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Analysis of an Ultra-Short True Time Delay Line
Optical Reservoir Computer
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Abstract—This article presents the experimental demonstration
of a true-time delay line optical reservoir computer (ORC) using
an incoherent light chaos oscillator. In contrast to other benchtop
ORC systems, no external fiber spool was employed, enabling a
characteristic delay of 28.4 ns, one of the fastest reported optical
reservoirs to date. Comparable error metrics were obtained for
standard benchmark tasks despite the reduced time scale. Practical
experimental techniques, namely preamble functions and fading
memory capacity measures, are introduced in this article. A math-
ematical model of optimized virtual nodes for the best performance
of the RC was established. The fast ORC was also applied for
two real world applications: respiratory motion prediction used in
radiotherapy and perovskite compound property prediction used
in photovoltaic material discovery. The respiratory motion predic-
tion was compared with long short-term memory (LSTM) machine
learning algorithms, the former attaining compatible results with
orders of magnitude faster training speed. The ORC results for
the perovskite compound classification task were compared with
random forest approach, where the former demonstrated slightly
better computation predication but again with much faster com-
puting speed.

Index Terms—Analog optical computing, artificial neural
networks, echo state network, optical reservoir computing, optical
neuromorphic computing, recurrent neural networks.

I. INTRODUCTION

R ESERVOIR computing (RC) is a type of recurrent neural
network (RNN) that has attracted much attention lately in
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the artificial intelligence (AI) and machine learning communi-
ties. Like other artificial neural networks (ANN), RC networks
have an input, hidden, and output layer of neurons or nodes.
Notably, the RC hidden layer is a “reservoir” of neurons re-
currently, sparsely, statically, and typically randomly connected
[1], [2]. Only the weights connecting the hidden layer to output
layer neurons are updated during network training. This sim-
plicity in network topology and training gives rise to huge size,
weight, and power (SWaP) efficiencies, particularly important
for fieldable hardware [3].

A true time delay line optical RC is efficient for processing
temporally correlated signals at very high speeds [4]. A fiber
spool often serves as the delay line, storing “virtual nodes.” A
delay line of 1-2 km (affording a characteristic delay of ∼5 μs)
is typical [5]–[8]. Such length (and time scales) are impracti-
cal given the goal of RC chip-scale integration. Reducing the
delay line length often results in reservoir size reduction unless
combined with an increased signal injection rate at the input
layer, though this in turn may increase system noise or power
dissipation. The term “true time” here denotes delay is due to the
system length itself and not a function of resonance structures
such as a ring resonator that produces time delay by “trapping”
light in a resonator for a certain amount of time.

Recently a coherent light photonic RC using differential phase
shift keying (DPSK) modulation scheme was demonstrated with
a characteristic delay of 63.3 ns, affording N = 1000 virtual
nodes [9]. While DPSK or phase modulation based chaos oscil-
lators reduce noise [10], they are more complex and costly to
implement than the architecturally straightforward and inexpen-
sive incoherent light photonic RC used in this work. Here, we
focus on an incoherent ORC with time delay of 28.4 ns with a
maximum of N = 564 nodes.

Parameter selection for ANNs tends to be more art than
science. The required number of nodes for an expected level
of performance is among them. In RC, node counts range from
32 – 1000 [9], [11], [12]. The general theory is that computation
accuracy increases asymptotically with the number of virtual
nodes. However, experimentally we observed that an optimal
N exists for the least root mean square error (RMSE) of many
tasks. In this research, we will report a mathematic model that
analyzes the computation capacity of a RC based on information
theory.

Besides several standard benchmark tasks [5], [9], viz.
sine/square wave classification, nonlinear channel equalization
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(NCE), and speech recognition, we also introduce two real-
world tasks: respiratory motion prediction and perovskite com-
pound property prediction. Respiratory motion prediction is
used in radiotherapy where the position of the lung or liver
tumors need to be tracked so the imaging system and radiation
apparatus can be adjusted in real time. Long short term memory
(LSMT) ANNs [13], multi-layer perceptron neural networks
(MLP-NN) [14], adaptive boosting and multi-layer perceptron
neural networks (ADMLP-NN) [15] have demonstrated good
prediction results; however, unlike optical RC, they require
significant amounts of training data and time, impractical for
real-time training and prediction [16].

Lastly, machine learning has recently expanded into the field
of material science to predict relevant properties and accelerate
materials discovery in photovoltaics, Li-ion batteries, and ce-
ramics research [17]–[19]. Band gap prediction in particular has
been attempted across a wide range of materials using different
methods such as ANNs, support vector machines, and kernel
ridge regression [17], [20]–[25]. In this work, we will apply
optical RC to bandgap prediction of perovskite materials.

II. BACKGROUND

A. Echo State Networks (ESN)

Mathematically, the goal of RC is to learn the desired ex-
pected value of an l-dimensional output y(k) as a function of
n-dimensional input u(k), given a signal(s) of length k = 1, 2 …,
K. This is achieved by first projecting the input into a typically
larger N-dimensional space x(k) called a reservoir. For a given
discrete time input u(k), the reservoir state is

x(k) = f(βWinu (k) + αWresx (k − 1)), (1)

where f is the nonlinear transfer function of the reservoir, β is
the input gain, α is the attenuation of the reservoir state, Win

is an n × N matrix of random projection weights between the
input layer neurons and the reservoir, andWres is a N×N matrix
describing the internal connections and individual weights of the
reservoir neurons. Both α and β are on the interval [0,1].

The RC response ŷ(k) is the linear sum of the weighted
reservoir output neurons,

ŷ (k) = WoutS (k) , (2)

where S(k) is an (N + 1) × K matrix concatenating the reservoir
states x(k) with the addition of a fixed output bias neuron of value
1 and Wout is an l × (N + 1) matrix of trained output weights.
Knowing the target output y(k) for the training examples, Wout

may be calculated directly by minimizing the Mean Squared
Error (MSE) between the target output y(k) and the reservoir
output via ridge regression,

Wout = ySᵀ(SSᵀ + λI)−1, (3)

where � denotes the transpose, λ is the regularization factor, and
I is the identity matrix. The most computationally expensive cal-
culation then is the initial matrix inverse calculation as opposed
to the iterative gradient descent methods typically employed in
training ANNs.

B. Time Delay Reservoir (TDR)

A typical ESN distributes the input data in space across mul-
tiple nonlinear neurons like any other traditional feed forward
ANN, but the ESN can be further simplified to a ring topology
with only one nonlinear neuron and an arbitrary number N
“virtual nodes” without an appreciable loss of computational
power for certain classes of problems. That is, this streamlined
configuration, known as a time delay reservoir among other
similar names, instead spreads the information in time across
multiple “virtual nodes” in the delay line [4]. When using a
TDR, the continuous time input signal u(t) is sampled, u(k),
and held for time τ , the duration of one round-trip through the
delay line reservoir. Per input u(k), the delay line of characteristic
duration τ is sampled N+ 1 times with sampling period θ, where
τ = (N + 1)θ. Each measurement is a “virtual node,” neither
having defined physical location nor performing computation
on the signal. Note, while the reservoir is characterized such
that N + 1 virtual nodes are supported, typically only N of those
virtual nodes are used for computing X(k) [5].

Since merely sampling u(k) over τ would result in all vir-
tual nodes having the same value, a masking function of fixed
arbitrary weights (Win) is applied to each u(k) (Eq. (1)). The
result is linearized then sequentially fed to the reservoir. In our
experiments a uniform random mask varies in [−1, +1] was
used.

C. Characterization of TDR Performance

For very high accuracies, it is convenient to express the
symbol error ratio (SER), defined as the fraction of the inputs
u(k) that are misclassified, thus SER = 0 indicates no misclas-
sifications. Word error ratio (WER) is similar.

For physical reservoir systems, we not only care about the
accuracy performance metric for a particular task, but also for the
system’s overall noise tolerance and repeatability. In our tests,
for each instance j of a task, W j

out is computed; and this W j
out

is then tested against all the other trial signals. For j trials, this
affords j( j−1) unique training/testing pairs. A well-tuned, phys-
ically stable reservoir would demonstrate similar performance
across the different trials. Note, the input mask Win must be
fixed for all j signals, else W j

out will only work for signal j.

III. METHOD

Since the TDR topology is more algorithmically modular
than the general ESN topology, it more readily lends itself to a
hardware implementation. In this case, the TDR is realized using
off-the-shelf telecommunications components (Fig. 1). Matlab
scripts were used to perform initial input masking as well as the
output post-processing steps [5]. However, designs are available
in the literature to implement both the input and output layers
computations in optical hardware [7], [8].

A. TDR Experimental Setup

In our work, the optical source was a 1550nm distributed
feedback laser source (Thorlabs WDM8-C-25A-20-NM) with
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Fig. 1. Hardware schematic. Physical TDR consisted of Mach–Zehnder in-
terferometer (MZI), arbitrary waveform generator (AWG), electrical amplifier,
two photodetectors, fiber splitter (90/10), and tunable optical attenuator (α).
Red lines denote optical components while green lines indicate electrical com-
ponents.

output power typically∼10 mW. An intensity Mach-Zehnder in-
terferometer (MZI) (EOSPACE AX-0MSS-20-LV) with 20 GHz
bandwidth served as the nonlinear node, encoding an electrical
signal as light intensity according to a sin2 transfer function. An
arbitrary waveform generator (AWG) (Keysight M8190A) was
used to feed the input to the reservoir. An optical splitter diverted
roughly 10% of the optical signal to the output layer which
consisted of a high-speed photodetector and an oscilloscope
(Keysight DSO-S 804A digital storage oscillator). An RF am-
plifier (Picosecond PSPL5868) and a tunable optical attenuator
(Newport 44203-01) were used in combination to quantify the
fading memory of the reservoir. The characteristic delay of this
reservoir was established only by the intrinsic delays in the
electronic components and pigtail fiber lengths of the optical
components. The measured delay time of the setup was τ =
28.4 ± 0.02 ns. To the best of our knowledge, this is the fastest
time-delay RC in network topology similar to Fig. 1 that has
been implemented [4], [9], [26].

B. Memory Capacity

Fading memory, or the echo-state property, is a necessary
characteristic of a reservoir. In [27], a linear memory tech-
nique to quantify the RC memory capacity is presented, but
this technique involves actually performing RC, which may be
tedious during setup. In this work, we instead present a very
simple technique both to measure the reservoir characteristic
delay and to approximate the appropriate fading memory for
different tasks. The underlying principle of this approach is that
the reservoir is a dynamic system capable of retaining an input
signal with a constant time delay [28], [29] until the signal decays
to the noise level.

An electrical spike was applied to the reservoir. The readout
scope records the number of subsequent spikes as the signal
cycles through the reservoir layer with period τ until the spike
amplitude is diminished to the noise floor of the system. The
fading memory of the reservoir is clearly a function of this spike
train length. In our setup, the optical attenuator was tuned to
adjust the fading memory capacity.

The experimental measurement of two settings of fading
memory (3 pulses or 5 pluses) are shown in Fig. 2, which

Fig. 2. Spike train characterizing fading memory of reservoir using (a) a 1km
optical fiber delay line, τ = 4.96 ± 0.02µs, illustrating rapid fading memory (2
repeating spikes), and (b) no external delay line, τ = 28.4 ± 0.2 ns, illustrating
longer memory retention (5 repeating spikes).

demonstrate the injected signal can be retained in the reservoir
for 2τ and 4τ seconds, respectively. A maximum of 13 spikes
have been observed in these experiments, which is useful for
tasks where signals have long periods of temporal correlations;
while signals with short temporal correlations need only a few
spikes. Thus, this simple technique greatly helped in tuning
reservoir performance across various tasks.

C. Preamble Functions

One challenge in analyzing the reservoir output is identifying
the reservoir response starting point at x[u(k = 0)] from the
background system noise. [5] utilized a fraction of its input as
the “warmup” signals for preamble and discarded them during
the post-processing. In this work, we added a preamble function
prior to the initial data point of the input signals. Two forms of
preamble signals were used in this research, namely a) a ramp
preamble [0, 1] and b) a high DC signal of 1. The comparison
of NCE task using preamble functions against no appended
preamble signals is presented in Section V, part B.

D. Averaging Points Per Node

In this work, the input AWG sampling frequency set the
number of virtual nodes in the reservoir layer. The readout os-
cilloscope sampling frequency was often higher, oversampling
the reservoir state. By oversampling, sequential measurements
could be averaged together to form one virtual node, whose value
is thus more resilient to measurement noise [5]. The number of
averaged points per node, <ppn>, was calculated as

〈ppn〉 = fs_out

fs_in
, (4)

where fs_in and fs_out are the sampling rate of the input AWG
and readout oscilloscope, respectively. For example, operating
the input AWG at 2 gigasamples per second (GSa/s) and the
readout oscilloscope at 20 GSa/s, afforded 10 samples to be
averaged to create one output virtual node (<ppn> = 10).

IV. MATHEMATICAL MODEL FOR VIRTUAL

NODE CONNECTIVITY

It is crucial to evaluate the optimal reservoir network size
and reservoir states connectivity analytically, which leads to
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the calculation of the capacity C of a reservoir network. The
information-theoretic approach summarized here offers crude
estimate. For an improved method and more detailed mathe-
matical treatment, one can refer to [30].

A reasonable starting point is to take the reciprocal of capacity,
1
C = |{p∗}|−1 of a fixed recurrent neural network (RNN) to be
the a priori (or least biased) probability of getting the intended
Boolean problem p∗ from the untrained RNN. Thus, to train
an RNN to perform a fixed problem, we will need to use ln[C]
amount of training information. Applied to the discrete approx-
imation for the continuous weights and biases in the RNN, we
obtain the capacity, and the learning efficiency ratio in the second
line of the following equations

C = |{p∗}| = KN × 2n0M (k−2)×N

N !
(5)

q (p∗) /Q (p∗)
= 2−(L+1){N [ln(K ×Mk−2 − lnN × e−1 + n0ln2} (6)

where q(p∗) = ln[C] is the size of the required training set
which we take to be equal to the number of training-input binary
strings of length L + 1, Q(p∗) = 2L+1 is the total number of
all the possible input binary strings for the Boolean problem, K
and M is the number of accessible discrete values of the biases
and weights, respectively. Wres is the reservoir hidden nodes
connections, and n0 is the number of nodes in the output layer.
In deriving this useful expression, we have also assumed for
concreteness that the connection of the reservoir network has
regular degree k= 4 associated with the ring topology, and taken
the number of accessible values of the hidden weights Wres be
M. The fading memory is related to the degree k. A large k value
indicates that the signal can be retained in the reservoir for a
longer time. The quantitative relation between degree k and the
fading memory will be studied in the future. We have also taken
the input masks mi to be fixed over the length of the binary
input u(t). Clearly, q(P ∗)

Q(P ∗) is nearly linear with N since n0 < N
that suggests an optimized virtual node number N exist for the
maximum information capacity C, experimentally evidenced in
the following section. Moreover, the dependence of the above
expression on the degree k of the connectivity of the reservoir
nodes gives an effective means to tune the connectivity of the
reservoir for an optimal learning efficiency.

V. RESULTS AND ANALYSIS FOR BENCHMARK TASKS

A. Sine/Square Wave Classification Task

In our work, 5 signals of the sine/square classification task
were performed with 1,000 training and 1,000 testing points
with reservoirs of N = 28, 56, 70 and 141 virtual nodes. The
classification results (Fig. 3(a)) show a minimum SER with N
= 56. Also, for a given virtual node number N, the SER can be
lowered by increasing the <ppn> (increasing output sampling
frequency) (Fig. 3(b)).

With a higher signal injection rate, the electrical bandwidth
of the photodetectors and the digitizer also need to increase in

Fig. 3. For the sine vs. square wave classification task, (a) SER as a function
number of virtual node count and (b) SER as a function of number of averaged
ppn at N = 70.

Fig. 4. For the nonlinear channel equalization task, (a) SER as a function of
the virtual node count and (b) SER as a function of the input SNR for N = 56
and <ppn> = 10.

order to read out the high-speed signals without errors which
poses challenges in the hardware realization.

B. Nonlinear Channel Equalization (NCE) Task

For the NCE task, 5 signals of 2,400 symbols were gener-
ated (1,000 training and 1,400 testing symbols) over several
signal to noise ratios (SNR) = 12–32 dB. A tradeoff was
again demonstrated when optimizing the RC for performance
(Fig. 4(a)). Increasing the number of virtual nodes theoreti-
cally allowed for greater separation between individual symbols
and, in turn, greater computational complexity of the system;
however, increasing the AWG input sampling frequency also
decrease the averaged samples per virtual node, increasing the
effects of noise. Because of the fast time scales involved, further
noise/reservoir robustness tradeoffs were not yet fully character-
ized, resulting in an increase in SER for the cleaner NCE signal
(SNR = 32 vs. SNR = 28 dB) (Fig. 4(b)). We achieve the best
results with a moderate fading memory (4-5 spikes) for this task.

The NCE task was also used to study preamble signals for
virtual node counts of N = 56 and 70. Each preamble signal was
of duration τ , in the range [0, 1] scaled by β × max[u(k)], and
sampled over N time steps. Because the shape and length of the
preamble are known, the first point of the reservoir response is
drastically more conspicuous (Fig. 5(b), c vs. a). By appending a
preamble signal to the beginning of u, the attained SER improved
by more than 3 orders of magnitude (Fig. 5(d)).

Due to fading memory effects, the shape of the preamble is
repeated (though inverted) in the reservoir response; afterwards,
the reservoir responses are visually fairly similar. In effect, the
preamble helps stabilize the initial internal dynamics of the
reservoir response over multiple trials. For this example case,
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Fig. 5. Effect of preamble for determining x(u(k = 0)) for (a) no, (b) high, or
(c) ramp preamble signal. Colors depict reservoir responses for different trials.
All units A.U (d) NCE SER as a function of different preambles for N = 56
and 70.

the high preamble afforded the best reservoir performance. In
general practice though, the high function was liable to push
the reservoir into an unstable chaotic state due to the impulse
response; thus the ramp preamble was used for the remaining of
the experiments described.

C. Speech Recognition Task

For the speech recognition task, we used the TI-20 dataset
(subset of TI-46 speech dataset) which is comprised of record-
ings of 5 female speakers pronouncing 10 digits 0, . . . , 9 10
times each (500 recordings total). These speech data were first
preprocessed via the Lyon ear model, converting a 1D sound
wave (pressure variations in time) into a 2D frequency in time
matrix, called a cochleagram, of Q= 78 frequency channels over
24–53 steps (mean of 34.4) using a decimation of 400. Because
of the small size of the audio dataset, there is high variability in
the reservoir performance dependent upon an arbitrarily chosen
test set. To reduce this variability and obtain realistic typical
performance measures for the reservoir, the testing procedure
for this task utilized k-fold cross validation [5], [9], [31]. In this
work, the 500 signals were divided into 20 subsets, such that
every signal was tested exactly once.

In comparison with [9], to process 1 million words a second
given τ = 28.4 ns, the average spoken digit duration needed to
be∼34 steps, that is u is a 78×34 matrix. However, the difficulty
of the task is inversely proportional to the signal length of each
spoken digit. The best WER was 5.5% using N = 284 virtual
nodes where 〈ppn〉 = 2 (Fig. 6). In [9], only a fraction of the
reservoir was used by u(k), allowing for 3 such values concurrent
in their reservoir. With such a configuration they demonstrated
a classification speed of ∼750,000 words/s. We observed that
a smaller fading memory (1–2 spikes) gives rise to the best
classification results.

Fig. 6. Speech classification WER for TI-46 task as function of virtual node
count.

VI. NOVEL TASKS RESULTS AND ANALYSIS

A. Respiratory Motion Prediction Task

During radiation therapy for cancer treatment, targets such
as lung tumors will change position due to the patient’s res-
piratory cycles. Machine learning based motion prediction is
sought to reduce the radiation dose and minimize the exposure
to surrounding healthy tissue. A tumor motion curve follows a
semi-periodic pattern, and for stable, regular breathing patterns,
simple model-based predictions can achieve good results [32]. In
clinical practice, the breathing pattern can vary considerably dur-
ing treatment due to changes in the patient’s physical conditions
such as coughing or nervousness as well as varying according
to different patients. Early work by Lee et al. [33] and based
on Puskorius et al. [34], using an extend Kalman filter (EKF)
in combination with RNNs, generally have demonstrated good
prediction results. RC therefore appears ideally suited for this
task. We will compare our results based on clinical data with a
long short-term memory (LSTM) approach [13].

Clinic data from 4 patients of lung cancer were provided
(subset of [13]). The data were acquired by placing sensors on the
patient’s chest to record position movement at a 34 Hz sampling
frequency (Δt = 29.4 ms). Typically image guided radiotherapy
system reports system response latency of 50 ms–1400 ms [14].
In this work, the current data point along with the previous 15
data points were used to predict the future tumor position 10
time steps ahead, enabling a 294 ms prediction window. Typical
target metrics for the signal in a 300–800 ms prediction window
are mean absolute error (MAE) < 0.5 mm and root mean square
error (RMSE) = 0.67–1.2 mm [14]–[16], [35].

The signals ranged in duration from 45–160 seconds, so for
consistency, the last 20 seconds (600 points) of each signal were
used for testing. For our optical TDR, N = 70 and <ppn>= 20.
Once the training data have been processed through the reservoir
in kτ seconds, a single Wout per patient was calculated using
Matlab within 30–40 ms. Each prediction (Eq. 2) is subsequently
calculated within on an average of 11 μs.

ORC predictions follow the actual breath patterns well (Ta-
ble I and Fig. 7). In Table I, NMSE, RMSE, and MAE for motion
forecasts of 30 ms (1 point), 147 ms (5 points), and 294 ms (10
points) were reported; and, as expected, the accuracy metrics
dramatically improve inversely with the forecast distance. The
larger errors occurring near the inflection points of the breathing
pattern. Clinically, good alignment between the predicted and
actual curves at the peaks and valleys of the breath patterns are
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TABLE I
PERFORMANCE OF ORC ON RESPIRATORY MOTION PREDICTION TASK

Fig. 7. Actual (red) and predicted (t + 294 ms) (black) tumor displacement
curves for sample (a) #440, (b) #805, (c) #642, and (d) #817.

more important than prediction errors at the inflection points
as a threshold can be set to disable the radiation beam at the
proximity of inflection points.

An LSTM network with 3 hidden layers and 15 epochs [13]
attained comparable results as the ORC prediction. LSTM net-
works have many more tuning parameters, potentially attaining
greater prediction accuracy at the expense of additional comput-
ing resources. Several hours were required to train the LSTM
network on just one signal (∼1000 data points) as opposed to <
1second training time using RC. Again, while a general model
may be trained beforehand, the goal is for any machine learning
technique to adapt to a patient’s unique breathing cadence at the
time of the operation. The ORC can be trained rapidly with
minimal training data, making it a strong candidate towards
real-time adaptive radiotherapy.

B. Perovskite Bandgap Prediction

Organometallic halide perovskites are a group of materials
that have revolutionized the field of photovoltaics due to their
optimal band gaps, high absorption, long carrier diffusion length,
and many other suitable properties. The major obstacle in in-
dustrial deployment is the challenge of long-term stability due
to moisture, heat and light. To address this, there have been
considerable research efforts searching for alternative halide

double perovskites with the atomic structure of a pair of 1+-3+

cations that constructs a basic formula unit of A2B+B3 + X6.
This strategy has opened the search space of halide perovskites
to include Na, K, Cs, Cu, Ag, Au, In, and Tl as the monovalent
cation, B+, and Sc, Y, Al, Ga, In, Tl, Sb, and Bi as the trivalent
cation, B3+, and combinations for many novel photovoltaic
compound materials. The material energy bandgap is the most
important property of a solar absorber and is commonly mod-
eled by density functional theory (DFT) method and a higher
order exchange correlation method. The former tends to over-
estimate the bandgap, and the latter, while more accurate, is
computationally expensive, making a high throughput search
inefficient. Machine learning models using random forest lately
has been established to classify perovskites as potential solar
cell absorbers based on its properties such as electronegativity,
ionization potential, and atomic radius of the atoms composing
the perovskite [25]. We explore whether photonic RC can also
be used here.

The data set of study consisted of 220 data points constructed
by randomly selecting elements from the A, B/B`and X regions,
where the A site refers to {Ca2+, Sr2+, Ba2+}; the B/B`site
refers to {(4+, 4+),(3+, 5+),(2+, 6+)} on the periodic table;
and the X site refers to {O2-, S2-, Se2-} [25]. A total of 9 inputs
are mapped to a single binary output in the optical RC network,
viz, 1) energy bandgap in eV, 2) binary gap, 3) B-site electro-
negativity (EN), 4) B̀-site EN, 5) average B/B`EN, 6) X-site EN,
7) difference between X-site En and B-site EN, 8) difference
between X-site EN and B̀-site, and 9) difference between X-site
EN and averaged B/B`EN.

Among the 220 data, the first 180 were used for RC network
training while the last 40 data points were held out for testing.
The predication performance of the ORC was compared with a
random forest algorithm run on the scikit-learn Python module.
The forest contained 80 trees with a maximum depth of 5 and
they were optimized according to the Gini entropy criterion. The
random forest machine learning model achieved 95% testing
classification accuracy while the ORC achieved 94.5% accuracy.
Splitting the examples 50% and 50%, the random forest achieved
68% accuracy yet the ORC attained 82% accuracy.

Machine learning models for material science promises to en-
able knowledge extraction from large datasets, revealing hidden
correlations among data points beyond the established physical
and chemical theories [36]. While not a temporal dataset, the
underlying hyperdimensional network mapping of the optical
TDR may be still used for the perovskite prediction task [37],
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with a minimal memory window. While minimal training data
are necessary for highly temporally correlated data, 220 samples
may be too few for optimal performance, though comparable
with the random forest approach. Yet again, the computational
speed of the physical reservoir layer and training algorithm
favors the ORC. It takes ∼30 s to run random forest algorithms
on Python while it takes ∼ 0.2 ms to execute the same task on
the bench top reservoir kernel. A fully analog optical RC was
demonstrated [7], suggesting a path towards eliminating digital
pre- and post-processing and enabling optical RC to fully exploit
its unprecedented computation speed.

VII. CONCLUSION

In this paper we have experimentally demonstrated a fast delay
line optical reservoir computer with a short characteristic reser-
voir time of 28.4 ns. We have introduced the use of a preamble
to remove ambiguity in post-processing and have characterized
the performance of various preamble functions. We have also
introduced a simple yet practical method to quickly characterize
the fading memory of the ORC.

Beyond the standard RC benchmark tasks, we evaluated the
reservoir computer on a respiratory motion prediction task and
found performance accuracy to be comparable to more widely
used machine learning algorithms but significantly more com-
putationally efficient, making this approach highly attractive
for real-time machine learning in medical embedded computing
applications. We also introduced a perovskite bandgap predic-
tion task and again demonstrated comparable results but with
more computational efficiency. The competitive performance of
ORC on the respiration motion prediction task and the material
bandgap classification task demonstrate the algorithmic power
of reservoir computing. Optical reservoir computing then, with
additional orders of magnitude improvements in energy and
speed efficiency via optics, is well positioned to make signif-
icant contributions in embedded machine learning applications,
where strictly digital approaches are often inadequate in data
processing speed.
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