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Abstract—We consider a traffic peering game between Internet
Service Providers (ISPs) at an Internet Exchange Point (IXP),
where each ISP pair has a choice of exchanging traffic through a
public IXP switch or sending the traffic through transit providers.
We analyze the traffic flow efficiency (measured as social welfare)
and the IXP revenue at the equilibrium of this game, as a function
of the per-unit price charged by the IXP. We show that there
exists a price point at which both social welfare and revenue
are high, and the corresponding price-of-anarchy values can be
expressed in terms of certain sublinearity measures of the inverse
demand curves of the ISPs. Simulations carried out using models
based on actual IXP data obtained from PeeringDB demonstrate
that the theoretical bounds correctly capture the performance
trends against the variation of price, and for a carefully chosen
pricing point both social welfare and IXP revenue are within a
factor of two of the corresponding optimal values.

Index Terms—Internet Exchange Point, Internet Service
Provider, Public Peering, Social Welfare, Revenue

I. INTRODUCTION

Internet eXchange Points (IXPs) carry a large fraction of
the traffic between Internet Service Providers (ISPs) in the
Internet today. It has been estimated that almost 80% of the
IP addresses in the world can be reached via public peering,
and 20% of all the traffic traces go through IXPs [1]. Despite a
falling trend in transit costs, peering between ISPs (particularly
between content and access ISPs) is on the rise [2], [3].

In basic terms, an IXP is a data center with network switches
through which ISPs exchange traffic (peer) with each other
[4], [5]. A large number of these IXPs, both in Europe and
particularly US, operate for profit (e.g., Equinix [6]), charging
fees to each ISP for sending/receiving traffic through the
IXP. The price charged by the IXP typically depend on the
capacity of the port leased by the ISP. The peering decisions
are determined bilaterally by the ISPs themselves, taking into
account the potential Quality-of-Service (QoS) improvements
due to peering at the IXP (as opposed to sending the traffic
through transit providers) and the price charged by the IXP.

Arguably, the price charged by the IXP can have a signifi-
cant impact on the peering relationships formed at the IXP, or
equivalently, the traffic flows exchanged through the IXP. As
we demonstrate later in this paper, there is an inherent tradeoff
between the efficiency of traffic flows exchanged through the
IXP and the revenue earned by the IXP, and the pricing policy

at the IXP must be chosen carefully if a balance needs to be
attained between these two objectives.

This paper models and analyzes this tradeoff between traf-
fic flow efficiency and IXP revenue at the traffic exchange
equilibria between ISPs at an IXP. In the traffic exchange
(peering) game that we model, ISPs determine how much
traffic to exchange through an IXP, in response to the per-
unit traffic pricing policy set by the IXP. This decision in
turn determines how much port capacity an ISP must lease
at the IXP, and which other ISPs a given ISP will peer with.
We analyze the equilibrium of this game as a function of the
per-unit price, and show that there is a pricing point that can
attain good traffic flow efficiency (measured as social welfare)
and IXP revenue at the same time. More specifically, we
show that when the per-unit price is chosen appropriately, the
Price-of-Anarchy (PoA) for both social welfare and revenue is
small, and are characterized by certain worst-case sublinearity
measures of the inverse demand curve for the ISP pairs.
Simulations carried out using models derived from data on the
28 largest US IXPs obtained from PeeringDB confirm these
observations, and show that our theoretical bounds capture the
actual performance trends reasonably well.

II. RELATED WORK

Our game-theoretic model is inspired by a prior line of
work on network formation games (e.g., [7]–[9]), where two
nodes can build links through mutual agreement but can sever
links individually. However, unlike prior models, in this work
the utility derived from a connection (peering) is not fixed,
but depends both on congestion and the price charged by the
market maker (IXP). Further, unlike prior work (such as [10])
that considers the transit vs peering question focusing only on
ISP costs, we analyze the system with the goal of providing
a good balance between social welfare and IXP revenue.

Our work is closely related to the models analyzed in our
prior work [11]–[13], but differs from these existing works in
several important aspects. While [11] analyzes the effect of
proportional pricing on social cost and evaluates the revenue
performance through simulation, we propose and theoretically
analyze pricing policies that simultaneously attain good social
welfare and revenue. The work in [12] considers how the op-
erational cost of a non-profit IXP should be shared among the



member ISPs, whereas we consider a profit-making IXP in this
paper. Therefore, while we analyze IXP revenue, and how it
can be traded off with social welfare, [12] only considers social
cost. The model considered in [13] is very similar to ours,
which also shows the existence of pricing points that can attain
good social welfare and revenue simultaneously. However,
these results rely on certain strong regularity (smoothness)
condition of the inverse demand curves, which do not hold for
IXPs, as we will see in Section V. Consideration of realistic
inverse demand curves for IXPs requires us to consider the
sublinearity measures outlined in Section IV, which applies
to a very large set of (including non-smooth) inverse demand
curves. Further, while [13] only analyzes the problem theo-
retically and for generic large markets, we consider it in the
context of IXPs, and evaluate our results using inverse demand
curves estimated from actual IXP data.

III. SYSTEM MODEL

A. Game Theoretic Model

We consider a set N of ISPs (agents in our game-theoretic
model) that are involved in traffic exchange through a public
switch offered by an IXP. An ISP pair (i, j) has a total traffic
demand of Bij between themselves. Part of this traffic, yij , is
routed through the public switch, while the rest is either sent
by other means (using the ISPs’ transit providers, or through
private peering) or not sent at all1. The strategy of ISPs i and
j, each acting in self-interest, involves deciding on the yij .
Clearly, the decisions of ISPs i and j are coupled, as yij must
be jointly decided by the two ISPs.

We denote λij to be the per-unit utility each of the two
ISPs i and j derive from sending traffic through the IXP.2

The traffic that is exchanged through the public switch incurs
a congestion cost of d(y) per-unit traffic, which depends on
the total traffic y sent through the switch. This congestion
cost will typically be reflected in terms of average delay
experienced by the traffic (and therefore we will sometimes
use the terms ‘congestion cost’ and ‘delay’ interchangeably);
however, d(y) could also represent other Quality-of-Service
(QoS) parameters (or a combination of them) that are affected
by the overall load at the public switch. We assume that d(y)
is a given function (i.e., not part of the strategy); however,
we will explore the efficiency of the equilibrium for different
forms of the function d(y). Additionally, each ISP has to pay
a price of p(y) to the IXP per-unit traffic, for the use of the
public switch. Table I summarizes some of the most commonly
used terms and notations in our model.

Before concluding the discussion of our basic model, two
points are worth mentioning. Firstly, note that the port capacity
needed by ISP i at the IXP would be directly related to yi =∑
j yij . Therefore traffic exchange strategy decisions (yij ,∀j)

in our game-theoretic model has a direct bearing on the port
capacity provisioning decision faced by the ISP i. Secondly,

1We assume demand to be undirected, so yij = yji.
2This utility can be from cost savings derived for not having to pay for

transit services or private peering, or from improved traffic delay (QoS) when
peering through the IXP.

TABLE I
SUMMARY OF COMMONLY USED NOTATION.

Term Description
yij Traffic of ISP pair (i, j) sent publicly through the IXP.
yi

∑
j yij , total traffic of ISP i going through the IXP.

y 1
2

∑
i

∑
j yij , total traffic flowing through the IXP.

−→y Total traffic allocation vector (vector of values yij )
λij Per-unit utility received by (i, j) by sending traffic through IXP
d(y) Congestion cost per-unit traffic incurred at the IXP
p(y) Price per-unit traffic set by the IXP

note that while we allow for yij to be a fraction of Bij for ease
of analysis, the properties of the equilibrium solution imply
that in almost all cases, an ISP pair (i, j) will send all of their
traffic through the IXP (if they decide to peer with each other),
or nothing (not peer at all).

B. Social Welfare and Revenue

Given the above model setup, we define the Social Welfare
(SW ) and IXP Revenue (Rev) next. Overall, SW can be split
into the welfare the ISPs are getting from the IXP, and the
welfare the IXPs are receiving (as a form of Revenue). The
SW of ISP i, denoted by SWi(~y, p(y), d(y)), is calculated as∑

(ij)3i

yijλij − {p(y)
∑
(ij)3i

yij + d(y)
∑
(ij)3i

yij}, (1)

where the first term is the utility of the ISP by sending∑
(ij)3i yij peering traffic via the IXP, and the rest denotes

the sum of the payments paid to the IXP and (implicit) loss
of the ISP’s welfare caused by the congestion at the switch.
Denoting c(y) = p(y)+d(y) and Wi(~y) =

∑
(ij)3i λijyij , the

welfare of ISP i is expressed as

SWi(~y, c(y)) = Wi(~y)− c(y)yi. (2)

Note that c(y) can be viewed as the aggregate cost seen by
the ISPs per- unit traffic. If we denote

∑
iWi(~y) = 2W (~y),

then the total Welfare of all ISPs is given by

SWISP (~y, c(y)) = 2(W (~y))− c(y)y, (3)

where the multiplier of 2 comes from the fact that yi and yj
both include yij . The revenue gathered by the IXP is:

Rev(~y, p(y)) = p(y)
∑
i

∑
(ij)3i

yij = 2p(y)y. (4)

Thus, the Social Welfare (SW ) for the system is given by

SW (~y) = SWISP (~y, c(y)) +Rev(~y, p(y)),

= 2W (~y)− 2d(y)y = 2W (~y)− 2E(y), (5)

where E(y) = d(y)y. The first term of this SW is the utility
that ISPs are getting by using the IXP, and the second term is
the cost of the congestion at the shared switch in the IXP. For
the rest of the paper, unless otherwise stated, we will assume
E(y) to be a continuous, piece-wise differentiable function
with E(0) = 0, and E′(y) to be a non-decreasing function
with E′(0) = 0. Note that SW does not consist of p(y) which
is the price of per-unit traffic charged by the IXP to the ISPs.



Fig. 1. Normalized Inverse Demand Curve (λ(y)).

IV. THEORETICAL ANALYSIS

We state our main theoretical claims in this section; proof
outlines of all the results can be found in the Appendix.

A. Properties of the Model

1) Equilibrium Traffic: We assume price-taking ISPs, i.e.,
they see the per-unit traffic cost c(y) for sending traffic through
the IXP, and will only send traffic which is worth paying that
cost. Thus, ISP i will send all the traffic through the IXP as
long as λij ≥ c(y). This leads to the following notion of of
equilibrium traffic flow:

Definition IV.1. A traffic flow ~ye with ye = |~ye| is said to be an
equilibrium flow if and only if all the traffic with λij > c(ye)
is sent and the traffic with λij < c(ye) is not sent.

Based on this definition, we simplify our terminology and use
the term ‘equilibrium traffic flow’ to refer to the total flow
through the IXP at equilibrium (a scalar), and denote it by ye.

2) Inverse Demand Curve: Next, we state two important
properties of equilibrium traffic flows that will be useful in our
PoA analysis. We first define the notion of the inverse demand
curve, λ(y), constructed as follows. First, the λij values are
arranged in a decreasing order (ties broken arbitrarily); let
λk be the kth highest value, and Bk be the corresponding
traffic demand. Then, the λ(y) curve is a non-increasing step-
function, with the step of height λk having a width of Bk.
Let λ(y−) denote the limit of λ(x) as x approaches y from
below, and similarly λ(y+) if it approaches y from above. We
then have the following property:

Theorem IV.1. ye is an equilibrium traffic flow if and only if
λ(y−e ) ≥ c(ye) ≥ λ(y+e ). Moreover, such a flow always exists.

3) Social Optimum: We next provide an important property
of the optimal traffic flow (OPT), one that maximizes the
total Social Welfare (SW), with which the equilibrium solution
will be compared. Again, with slight abuse of terminology, by
‘optimal traffic flow’ we refer to the total traffic flow at the
social optimum, denoted by yp.

Theorem IV.2. At social optimality, all the traffic with λij >
E′(yp) flows through the IXP and all traffic with λij < E′(yp)
does not. Also, λ(y−p ) ≥ E′(yp) ≥ λ(y+p )).

B. Definitions

Guided by the inverse demand (λ(y)) curves derived from
data from IXPs (described in Section V-B2), we characterize
these curves in terms of two sublinearity properties which will
be used in our PoA analysis. These properties are derived from
sublinear curves characterized by a single parameter (α) that
can provide tight lower support to the (λ(y)) curves. The two
properties, termed shift factor (α1) and stretch factor (α2) of
the curves, are formally defined below.

Definition IV.2. An inverse demand curve (λ(y)) has a shift
factor α1 if λ(y)

λmax
+ y

ymax
≥ α1, ∀y.

Definition IV.3. An inverse demand curve (λ(y)) has a stretch
factor α2 if

(
λ(y)
λmax

)α2

+
(

y
ymax

)α2

≥ 1, ∀y.

Figure 1 illustrates the shift factor (α1) property with the
red dash-dot straight line, and the stretch factor (α2) property
with the red solid curved line. In the figure both the axis are
normalized with their respective maximum values, i.e., λ̄(y) =
λ(y)
λmax

, and ȳ = y
ymax

, hence the maximum possible value on
both axis is 1. Note that for a given λ(y) curve, for tightness
we would like to choose the maximum value of α1 (α2) that
satisfies the condition in Definition IV.2 (Definition IV.3).

Definition IV.4. The price of anarchy (PoA) of Social Welfare
(SW ) for a pricing policy π is the ratio of SW at optimum to
SW at the equilibrium induced by π.

Definition IV.5. The price of anarchy (PoA) of Revenue (Rev)
for a pricing policy π is the ratio of maximum achievable Rev
to Rev at the equilibrium induced by π.

C. PoA Analysis

To choose a pricing policy for the IXP that achieve good
values of PoA(SW ) and PoA(Rev) simultaneously, we pro-
pose a per-unit pricing p(y) = βb = max(βe, βp), where
βp = λ(yp)− d(yp) with yp being the socially optimal traffic
flow (OPT). Also, βe depends on the specific sublinearity mea-
sure used, among the two measures defined in Definitions IV.2
and IV.3. If λ(y) has a shift factor α1, then βe = Kα1−d(ye),
where ye is such that λ(ye) = Kα1. If λ(y) has a stretch
factor α2, then βe = K(1/α2) − d(ye) where ye is such
that λ(ye) = K(1/α2). Also, the value of K (0 < K < 1)
is an appropriately chosen constant. For visual aid βe and
βp are depicted in Figure 1, and for convenience we denote
ce(y) = βe + d(y), and cp(y) = βp + d(y).

Theorem IV.3. For a λ(y) curve with a shift factor α1,
charging a per- unit price βb = max(βe, βp) attains at
least a

(
1

α1(1−K) ,max
(

1
α1(1−K) ,

2
Kα1

))
approximation of

the maximum SW and Revenue respectively.

Corollary IV.3.1. For a λ(y) curve with a shift factor α1,
charging a per- unit price βb = max(βe, βp) with K = 2/3,
attains a PoA of

(
3
α1

)
for both SW and Revenue.

Theorem IV.4. For a λ(y) curve with a stretch factor α2,
charging a base price βb = max(βe, βp) attains at least



a
(

1
(1−K)1/α2

,max
(

1
(1−K)1/α2

, 2
K(1/α2)

))
approximation of

the maximum SW and Revenue respectively.

Corollary IV.4.1. For a λ(y) curve with a stretch factor α2,
charging a base price βb = max(βe, βp) with K = 2α2

1+2α2
,

gives a PoA of (1 + 2α2)
1/α2 for both SW and Revenue.

V. SIMULATION

A. Data Collection

To achieve realistic traffic demand values Bij and the
corresponding utility λij , data from PeeringDB and CAIDA
databases were collected and analyzed. PeeringDB was uti-
lized for obtaining information about the locations of the IXPs,
the ISPs peering in that location (also called Point-of-Presence
(PoP)), and the port capacity each ISP has purchased. On the
other hand, we utilized CAIDA to obtain the number of active
routers and their approximate location (at a city level) for each
ISP, to approximate the amount of traffic that may be generated
for that ISP at that location.

B. Simulation Setup

1) Generating λ(y) curves: To generate the λ(y) curves
we need two sets of values: i) the traffic demand between
ISPs (Bij), and ii) the per-unit utility λij for that traffic.
While the exact values for these are very difficult to estimate
closely, we make several reasonable approximations based on
the PoP locations (obtained from PeeringDB), router densities
(obtained from CAIDA) and previously published models on
traffic demand and pricing. The traffic demand between two
ISPs serving at two different PoP locations is determined
using the gravity model [14]. If ISP i has RA number of
routers serving at location A and ISP j has RB number of
routers serving at location B, then the traffic demand between
these two ISPs for these two locations is thus approximated as
YAB = RA×RB

d2AB
. Then the summation of all these values over

all the possible pairs of router locations gives us the total traffic
demand between these two ISPs, hence Bij =

∑
A,B YAB .

The utilities λij are calculated based on savings in transit
costs, following [15], which models transit costs as being lin-
early or logarithmically proportional to the distance that traffic
has to travel. Since traffic between different locations of the
same ISP pair (say YAB) is going to travel different distances
(dAB), we use the weighted average of these distances: for
some ISP pair (i, j), we set dij =

∑
A,B YABdAB∑
A,B YAB

. Thus, we
have the per-unit utility as, λij = a×dij or λij = a×log(dij),
for an appropriately chosen constant a. The total traffic Bij of
ISP pair (i, j) is split across the different PoP locations that
the two ISPs have in common, in a way that the traffic on any
path is inversely proportional to total end-to-end geographical
distance of the path. Figure 2 shows some sample λ(y) curves
from the largest (in terms of number of participating ISPs) 28
IXPs in USA, as generated by this approach.

2) Simulations: Simulations were done for the largest 28
IXPs among the 140 IXPs present in USA. Most of the
remaining (smaller) IXPs have a very small number of par-
ticipating ISPs, resulting in a few discrete λ(y) values and

making the study of the equilibrium uninteresting. Also, from
the PeeringDB port capacity data, it was found that more
than 95% of the total port capacities (which can be seen
as an indicator of the traffic flowing through these IXPs)
are accounted for by considering the largest 28 IXPs. In our
simulations, we consider two broad class of delay functions,
namely polynomial delay and queuing delay functions. For
polynomial delay function with exponent n, d(y) = ayn;
the PoA value was calculated considering the value of a that
resulted in the worst PoA. Since the PoA value also critically
depends on the λ(y) curves which differ across IXPs, both
worst and average case PoA values were calculated by taking
the the worst value and average values over all the λ(y)
curves, respectively. For the case of queuing delay functions,
d(y) = a

µ−y , the results were generated for different utilization
factors (Uf = y/µ) by scaling the value of a, and taking the
worst case values of PoA. Due to space limitations, we only
plot the average PoA values, but include the worst-case PoA
values and theoretical bounds in Table II.

C. Results and Discussion

From Theorem IV.3 and IV.4, we expect that both the
PoA(SW ) and PoA(Rev) values will depend heavily on the
value of α (both α1 and α2); and the smaller the value of α is
the higher the PoA will be. From the simulated λ(y) curves,
it was found that the α1 values varied from 0.2650 to 0.6592;
whereas the α2 values had a range of 0.1612 to 0.3872.

The PoA values for d(y) being a polynomial function is
presented in Figure 3. In the figure, PoA(SW ), n = 1 refers
to the average of the worst case PoA value of Social Welfare
obtained from our simulations when the exponent of the
polynomial function is 1 (linear). From the figure we observe
that the PoA(SW ) has close to optimum value (slightly larger
than 1) for K = 0.3 and then gradually increase to 2.5 with the
increase of K. On the other hand, the PoA(Rev) values at first
start decreasing with the increase in K, and start increasing
after reaching about K = 0.45. Therefore, K = 0.45 provides
us a good PoA for both SW and Revenue.

For the queuing delay function, similar results can be
observed, as shown in Figure 4. In the figure, Uf stands for
the utilization factor, which is usually around 50-70% in real
world scenario; hence we used those two corner values of that
range. For this case we see that a value of K = 0.4 to 0.55
results in a small value of PoA for both SW and Revenue.

Table II has the theoretical and simulated (worst-case) PoA
values for K = 0.3, 0.5, and 0.7. Since, theoretical values
depend on both K and α, we used the minimum value of α1

from the range of values found from the λ(y) curves, which is
0.2650. The results with α2 followed similar trend as α1 and
due to space constraints, is not discussed here. From the table
it is apparent that in most cases the worst-case PoA value is
well within the theoretical bounds and for a good choice of
K (as mentioned in the Corollary IV.3.1 and IV.4.1), we can
achieve very good PoA for both SW and Revenue.



0 0.2 0.4 0.6 0.8 1

Cumulative Traffic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
 (

)
(y) curves for 5 sample IXPs

(Normalized in both axis)

Fig. 2. Sample λ(y) curves with different α values.

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Value of K

1

1.5

2

2.5

P
o
A

PoA(SW), n=1

PoA(SW), n=2

PoA(Rev), n=1

PoA(Rev), n=2

Fig. 3. Simulated PoA values (polynomial delay).

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Value of K

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

P
o
A

PoA(SW), Uf=50%

PoA(SW), Uf=70%

PoA(Rev), Uf=50%

PoA(Rev), Uf=70%

Fig. 4. Simulated PoA values (queuing delay).

TABLE II
POA VALUES FOR POLYNOMIAL AND QUEUING DELAY FUNCTIONS.

Term K=0.3 K=0.5 K=0.7
PoA(SW) (polynomial) 3.3851 2.4319 5.8607
PoA(SW) (queuing) 1.9968 2.4902 6.6428
PoA(SW) (Theo) 5.3908 7.5472 12.5786
PoA(Rev) (polynomial) 1.5511 1.8605 5.1399
PoA(Rev) (queuing) 5.5403 1.9556 2.0722
PoA(Rev) (Theo) 25.1572 15.0943 12.5786

VI. CONCLUSION

We analyze the traffic exchange equilibrium between ISPs
at a profit-making IXP, and establish the existence of a pricing
policy that ensures good social welfare and IXP revenue
simultaneously. The policy only requires estimation of a worst-
case sublinearity measure of the inverse demand curve, is very
straightforward to compute and implement. Theoretical bounds
on PoA of social welfare and revenue for the proposed pricing
policy is given in terms of the sublinearity measure. PoA
values obtained from simulations with inverse demand curves
estimated from actual data on IXPs, fell well within these
bounds, and the average of the worst case PoA values were
less than two when K is chosen appropriately. For two broad
classes of delay functions, we found from simulations that a
value of K in the range of 0.45 to 0.55 ensures a good balance
between social welfare and revenue. These recommended per-
unit prices can be readily translated to pricing based on port
capacity that IXPs typically implement in practice.
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APPENDIX

A. Proof outline of Theorem IV.1:

From definition of equilibrium and the λ(y) curve we know,
equilibrium traffic sends demand with highest λij first, until it
equals the cost c(y). Due to the properties of c(y) and λ(y),
at least one such intersection point exists.

B. Proof outline of Theorem IV.2:

Let’s consider a traffic vector ~yt with yt = |~yt|, so that the
traffic with largest λij is sent. Then, from the definition of
Social Welfare, we have that:

SW (~yt) = 2

∫ yt

0

λ(y)dy − 2

∫ yT

0

E′(y)dy.



The above applies for both yt = ye and yt = yp. To maximize
social welfare, it is clear that yp should be the intersection of
the λ and E′ curves (see Figure 1).

C. Proof outline of SW part of Theorems IV.3 and IV.4

From the discussion of OPT we know that if the IXP
charges βp, then we will get the OPT SW . Also, if βe < βp,
then taking the max of these two means taking the price of
βp and PoA(SW ) will be 1. Hence, we just need to prove
that our claim holds when βe > βp. For the case of βe > βp,
we can easily argue (figure 1) that ye < yp. Hence, from the
definition of PoA(SW ), we have,

PoA(SW ) =

∫ yp
0
λ(y)−

∫ yp
0
E′(y)∫ ye

0
λ(y)−

∫ ye
0
E′(y)

=

∫ ye
0
λ(y)−

∫ ye
0
E′(y) +

∫ yp
ye
λ(y)−

∫ yp
ye
E′(y)∫ ye

0
λ(y)−

∫ ye
0
E′(y)

≤ 1 +
(yp − ye)(ce(ye))− (yp − ye)E′(ye)

(ce(ye)) · ye − d(ye) · ye

= 1 +
(yp − ye)(βe + d(ye)− E′(ye))

(βe + d(ye)) · ye − d(ye) · ye

≤ 1 +
(yp − ye)βe.

βeye
= 1 +

yp − ye
ye

≤ 1

ye
. (6)

where in the fourth line we have used λ(ye) = ce(ye), and in
the last line yp ≤ 1.

Now, If we use the α1 sub-linearity property, then we have,

ye + ce(ye) ≥ α1,

or,
1

ye
≤ 1

α1 − ce(ye)
, (7)

where in the second line λ(ye) is replaced by ce(ye) = βe +
d(ye). Now, if we choose, ce(ye) = Kα1, then from equation
6 we get PoA(SW ) ≤ 1

α1(1−K) .
Similarly if we use the α2 sub-linearity property, we get,

(ye)
α2 + (ce(ye))

α2 ≥ 1

or,
1

ye
≤
(

1

1− (ce(ye))α2

)1/α2

, (8)

Now, if we choose, (ce(ye))
α2 = K, then from equation 6 we

get PoA(SW ) ≤ 1
(1−K)1/α2

.

D. Proof outline of Revenue part of Theorems IV.3 and IV.4

We are going to prove the Revenue section for two cases,
one where βe > βp and the other where βe < βp.

1) Case I: βe > βp: Since, βe > βp, so max(βe, βp) is
βe, and that is the price which the IXP will charge. Also,
we know that E′(0) = 0, and d(y) is convex in nature, so
E′(y) ≥ 2d(y). For, βe > βp we have E′(ye) < c(ye), which
means βe > d(ye). Hence, for the case of α1 property where
we chose βe + d(ye) = Kα1, we get βe > 0.5Kα1. On

the other hand, with the α2 property where we chose (βe +
d(ye))

α2 = K, we get βe > 0.5 · ce(ye) = 0.5K1/α2 .
Now, with βe being the price charged by the IXP, we

can have the following two sub-cases, I − A)βe < β∗, and
I −B)βe > β∗, where β∗ is the per-unit traffic price charged
by the IXP that ensures maximum revenue. Also, let’s define
c∗(y) = β∗ + d(y), and y∗ be the traffic that attains the
maximum revenue when IXP is charging β∗ for per-unit traffic.

Case I-A: The ratio of maximum revenue to equilibrium
revenue can be bounded by the following way,

PoA(Rev) =
β∗y∗

βeye
≤ β∗ye
βeye

≤ 1

βe
≤ 2

Kα1
. (9)

In the above equation, we have used the fact that y∗ ≤ ye
because λ(y) is a non-increasing curve. Also, the maximum
value of β∗ can be 1, which is used in the second inequality
term. Also, if we had used α2 property, then we get

PoA(Rev) ≤ 1

βe
≤ 2

K(1/α2)
. (10)

Case I-B: For this scenario, we can bound the PoA(Rev)
with similar equation as before,

PoA(Rev) =
β∗y∗

βeye
≤ β∗

βeye
≤ 1

ye
, (11)

where we have used the property of y∗ ≤ 1 and β∗/βe ≤ 1.
Hence, with our choice of pricing, that is ce(ye) = Kα1, we
get PoA(Rev) = 1/(α1(1 − K)). On the other hand, with
ce(ye)

α2 = K; we get PoA(Rev) ≤ 1/(1−K)(1/α2).
2) Case II: βe < βp: According to our pricing policy, βp

will be charged as the per-unit price for this case. Similar to
Case I, there are two possible sub-cases, II-A) βp > β∗, and
II-B) βp < β∗. We will prove that Scenario A is not a possible
scenario and then will bound the PoA(Rev) for Scenario B,
which is βp < β∗.

Case II-A: To prove that βp > β∗ is not possible, let’s
assume yt is some traffic such that yt > yp (yp is the OPT),
and the corresponding Y axis value of yt is λ(yt). Since,
yp < yt so, the price βp for OPT should be the larger than
or equal to βt, the price for sending yt traffic. Also, from the
equation of revenue, we know it is (c(y) · y − E(y)). Hence,

Rev(OPT )−Rev(λ(yt), yt)

=(λ(yp)yp − E(yp))− (λ(yt)yt)− (E(yt))

≥(λ(yp)yp − λ(yt)yt) + (E(yp)− λ(yt))(yt − yp)) ≥ 0.

Hence, for any per-unit price less than the optimum price,
the revenue can be at most equal to the OPT revenue. So, the
maximum revenue per-unit price need to be at least equal to
or larger than the optimum per-unit price, which means, we
will always have βp < β∗.

Case II-B: To prove this part we can follow similar proce-
dure as in the proof of βe ≤ β∗. After going through similar
arguments we will find βp ≥ 0.5Kα1 and βp ≥ 0.5K1/α2 .
Then the rest of the proof can be done by substituting βe with
βp in the βe ≤ β∗ case.


