to have an α-strongly
regular demand function (α-SR) for α ∈ [0, 1] if for any
x1 < x2, we have λi(x2)

|λ′i(x2)| −
λi(x1)
|λ′i(x1)| ≤ α(x2 − x1).

The notion of α-strong regularity was first introduced in [23]
in the context of characterizing buyer demand functions and

has since gained popularity as it smoothly interpolates between
two well-studied classes of functions: log-concave functions
(α = 0) and regular functions (α = 1). In some sense,
α captures the convexity or volatility of u′(x) as α-strong
regularity implies that d

dx
λ(x)
|λ′(x)| ≤ α. A larger value of α (and

hence λ(x)) implies that the utility function ui(x) is more
concave, whereas a small value of α gives us approximate-
linearity. Finally, we remark that even when α is small, our
framework encapsulates a large number of interesting utility
functions; this includes the well-studied class of log-concave
or monotone hazard rate demand functions (e.g, λ(x) = a−x
or λ(x) = e−x, as well as any concave function).

A. Pricing Strategies and Buyer Response

The fundamental problem studied in this work is that of
profit maximization. Towards this end, we assume that the
seller posts one price on each time slot based on his estimation
of buyer demand and the generation cost. It is crucial that the
price on each time slot applies to any and all buyers who
consume energy at that time slot. Once the prices are fixed,
each buyer’s strategy involves purchasing energy from some
combination of time slots to maximize her utility. Specifically
let ~p denote the vector of fixed prices decided by the seller.
Then, the buyer’s best-response strategy is determined by the
optimal solution to the following convex program.

max ui(xi)−
∑
t∈T

ptxit

s.t.
∑
t:t∈Bi

xit = xi

0 ≤ xit ≤ `it ∀t ∈ Bi

(1)

We refer to the triplet (~p, ~x, ~y) as a valid pricing solution
if for some price vector ~p, ~xi denotes buyer i’s demand or
consumption profile as determined by Convex Program (1)
and the scalar xi denotes this buyer’s total consumption. The
(allocation) vector ~y is used to define the total amount of
energy sold at each time slot: yt =

∑
i:t∈Bi xit.

The total social welfare (or social utility) of a pricing solu-
tion (~p, ~x, ~y) is defined as SW (~p, ~x, ~y) =

∑
i∈B ui(xi)−C(~y).

Similarly, the profit that the seller makes at this solution is
given by π(~p, ~x, ~y) =

∑
t∈T ptyt − C(~y). Note that we use

C(~y) as short-hand for
∑
t∈T Ct(yt).

Walrsian Equilibrium and Social Utility Maximization: An
important benchmark in most of this work is the solution that
maximizes the social welfare. Since social welfare does not
depend on the prices, we can simply use ( ~x∗, ~y∗) to denote
the demand-allocation pair that maximizes the system welfare.
This can be efficiently computed using the following convex
program.



max
∑
i∈B

ui(xi)−
∑
t∈T

Ct(yt)

s.t.
∑
t:t∈Bi

xit = xi ∀i ∈ B∑
i:t∈Bi

xit = yt ∀t ∈ T

0 ≤ xit ≤ `it ∀i ∈ B, t ∈ Bi

(2)

We will later show that there exists a slot-price vector ~p∗

that implements the social welfare maximizing allocation, i.e.,
( ~p∗, ~x∗, ~y∗) is a valid pricing solution that maximizes social
utility. Therefore, the central seller can always employ welfare-
maximizing prices if that is his end-goal. Unfortunately, as
discussed earlier, the seller may want to maximize profit
and not the overall welfare. To illustrate this point, we now
present a simple example that highlights how buyers maximize
utility in the face of prices, and show that this behavior can
result in severely sub-optimal profit when the seller employs
the Walrasian prices. We later reinforce this point in our
experiments in Section V based on realistic parameters.

Example Consider a simplified instance with two buyers
(i1, i2) and two time slots (ta, tb) such that buyer i1 has
access to both time slots whereas buyer i2 only has access
to time slot ta. The utility functions corresponding to the
buyers are ui1 = x − x2/2 whereas ui2 = 2x − x2; the
corresponding cost functions are given by Cta(y) = 0.125y2

and Ctb(y) = 0.15y2. The charging constraints are such that
`i1ta = `i1tb = `i2ta = 0.5. The socially optimal solution
is obtained by using the dual prices and involves setting
pta = 0.2 and ptb = 0.15. At this price, buyer i1 will purchase
0.5 units from slot tb and 0.3 units from ta, whereas buyer i2
would purchase 0.5 units from slot ta. On the other hand, if
the seller increases the prices to p′ta = 1 and p′tb = 0.5, this
would improve his profit by a factor of six (from 0.1175 to
0.6825). Therefore, we infer that, even though the Walrasian
prices maximize social welfare, they are not desirable from
the seller’s perspective owing to diminished profits.

Before concluding this section, we wish to highlight the
nature of PEV behavior under a fixed price vector. In the
example above, at the welfare-maximizing prices, even though
tb is the minimum priced slot available to PEV i1, this PEV
cannot fully satisfy its demand using only slot tb and must
purchase almost one-third of its total battery capacity from
a higher-priced time interval. Such non-trivial and ‘sharply
discrete’ behavior crucially distinguishes our setting from
other papers with bipartite network markets where each buyer
can meet her entire demand from a single slot [22]. This sharp
difference in behavior necessitates new tools for analysis,
which we provide in the following two sections via simple
characterizations of pricing solutions and seller profit.

III. CHARACTERIZING PRICING SOLUTIONS

In this section, our objective is to provide a partial charac-
terization of how users react to prices by selecting time slots

and charging quantities. For that purpose, let ~p, ~x, ~y denote an
arbitrary feasible solution for an instance I of our problem.

Proposition III.1. A pricing solution ~p, ~x, ~y for a given
instance is said to be valid if and only if for every buyer i
and slots t, t′ ∈ Bi, all of the following conditions are true:

1) If xit > 0, then λi(xi) ≥ pt.
2) If xit > 0 and xi,t′ = 0, then pt ≤ pt′ .
3) If xit, xit′ > 0 and pt < pt′ , then, xit = `it.
4) If xit′ < `it′ , then λi(xi) ≤ pt′ .

Proof. All of these conditions follow directly from the KKT
conditions on the convex program corresponding to buyer
utility maximization. However, we sketch their proofs for
convenience.

Let us begin with the forward direction, i.e., if the given
solution is a valid pricing solution, then the above conditions
must be true. All of the individual proofs below proceed by
contradiction.

1) Suppose that xit > 0 and λi(xi) < pt, then there exists
a sufficiently small ε > 0 such that the PEV can strictly
increase her utility by dropping an ε amount of demand
from slot t. Note that upon dropping a small amount
of demand from slot t, the buyer’s change in utility is
given by ptε−

∫ xi
x=xi−ε λi(x)dx.

2) Suppose that xit > 0, xi,t′ = 0 but pt > pt′ . It is not
hard to deduce that the buyer’s utility strictly increases
by transferring all of her flow from slot t to slot t′.

3) If this condition were not true, then the buyer could
increase her utility by reducing her consumption of slot
t′ by some ε > 0, and increasing consumption on slot t
by the same ε ensuring that xit + ε ≤ `it.

4) Finally, if xit′ < `it′ but λi(xi) turns out to be larger
than pt′ , then the buyer can strictly increase her utility
by consuming (an ε amount) more of slot t′.

The reverse direction follows from the same kind of intu-
ition but is more technically involved and we defer it to the
Appendix. Suppose that all of the conditions presented above
are true, but there exists another consumption vector ~x′i that
yields maximum utility for the given price vector, and that this
maximum utility is strictly larger than the one guaranteed by
~xi.

According to the conditions specified, if xit > 0, λi(xi) ≥
pt, so the user cannot increase her utility by (only) strictly
reducing her consumption on any slot t. Similarly, since
xit < `it implies that λi(xi) ≤ pt, so the user cannot increase
her utility by (only) strictly increasing her consumption on
some slots. So, we can rule out the fact that one of ~xi or ~x′i
dominates the other. It follows that there exists a pair of slots
t, t′ satisfying xit > x′it and x′it′ < x′it′ .

Now, we are ready to complete the proof. By definition ~xi
satisfies the conditions specified in the proposition. Since ~x′i is
a utility-maximizing demand vector, it also satisfies the same
set of conditions. Therefore, applying conditions (1) and (4)
with respect to both t and t′ and the two demand vectors, we
get that λi(xi) ≥ pt ≥ λi(x′i) and λi(xi) ≤ pt′ ≤ λi(x′i). We



conclude that λi(xi) = λi(x
′
i). Moreover, every pair of slots

t, t′ where the consumption in ~xi, ~x′i differs must have the
exact same price, which equals p = λi(xi) = λi(x

′
i).

Suppose that T ′ denotes the set of slots where the consump-
tion in the two vectors ~xi, ~x′i do not coincide. Subtracting the
buyer utility in the two cases, we get that

ui(xi)− ui(x′i)−
∑
t∈T

pt(xit − x′it)

= λi(x
′
i)(xi − x′i)−

∑
t∈T ′

p(xit − x′it)

= p(xi − x′i)− p
∑
t∈T ′

(xit − x′it) = 0.

This contradicts the fact that ~xi is not a utility maximizing
consumption vector for buyer i.

Recall that ( ~x∗, ~y∗) is the social welfare maximizing al-
location pair. We now identify a price vector ~p∗ to confirm
the presence of valid pricing solutions that maximize social
welfare.

Proposition III.2. Given the social welfare maximizing al-
location, define the price vector ~p∗ such that for every time
slot t, p∗t = ct(y

∗
t ). Then, ( ~p∗, ~x∗, ~y∗) denotes a valid pricing

solution of our problem.

Proof. To prove the claim, it is sufficient to prove that
( ~p∗, ~x∗, ~y∗) satisfies the four conditions listed in Proposi-
tion III.1. Once again, consider some arbitrary buyer i and
slots t, t′.

1) Suppose that x∗it > 0. We know that p∗t = ct(y
∗
t ). As-

sume by contradiction that p∗t > λi(x
∗
i ). Let 0 ≤ ε ≤ x∗it

denote some sufficiently small constant such that

λi(x
∗
i ) ≤ λi(x∗i − ε) < ct(y

∗
t − ε) ≤ ct(y∗t ) = pt.

Then, the change in social welfare if buyer i decreases
her consumption on slot t by ε is at least ct(y∗t − ε)ε−
λi(x

∗
i − ε)ε > 0. Clearly, this violates the fact that

( ~x∗, ~y∗) is a social welfare maximizing allocation.
2) Suppose that x∗it > 0 and x∗it′ = 0. Then, according to

the properties of a social welfare maximizing allocation,
it must be the case that ct(y∗t ) ≤ ct(y∗t′) or else we could
simply transfer flow from slot t to t′ for this buyer and
decrease the total cost. Therefore, p∗t ≤ p∗t′ .

3) Suppose that x∗it, x
∗
it′ > 0 and ct(y∗t ) < ct(y

∗
t′). Assume

by contradiction that x∗it < `it: then clearly, one could
increase the social welfare by transferring an ε > 0
amount of flow corresponding to buyer i from slot t′

to t.
4) Finally, suppose that x∗it′ < `it′ for some slot t′. If

λi(x
∗
i ) > ct′(y

∗
t′), then we could increase the amount

of energy that the buyer consumes from slot t′ by
some infinitesimal amount and increase the total social
welfare. Therefore, by contradiction, it must be that
p∗t′ = ct′(y

∗
t′) ≥ λi(x∗i ).

A. The Maximum Price Assumption

In private markets that supply an ‘essential good’, it is
reasonable to assume that the seller is incentivized or in some
cases even constrained by regulatory authorities to not employ
extremely large prices. Along those lines, we assume that the
price that the seller is allowed to choose for each item t is at
most some global constant P̄ . An important assumption that
we make in this work is that the global price cap P̄ cannot be
larger than any PEV’s maximum valuation, i.e.,

Assumption For all i ∈ B, P̄ ≤ λi(0).

We refer to this as the maximum price assumption. The
max-price assumption ensures that the prices are not ‘so high’
that PEV owners are forced to drop out of the market. At the
same time, to ensure that the parameter is actually meaningful,
we will also make the following assumption that the prices are
not so low that the seller actually makes a loss, i.e.,

Assumption For every slot t, p∗t ≤ P̄ .

Note that we only make this latter assumption for conve-
nience of exposition. All of our results actually hold even
without it.

B. Upper Bound on Optimum Revenue

In this section, we will provide a new upper bound for the
optimum revenue in terms of the social welfare of a reduced
instance that is closely associated with the original instance
of our profit maximization problem. Given an instance I of
the problem, define a new instance I ′ with the same bipartite
graph, cost functions, and charging constraints on the time
slots but new inverse demand functions defined as follows.

λ̄i(x) = min(λi(x), P̄ ) ∀i ∈ B
We now show how the social welfare and profit maximizing

solutions for this new instance behave in terms of the old
instance. To avoid excessively lengthy notation, we will use
SW (~p, ~x, ~y) to denote the social welfare of a pricing solution
for the reduced instance and π̄(~p, ~x, ~y) for the profit. Finally,
for every buyer i, define x̄i to be (one of) the values at which
λi(x̄i) = P̄ .

Lemma III.3. Suppose that (~p, ~x, ~y) is a valid pricing solution
for the reduced instance satisfying pt ≤ P̄ for all t ∈ T .
Then, (~p, ~x, ~y) is also a valid pricing solution for the original
instance. Moreover, we can represent the social welfare and
profit of the pricing solution with respect to the reduced
instance as :

SW (~p, ~x, ~y) = SW (~p, ~x, ~y)−
∑
i∈B

(ui(x̄i)− P̄ x̄i)

π̄(~p, ~x, ~y) = π(~p, ~x, ~y).

For the rest of this work, we will also assume that
(~popt, ~xopt, ~yopt) is the pricing solution with the maximum
profit for the given instance that also obeys the maximum
price condition. Let πopt denote the value of the maximum
profit.



Lemma III.4. Given any instance I, and the associated
reduced instance I ′, the social welfare and profit maximizing
solutions for the reduced instance coincide with those of the
original instance. i.e.,

1) The social welfare maximizing solution for I ′ is
( ~p∗, ~x∗, ~y∗).

2) The profit-maximizing solution for I ′ is
(~popt, ~xopt, ~yopt).

Proof. We know that each element of the price vectors ~p∗ and
~popt is smaller than or equal to P̄ . Therefore, it is not hard
to verify that both ( ~p∗, ~x∗, ~y∗) and (~popt, ~xopt, ~yopt) are valid
solutions for the reduced instance.

For a given instance, x̄i is a constant. Therefore, for any
given pricing solution that is valid for the reduced instance,
its social welfare is the same as the social welfare of that
solution for the original instance minus a constant term. Since
( ~p∗, ~x∗, ~y∗) is valid for the reduced instance, its optimality
follows.

The same argument applies for profit except that in this
case, the exact value of the profit actually coincides for both
instances.

We now provide a simple upper bound on the optimum
revenue in terms of the social welfare of a carefully selected
allocation.

Proposition III.5. Given an instance of the problem I,
the optimum profit πopt for this instance is no larger than
SW ( ~p∗, ~x∗, ~y∗).

Proof. From Lemma III.4, we know that π(~popt, ~xopt, ~yopt) =
π̄(~popt, ~xopt, ~yopt). Moreover, π̄(~popt, ~xopt, ~yopt) ≤
SW (~popt, ~xopt, ~yopt) since the profit of any pricing solution
for the reduced instance is smaller than its social welfare.
Finally, since ( ~p∗, ~x∗, ~y∗) denotes the welfare maximizing
solution for the reduced instance, we also have that
SW (~popt, ~xopt, ~yopt) ≤ SW ( ~p∗, ~x∗, ~y∗). This completes the
proof.

IV. PROFIT MAXIMIZATION ALGORITHM AND
PERFORMANCE BOUNDS

The main problem studied in this paper is that of efficiently
computing a per-slot pricing vector ~̃p in order to maximize the
profit π(~̃p, ~̃x, ~̃y), where (~̃x, ~̃y) denote the valid buyer response
vector corresponding to price ~̃p. Unfortunately, the profit-
maximization is NP-Hard to compute even for a special case
of our problem where the cost functions are zero. Bearing this
in mind, we present a simple polynomial-time algorithm for
computing prices for each slot. Our main theoretical results
are the following:

1) (Theorem 1) The profit guaranteed is within a O( 1
1−α )-

factor of the optimum profit.
2) (Theorem 2) In addition to the above profit, the algorithm

simultaneously provides a O( 1
1−α )-approximation for

social welfare as well, with better constant factors than
the profit bound. (See Figure V).

3) (Theorem 3) If the seller ignores computational consid-
erations and employs the profit-maximizing prices, then
we provide a lower bound on the resulting social welfare
(i.e., system efficiency).

Recall that α is a convexity measure for the PEV utility
functions and with increasing α, the derivative of the utility
function becomes more volatile, and the utility function itself,
more non-linear.

Main Algorithm for Computing Prices
For every slot t, set

p̃t = max(p∗t , P̄ (1− α)
1
α ).

Let ~̃x, ~̃y denote a best-response demand and allo-
cation vector corresponding to the pricing vector
(p̃)t such that (ỹ)t has minimum cost over all such
vectors.

Before stating the theorem, we make the following simple
observation. For every slot t, p̃t ≤ P̄ since p∗t ≤ P̄ and
(1− α)

1
α ≤ 1. Therefore, our pricing vector does not violate

the hard constraint on the maximum price. We now state an
obvious proposition without proof.

Proposition IV.1. For any two time slots t, t′ ∈ T , if p∗t ≤ p∗t′ ,
then p̃t ≤ p̃t′ . In other words, our algorithm yields a pricing
scheme without disturbing the relative ordering of prices
between various time slots in ~p∗.

The main implication stemming from this proposition is that
the proposed pricing strategy enjoys the same demand man-
agement properties of the social welfare maximizing solution,
i.e., since peak-demand slots are priced higher, the demand is
evenly distributed on the different intervals. We now prove
that this deceptively simple strategy leads to a reasonable
approximation with respect to the optimum profit.

Theorem 1. For every given instance with α-SR demand
functions, our algorithm returns a profit that is within a γ-
factor (see below) of the optimum profit.

γ =

(
2(

1

1− α )
1
α − 1 +

1

1− α

)
= Θ(

1

1− α )

In Figure V, we illustrate how the profit as well as the
social welfare guaranteed by our the algorithm varies as we
increase α along with the experimental results. The guarantee
for social utility comes from Theorem 2 in the next sec-
tion. We remark that although our guarantee worsens with
increasing α, we get constant factor approximations even
for reasonably large values of α: for example at α = 0.7,
we get a 13.5-approximation and a 4.33-approximation for
welfare. Moreover, in our experiments, we obtain constant
factor approximations even for large values of α.

Proof. We in fact prove a stronger result, namely that

SW ( ~p∗, ~x∗, ~y∗)

π(~̃p, ~̃x, ~̃y)
≤ γ.

First, define ζ = 2( 1
1−α )

1
α . The proof proceeds in two

parts. We first prove that SW (~̃p, ~̃x, ~̃y) ≤ (ζ − 1)π(~̃p, ~̃x, ~̃y).



Following this, we show that SW ( ~p∗, ~x∗, ~y∗)−SW (~̃p, ~̃x, ~̃y) ≤
1

1−απ(~̃p, ~̃x, ~̃y). Adding up the two parts gives us a lower bound
for the profit of the solution returned by our algorithm in terms
of the optimum social welfare of the reduced instance, which
we know to be larger than the optimum profit for the original
instance (Lemma III.4).

General Characterization of Algorithm’s Pricing Solution:
We begin by characterizing the pricing solution computed by
our algorithm in comparison to the social welfare maximizing
pricing solution. Recall that for every slot t ∈ T , p∗t ≤ p̃: we
now prove a rather technical claim that highlights a simple
property of our pricing solution, namely that for every t ∈ T ,
ct(ỹt) ≤ ct(y

∗
t ). Based on this, we can also conclude that

C(~y) ≤ C( ~y∗).

Claim IV.2. Consider the two pricing solutions ( ~p∗, ~x∗, ~y∗)
and (~̃p, ~̃x, ~̃y). For any given slot t ∈ T , we have that ct(y∗t ) ≥
ct(ỹt).

Proof. The proof of this claim is somewhat involved, so we
proceed carefully by contradiction. Suppose that for some
item t, ct(ỹt) > ct(y

∗
t ). Since the marginal cost function is

monotone non-decreasing, this must mean that ỹt > y∗t .
Now let us construct the following graph G′ = (T , E′)

where T is the set of all slots. We say that there is a directed
edge from slot t1 to t2 if there exists some buyer i such that

x̃it1 > x∗it1 and x̃it2 < x∗it2 .

In simple terms, this means that i is receiving more amount
of t2 and less of t1 in ~x∗ than what she received in ~̃x. This
immediately implies the following set of inequalities:

x̃it1 > 0, x∗it1 < `it1 , x̃it2 < `it2 , x∗it2 > 0.

Based on this, we present a simple sub-claim.

Lemma IV.3. Consider any (t1, t2) ∈ E′: it must be the case
that p∗t1 ≥ p∗t2 and therefore, p̃t1 ≥ p̃t2 .

Proof. The proof of p∗t1 ≥ p∗t2 comes from applying conditions
(1), (4) from Proposition III.1 with respect to t1 and t2
respectively. The second inequality then follows from Propo-
sition IV.1.

Now, look at slot t. Since the total allocation from this slot
is smaller in ~y∗, this must mean that there is at least one buyer
i who is consuming less of t in ~y∗ as compared to ~̃y. However,
the total demand of i is only larger in ~x∗, which means there
must be some other slot t1, which she is consuming more of
in ~x∗. This implies that (t, t1) ∈ E′.

Suppose that St represents the set of vertices that are
reachable from t in G′ including t itself. We have already
shown that St has at least one slot other than t. Our first claim
is that all the nodes in St have a marginal cost in ~y∗ that is
no larger than the marginal cost of t in the same allocation.
To show this consider an edge (t1, t2) where both the slots
belong to St. By definition, there must be some buyer who has
access to both these slots and is consuming non-zero amount

of t2 in ~x∗. Since ( ~x∗, ~y∗) is a welfare-maximizing allocation
independent of ~p∗, the cost of this allocation cannot decrease
if we reduce buyer i’s consumption from slot t2 in ~x∗ and
increase consumption on t1 by the same amount. Therefore,
ct1(y∗t1) ≥ ct2(y∗t2). Applying this transitively from t, all nodes
reachable from t in G′ must have a marginal cost in ~y∗ smaller
than or equal to ct(y∗t ).

Our second claim is that for every t′ ∈ St, ct′(ỹt′) ≥ ct(ỹt).
The proof proceeds in a similar way as our previous claim.
Once again, consider (t1, t2) ∈ E′ both belonging to St, and
let i be some buyer satisfying x̃it1 > x∗it1 and x̃it2 < x∗it2 .
We know from Lemma IV.3 that p̃t2 ≤ p̃t1 . Among all valid
pricing solutions of the form (~̃p, ~x, ~y), (~̃p, ~̃x, ~̃y) denotes the one
of minimal cost. Therefore, it must be the case that ct2(ỹt2) ≥
ct1(ỹt1) or else we could transfer some of buyer i’s purchases
from t1 to t2. Using these inequalities regarding the marginal
costs in ~̃y and ~y∗, we get for all t′ ∈ St,

ct′(y
∗
t′) ≤ ct(y∗t ) < ct(ỹt) ≤ ct′(ỹt′). (3)

What this means is that for all the slots in St, the total
consumption is larger in ~̃y as compared to ~y∗. Suppose that B1

t

is the complete set of buyers who consume non-zero amounts
of the slots in St in ~̃x. Our final claim is that every buyer in
B1
t consumes more or equal amount of the slots in St in ~x∗

as compared to ~̃x. That is for each buyer i ∈ B1
t ,∑

t′∈St
x̃it′ ≤

∑
t′∈St

x∗it′ .

To prove this, notice that for any buyer i, if this is not true,
then there must exist at least one t′ ∈ St which she receives
more of in ~̃x than ~x∗. However, x∗i ≥ x̃i, and so, there must
be some t3 outside of St such that buyer i consumes more of
t3 in ~x∗ as compared to x̃. But this means that there must be
an edge from t′ to t3 in G′ and so t3 ∈ St, a contradiction.

Now, we are ready to prove our main result. Recall that
∀t′ ∈ St, ỹt′ > y∗t′ . Since for all t′ ∈ St, the consumption in
~̃y can only come from the buyers in B1

t (by definition), we
have, ∑

t′∈St
ỹt′ =

∑
i∈B1

t

∑
t′∈St

x̃it′

≤
∑
i∈B1

t

∑
t′∈St

x∗it′

≤
∑
t′∈St

y∗t′ <
∑
t′∈St

ỹt′ .

This is a contradiction.

Lemma IV.4. The total cost incurred in ( ~p∗, ~x∗, ~y∗) is larger
than or equal to the cost incurred in the solution (~̃p, ~̃x, ~̃y), i.e.,
C( ~y∗) ≥ C(~̃y).

Proof. From Claim IV.2, it is clear that for every t ∈ T ,
we have ct(y∗t ) ≥ ct(ỹt). The production cost function C is
doubly convex and continuously differentiable, and therefore,
we expect its derivative c to be convex and strictly increasing.



Therefore ct(y∗t ) ≥ ct(ỹt) implies that y∗t ≥ ỹt and the lemma
trivially follows.

Next, we prove an interesting dichotomy obeyed by our pric-
ing solution (~̃p, ~̃x, ~̃y), namely that either every PEV behaves
exactly as it would at the social optimum (i.e., x̃i = x∗i ) or that
its derivative at x̃i is sufficient large (i.e., |λ′i(x̃i)|x̃i ≥ λi(x̃i)).
We will later use the second part of the dichotomy to show that
since λ is non-increasing and its derivative is large enough,
the loss in social welfare from x̃i to x∗i can be bounded for
each PEV.

Lemma IV.5. Consider the pricing solution (~̃p, ~̃x, ~̃y) computed
by our algorithm. For every PEV i ∈ B, one of the following
is true:

1) λi(x̃i) = λi(x
∗
i ).

2) λi(x̃i)
|λ′i(x̃i)|

≤ x̃i.

Proof. Recall that as per the definition of the pricing scheme
in our algorithm, for every slot t, p̃t ≥ p∗t . Therefore, it is
not hard to see that for every PEV i, λi(x̃i) ≥ λi(x

∗
i ). Now,

we need to show that for every i where λi(x̃i) > λi(x
∗
i ), the

second condition must hold. Let i be some such buyer.
Since the inverse demand λi is continuous, it must be the

case that there exists some slot t ∈ Bi where x∗it > x̃it, and
therefore, x̃it < `it. Applying property (4) of Proposition III.1
with respect to the solution (~̃p, ~̃x, ~̃y), we get that λi(x̃i) ≤ p̃t.
However, x∗it > x̃it also implies that x∗it > 0 and using prop-
erty (1) of the same proposition with respect to ( ~p∗, ~x∗, ~y∗),
we have that λi(x∗i ) ≥ p∗t .

Combining the two insights along with our original assump-
tion that λi(x∗i ) < λi(x̃i), we get that

p∗t ≤ λi(x∗i ) < λi(x̃i) ≤ p̃t.

Since p̃t = max(p∗t , P̄ (1 − α)
1
α ), we can safely conclude

that p̃t = P̄ (1−α)
1
α ≤ λi(0)(1−α)

1
α by the definition of P̄ .

The proof now directly follows from Lemma A.3.

Armed with our characterization results, we are ready to
prove the upper bounds for SW (~̃p, ~̃x, ~̃y) and SW ( ~p∗, ~x∗, ~y∗)−
SW (~̃p, ~̃x, ~̃y) in terms of π(~̃p, ~̃x, ~̃y).

Claim IV.6. Suppose that (~̃p, ~̃x, ~̃y) is the pricing solution as
defined by our algorithm. Then, the total social welfare of this
solution with respect to the reduced instance SW (~̃p, ~̃x, ~̃y) is
at most a factor ζ − 1 times the profit due to this solution
π(~̃p, ~̃x, ~̃y).

The proof of this claim is adapted from that of a similar
claim in [22], the main difference being that λi(0) is no longer
the same for all buyers i. (Proof Sketch)

Proof. The social welfare of the current solution with respect
to the reduced instance is

∑
i∈B ūi(x̃i)−C(~̃y). The function

ūi is concave for every i ∈ B since its derivative λ̄i(x) is
non-increasing with x. Therefore ūi(x̃i) ≤ ū′i(0) · x̃i = P̄ · x̃i.
Moreover, by definition, for every slot t, p̃t ≥ P̄ (1− α)

1
α .

So, our first inequality is the following,∑
i∈B

ūi(x̃i)− C(~̃y) ≤
∑
i∈B

P̄ x̃i − C(~̃y)

=
P̄

P̄ (1− α)
1
α

∑
i∈B

P̄ (1− α)
1
α x̃i − C(~̃y)

≤ 1

(1− α)
1
α

∑
t∈T

p̃tỹt − C(~̃y).

The final inequality comes from the fact that P̄ (1−α)
1
α ≤

p̃t for all t ∈ T and from rearranging the allocation from
the buyers to the goods. Now, the total profit that the seller
makes at the given strategy π(~̃p, ~̃x, ~̃y) equals

∑
t∈T p̃tỹt −

C(~y). Using this, we get the following upper bound for the
ratio of the welfare to profit∑

i∈B ūi(x̃i)− C(~̃y)

π(~̃p, ~̃x, ~̃y)
≤

1

(1−α) 1
α

∑
t∈T p̃tỹt − C(~̃y)∑

t∈T p̃tỹt − C(~y)

≤
1

(1−α) 1
α

∑
t∈T p̃tỹt −

∑
t∈T

1
2ct(ỹt)ỹt∑

t∈T [p̃t − 1
2ct(ỹt)]ỹt

≤

∑
t∈T [ 1

(1−α) 1
α
p̃tỹt − 1

2 p̃tỹt]∑
t∈T [p̃tỹt − 1

2 p̃tỹt]

= 2
1

(1− α)
1
α

− 1.

The second inequality above comes from the definition of
doubly convex cost functions according to which Ct(ỹt) ≤
1
2ct(ỹt)ỹt. The third inequality comes from the fact that for
every t, ct(ỹt) ≤ p̃t. To see why this is true, observe that for
every t ∈ T , ct(ỹt) ≤ ct(y

∗
t ) = p∗t ≤ p̃t. This completes the

proof of the first claim.

Claim IV.7. The following inequality holds for the solution
returned by our algorithm:

SW ( ~p∗, ~x∗, ~y∗)− SW (~̃p, ~̃x, ~̃y) ≤ 1

1− απ(~̃p, ~̃x, ~̃y).

Proof. We need to prove an upper bound on SW2 :=
SW ( ~p∗, ~x∗, ~y∗) − SW (~̃p, ~̃x, ~̃y) =

∑
i∈B[ui(x

∗
i ) − ui(x̃i)] −

[C( ~y∗) − C(~̃y)] ≤ ∑
i∈B[ui(x

∗
i ) − ui(x̃i)]. The inequality

comes from the fact that the difference in costs is positive
as shown in Lemma IV.4. Moreover, observe that for any
two pricing solutions (~p1, ~x1, ~y1) and (~p2, ~x2, ~y2), we have
that SW (~p1, ~x1, ~y1) − SW (~p2, ~x2, ~y2) = SW (~p1, ~x1, ~y1) −
SW (~p2, ~x2, ~y2) due to Lemma III.3.

Therefore, the LHS can be simplified as

SW2 ≤
∑
i∈B

[

∫ x∗i

x̃i

λi(x)dx

Since λi is α-SR for all i ∈ B, we can use
Lemma A.4 to bound the integral as follows

∫ x∗i
x̃i
λi(x)dx ≤



1
1−α ( λi(x̃i)

|λ′i(x̃i)|
)(λi(x̃i)−λi(x∗i )). Summing this up, one obtains,

SW2 ≤
1

1− α
∑
i∈B

λi(x̃i)

|λ′i(x̃i)|
(λi(x̃i)− λi(x∗i )).

Now, from Lemma IV.5, we get that for all i either
λi(x̃i) = λi(x

∗
i ) or λi(x̃i)

|λ′i(x̃i)|
≤ x̃i. Therefore, we get SW2 ≤

1
1−α

∑
i∈B x̃i(λi(x̃i)− λi(x∗i )).

We complete the claim using the following simple lemma.

Lemma IV.8. We have that
∑
i∈B x̃i(λi(x̃i) − λi(x

∗
i )) ≤∑

t∈T [p̃tỹt − Ct(ỹt)] = π(~̃p, ~̃x, ~̃y).

Proof. Consider any buyer i for whom λi(x̃i) > λi(x
∗
i ), and

hence x̃i < x∗i . We claim that for such a buyer λi(x̃i) = P̄ (1−
α)

1
α := PTH . Assume by contradiction that λi(x̃i) > PTH

(the inequality cannot be in the other direction since p̃t ≥ PTH
for all t ∈ T ).

Since x̃i < x∗i , there must exist at least one slot t such
that x̃it < x∗it and hence x̃it < `it. Applying condition (4)
of Proposition III.1 to this solution and slot t, we have that
p̃t ≥ λi(x̃i) > PTH . By definition of our algorithm, this can
only mean that p̃t = p∗t .

Next, from condition (1) of Proposition III.1 applied to this
slot with respect to the social welfare maximizing allocation,
we have that p∗t ≤ λi(x

∗
i ) < λi(x̃) ≤ p̃t = p∗t , which of

course, is a contradiction. Therefore, λi(x̃i) = PTH .
Since the price on every slot t, p̃t is at least PTH , and

λi(x̃i) = PTH , we can conclude that this buyer purchases
exclusively from slots whose price is PTH . Therefore, let B+

be the set of buyers for whom λi(x̃i) > λi(x
∗
i ). Then,

∑
i∈B+

λi(x̃i)x̃i =
∑
i∈B+

∑
t∈Bi

x̃itPTH =
∑
i∈B+

∑
t∈Bi

x̃itp̃t.

Now, for the second part of the expression in the lemma. For
every buyer i and slot t with x̃it > 0, we have (from Proposi-
tion III.1) that λi(x̃i) ≥ p̃t ≥ p∗t = ct(y

∗
t ) ≥ ct(ỹt). The last

inequality comes from the crucial Claim IV.2. Therefore,

∑
i∈B+

λi(x
∗
i )x̃i =

∑
i∈B+

∑
t∈Bi

λi(x
∗
i )x̃it ≥

∑
i∈B+

∑
t∈Bi

ct(ỹt)x̃it.

Subtracting the two halves and adding the non-negative
entity

∑
i∈B\B+

∑
t∈Bi x̃it[p̃t − ct(ỹt)], we get

∑
i∈B

∑
t∈Bi

x̃it[p̃t−ct(ỹt)] =
∑
t∈T

[p̃tỹt−ỹtct(ỹt)] ≤
∑
t∈T

p̃tỹt−Ct(~̃y).

A. Bicriteria Approximation

Previously, we considered the NP-Hard problem of profit
maximization and presented an algorithm whose approxima-
tion degrades gracefully as α increases. However, as argued
previously, in such large markets with repeated engagement,
it is important to characterize the efficiency of the proposed
(approximately) profit maximizing solution. The main question
that we consider here is the following: does the proposed profit
maximizing solution simultaneously result in good welfare?
The next theorem answers this question in the affirmative.

Theorem 2. The social welfare of the solution returned by
our algorithm is at most a factor 1 + 1

1−α smaller than that
of the optimum social welfare.

Proof. Recall from Claim IV.7 that SW ( ~p∗, ~x∗, ~y∗) −
SW (~̃p, ~̃x, ~̃y) ≤ 1

1−απ(~̃p, ~̃x, ~̃y). However, note that
SW ( ~p∗, ~x∗, ~y∗) − SW (~̃p, ~̃x, ~̃y) = SW ( ~p∗, ~x∗, ~y∗) −
SW (~̃p, ~̃x, ~̃y). To conclude, we have that SW ( ~p∗, ~x∗, ~y∗) ≤
SW (~̃p, ~̃x, ~̃y) + 1

1−απ(~̃p, ~̃x, ~̃y) ≤ SW (~̃p, ~̃x, ~̃y) +
1

1−αSW (~̃p, ~̃x, ~̃y).

Bounding the inefficiency at equilibrium

Although we presented an approximation algorithm with
good profit and welfare properties, it is possible that the
seller might employ other pricing strategies, particularly the
profit-maximizing solution (~popt, ~xopt, ~yopt). Does this self-
interested behavior lead to good system conditions? In this
section, we investigate this question by presenting a bound
on the following quantity, the quality of equilibrium solution
compared to that of the system optimum.

Theorem IV.9. The ratio of the social welfare of the welfare-
maximizing allocation to that of the profit-maximizing pricing
solution is at most 2( 1

1−α )
1
α + α

1−α , i.e.,

SW ( ~p∗, ~x∗, ~y∗)
SW (~popt, ~xopt, ~yopt)

≤
(

2(
1

1− α )
1
α +

α

1− α

)
.

Proof. Recall that for any pricing solution (~p, ~x, ~y),
SW (~p, ~x, ~y) = SW (~p, ~x, ~y) − κ, where κ =

∑
i∈B ui(x̄i) −

P̄ x̄i is a constant that is independent of the pricing solution
(Lemma III.3). We begin by providing an upper bound for the
desired ratio in terms of the reduced social welfare SW :

SW ( ~p∗, ~x∗, ~y∗)
SW (~popt, ~xopt, ~yopt)

≤ SW ( ~p∗, ~x∗, ~y∗)− κ
SW (~popt, ~xopt, ~yopt)− κ

≤ SW ( ~p∗, ~x∗, ~y∗)

SW (~popt, ~xopt, ~yopt)

The first inequality comes from the simple fact that for any
a ≥ b and c < b, a

b ≤ a−c
b−c . In our case, κ is clearly smaller

than SW (~popt, ~xopt, ~yopt). Of course, if we look at the reduced
instance, we also get that SW (~popt, ~xopt, ~yopt) ≤ π(~̃p, ~̃x).
Applying this, we have

SW ( ~p∗, ~x∗, ~y∗)

SW (~popt, ~xopt, ~yopt)
≤ SW ( ~p∗, ~x∗, ~y∗)

π(~̃p, ~̃x, ~̃y)



The required ratio follows from the statement of Theorem 1.

V. SIMULATION RESULTS

In this section, we test the efficacy of our pricing algorithms
(in terms of profit and social welfare) via numerical experi-
ments performed on simulated PEV charging markets with
realistic parameters. Our goal is to understand the dependence
of these objectives on the various market parameters, e.g.,
density of market, convexity of utility function, etc. Our results
illustrate that the pricing algorithm presented in Section IV
consistently and significantly outperforms the Walrasian prices
in terms of profit while at the same time, having near-optimal
social welfare. That is, the proposed technique is beneficial
for both the seller and the system as a whole.

Setup: We consider a full day of 24 time slots, with the
number of PEVs (in the distribution network under consid-
eration) ranging from N = 50 to N = 350. Each PEV is
constrained to charge over 6 time slots, which are distributed
according to a Gaussian distribution centered around peak
demand hours. The supply (energy procurement) cost that the
aggregator incurs at time slot t ∈ T is given by Ct(y) =
a(Dt + y2), where Dt is a parameter that reflects the external
load on the supplier, estimated from actual demand data [24]
with a being a suitable scaling parameter. The experimental
results are quantified in terms of the following three perfor-
mance measures, normalized by the optimum social welfare:

1) Profit Guaranteed by Our Algorithm: SW ( ~p∗, ~x∗, ~y∗)

π(~̃p),~̃x,~̃y)
.

2) Social Welfare Guaranteed by Our Algorithm:
SW ( ~p∗, ~x∗, ~y∗)

SW (~̃p),~̃x,~̃y)
.

3) Profit Guaranteed by the Walrasian Solution:
SW ( ~p∗, ~x∗, ~y∗)

π( ~p∗, ~x∗, ~y∗)
. While the Walrasian prices maximize

social welfare, the profit guaranteed by such a solution
can often be significantly sub-optimal.

Note that the optimum social welfare is larger than all of the
above parameters, and therefore, the ratio of SW ( ~p∗, ~x∗, ~y∗)
to any of the above quantities is at least one.

Effect of Increased Demand: First, we set out to understand
how the social utility and profit resulting from our algorithm as
well as the Walrasian profit vary as we increase the number
of PEVs from N = 50 to N = 350. Our results indicate
that for both polynomial (α = 0, log-concave demand) and
exponential utilities (α = 0.5), the profit guaranteed by our
algorithm is significantly better than the theoretical bound.
The profit provided by the Walrasian solution improves as
N increases since increased congestion leads higher marginal
costs and hence Walrasian prices (Proposition III.2). However,
the Walrasian profit is considerably smaller than that of our
algorithm for both log-concave (factor of 2) and exponential
(factor of 1.5) utilities. Simultaneously, the social welfare
guaranteed by our algorithm is almost optimal (factor of 1.3
or smaller compared to the optimal social welfare).

For example, our theoretical result guarantees that our
algorithm’s profit is within a factor of 2e ≈ 5.54 from the
optimum welfare for α = 0 and factor of 9 for the α = 0.5

case. Instead, and surprisingly, the profit is always within a
factor of e or better from the optimum welfare.

Characterizing the effect of the Utility Concavity: Keeping
the number of PEVs fixed at N = 300, we study how changing
the utility function (whose volatility is given by α) affects the
profit and social welfare. While our theoretical bounds predict
poor profit as α becomes larger, our experiments reveal that
even for sufficiently large values of α (for e.g., α = 0.8),
the performance is still optimal. Not surprisingly, at α = 1,
our algorithm’s performance matches that the optimum social
welfare: by definition, the prices computed by our algorithm
approach the Walrasian prices when α becomes closer to 1
where the Walrasian prices are sufficiently large.

VI. CONCLUSION REMARKS
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bounds and the profit obtained by the Walrasian prices for utility functions corresponding to α = 0 and α = 0.5. For both profit and welfare, smaller values
are better since a ratio of 1 implies optimality.
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APPENDIX

Proposition A.1. The problem of computing per-slot prices
in order to maximize the seller’s profit is NP-Hard even when
all production cost functions are uniformly zero, and there are
no charging constraints (i.e., `it =∞ for all i ∈ B, t ∈ T ).

Proof. We just sketch the proof here since the general idea is
the same as the hardness proof in [25]. Consider an instance of

vertex cover specified by a graph G′ = (V ′, E′) with |V ′| =
n, |E′| = m. Reducing this to our problem, there is one time
slot for each vertex in V ′, i.e., the set of time slots is given
by (ti)i∈V ′ . Next, there are a total of n+nm vertices that are
described as follows:

1) B1: There is one PEV vi for each i ∈ V . The PEV vi
only has an edge to time slot ti. All of the PEVs in
B1 have a utility function that is appropriately defined
so that λ(x) = u′(x) = max(2 − xd, 0) for some
sufficiently large d > 1. It is not hard to deduce that as
long as the exponent d is sufficiently large, this function
can be interpreted as λ(x) ≈ 2 for x ≤ 1 and λ(x) = 0
for x ≥ 1. In our proof, we will treat it as such.

2) B2: For every edge (i, j) ∈ E′, there are n PEVs in
B2, (w

(r)
ij )(i,j)∈E′,1≤r≤n. Moreover, every PEV w

(r)
ij

consists of edges to the time slots ti and tj , i.e., the
vertices that form its endpoints. For every PEV in B2,
we can define their utility functions appropriately such
that λ(x) = max(2− x, 0).

Since there is one unique time slot for each vertex in V ′,
we use the terms time slots and vertices interchangeably. Our
first claim is that in the optimum (profit-maximizing) pricing
policy (~popt), the set of time slots whose price is strictly
smaller than 2 − ε (for some sufficiently small ε > 0) must
form a vertex cover in G′. Indeed, assume that this is not the



case and let (i, j) ∈ E′ such that poptti , p
opt
tj ≥ 2 − ε. Then,

the contribution of the n PEVs (from the set B2) in the set
(w

(r)
ij )1≤r≤n to the optimum profit is close to zero. Therefore,

if we reduce the price of (say) time slot ti to pti = 1, the profit
due to each of the n PEVs in the set (w

(r)
ij )1≤r≤n becomes

n × ((2− 1)× 1) = n. Moreover, there is at most one node
connected to ti belonging to B1, and the profit due to this node
reduces at most from 2− ε to 1− ε. Therefore, the net profit
strictly increases, which contradicts the optimality of (~popt).

In a similar manner, we can argue that the set of time slots
whose price is strictly smaller than 2 − ε (call this set T1) is
a minimum vertex cover in G′. If this were not a minimum
vertex cover, we could obtain a contradiction by identifying
an alternative pricing policy that leads to increased profit: let
V C ⊆ V ′ be a minimum vertex cover in G′. Then, we can
simply price every time slot in V C at p = 1 and price all of
the other time slots at p = 2− ε, and show that this leads to
a larger profit. Therefore, for any given instance of the vertex
cover problem, we can form an instance of our PEV pricing
problem such that the optimal solution to the latter could be
used to efficiently identify a minimum vertex cover. So, the
NP-Hardness claim extends to our problem.

Proposition A.2. For any given α ∈ [0, 1], there exists an
instance with α − SR demand functions where the profit
maximizing solution has a social welfare that is at least a
factor of (1+ α

1−α )
1
α smaller than the optimum social welfare.

LEMMAS A.1 AND A.2

The following claims are borrowed from [22]

Lemma A.3. Let f(x) be a non-increasing, non-negative α-
Strongly regular function and x1 be some point satisfying
f(0) ≥ ( 1

1−α )
1
α f(x1). Then, f(x1)

|f ′(x1)| ≤ x1.

Lemma A.4. Let f(x) be any non-increasing, non-negative α-
Strongly regular function. Then for any x2 ≥ x1, the following
inequality is true,∫ x2

x1

f(x)dx ≤ 1

1− α
f(x1)

|f ′(x1)| (f(x1)− f(x2)).
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