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Abstract
Reservoir computing (RC) is one kind of neuromorphic computing mainly applied to process
sequential data such as time-dependent signals. In this paper, the bifurcation diagram of a photonic
time-delay RC system is thoroughly studied, and a method of bifurcation dynamics guided
hardware hyperparameter optimization is presented. The time-evolution equation expressed by the
photonic hardware parameters is established while the intrinsic dynamics of the photonic RC
system is quantitively studied. Bifurcation dynamics based hyperparameter optimization offers a
simple yet effective approach in hardware setting optimization that aims to reduce the complexity
and time in hardware adjustment. Three benchmark tasks, nonlinear channel equalization (NCE),
nonlinear auto regressive moving average with 10th order time lag (NARMA10) and Santa Fe laser
time-series prediction tasks are implemented on the photonic delay-line RC using bifurcation
dynamics guided hardware optimization. The experimental results of these benchmark tasks
achieved overall good agreement with the simulated bifurcation dynamics modeling results.

1. Introduction

Reservoir computing (RC), a subset of the recurrent neural network has attracted considerable attentions
due to its simplicity in network training. A typical RC network consists of three layers: an input layer, a
reservoir layer (hidden layer) and an output layer. The neuron connections in the reservoir layer are sparse
and random but fixed while the training takes place only at the output layer by computing the output weight
matrix. RC is a simple yet powerful machine learning approach and particularly effective processing
sequential data in classification or prediction tasks such as time series forecasting [1], pattern classification
[2–4], spoken digit recognition [5], signal recovery in communication systems [6, 7].

Recently, driven by edge computing applications, RC algorithms have been explored to harness on
various hardware platforms such as electronic RC by nonlinear analog electronic circuits [8, 9] and FPGAs
[10], reservoir by spintronics [11, 12], photonic RC by optical node arrays [5, 13] and photonic time-delay
systems [14–17]. For many physical RCs, the inherent dynamics of physical devices are utilized to form
random neuron connections of the reservoir. Photonic RC that has rapid signal processing speed and
chip-scale integrated capability is one viable solution in developing small size computing unit for edge
computing platform. Integrated photonic RC has been realized on an on-chip micro-ring or micro-cavity
[18, 19] and interconnected-node mesh reservoir [5, 13]. Photonic delay line-based RC using virtual nodes
in a temporal space with simple ring topology was first demonstrated experimentally in an optoelectronic
(OE) oscillator configuration by Paquot et al [14] and Larger et al [20]. Other versions of photonic delay-line
RC implementation have also been reported such as all-optical feedback loop [15] and laser cavity with
feedback [16]. These reported photonic delay-line RCs are appealing as they can be constructed by
off-the-shelf photonic components.
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It is well known that the RC network inference result is strongly influenced by the hyperparameters of the
RC network. Grid search [17, 21], Bayesian optimization [22–24] and entropy-based hyperparameter
optimization have been reported [25]. Grid search for hyperparameter optimization is commonly used to
determine the lowest inference error in a global setting, but this approach often suffers from exceedingly long
computation time particularly when there are multiple hyperparameters. Comparing to grid search, Bayesian
optimization utilizing probability theory can greatly reduce the number of iterations.

Hyperparameter optimization for physical RC poses unique challenge as it requires the tunability and
reconfiguration of a physical system. In this work, we report a practical and simple method that utilizes
bifurcation diagrams for hyperparameter optimization. We first establish a time evolution equation of the
optical oscillator that closely matches the physical setting of the delay-line reservoir. Next, we model the
derived evolution equation to determine the dynamic regimes of the RC system on a bifurcation diagram. We
find that the low inference errors are generally obtained near bifurcation points [26] when the system is at
the edge of stability just before entering the oscillatory state, which allows us to obtain a much smaller range
of physical settings to be tuned for RC hyperparameter optimization. We implemented this approach on
three benchmark tasks, i.e. nonlinear channel equalization (NCE), nonlinear auto regressive moving average
with the 10th order time lag (NARMA10) and Santa Fe time-series prediction tasks.

The paper will be organized as follows. In section 2, general background on time-delay RC network and
modeling of our photonic RC implementation are introduced. Detailed derivation of hardware-based
time-evolution equation is also provided in this section. Section 3 introduces the intrinsic dynamics of
delay-line RC system while section 4 applies the bifurcation-dynamic guided hyperparameter optimization
on three RC benchmark tasks.

2. Photonic true-time-delay RC network

The photonic time-delay RC network studied in this work uses a cyclic topology similar to the setup in
Paquot et al [14]. The input layer signals are sequentially injected to the reservoir layer via a single physical
nonlinear node while the signals in the reservoir circulate on a closed delay-line loop. The internal reservoir
states are often referred to as the virtual nodes traveling along the time-delay line in a series of optical pulse
trains with varying intensity to form a spatial-temporal dynamic system. A good reservoir should have high
dimension, nonlinearity and fading memory [27, 28]. The RC network of this work was implemented on a
bench-top photonic time-delay system constructed with commercially available optical and electrical
components. A schematic of the photonic delay-line RC is sketched in figure 1 and the components used in
the RC construction are listed in supplementary materials.

The reservoir in this work is an optical fiber oscillator that operates at the edge of stability. The capacity
of the reservoir is denoted by the virtual node number N= τ/θ, where τ is the round-trip delay time and θ is
the node separation in unit of time. In this work, the optical signal is coupled to the reservoir by an arbitrary
waveform generator (AWG) at a sampling rate of N/τ . A reservoir connectivity matrix,Wres is used to
characterize the node connections within the reservoir. A node mismatch k is defined as k= (τ − τ ′)/θ
where τ ′ denotes the sample hold time for each input signal. For synchronized operation where τ = τ ′,Wres

is simply an identity matrix. To enrich the reservoir dynamics with increased interactions among virtual
nodes, RC can be tuned to asynchronized regime [14] in whichWres is a shifted identity matrix. In this work,
we utilized a small node mismatch k= 2 for NCE and Santa Fe tasks and theWres matrix non-zero diagonal
element ‘1’ is shifted by 2 columns to the right as shown below:

Wres =



0 0 1
0 0 0
0 0 0

0
1
0

0
0
1

· · ·
0
0
0

...
. . .

...
0 0 0
1 0 0
0 1 0

0
0
0

0
0
0

· · ·
1
0
0


.

The input signal u(t) is acquired externally and then coupled to the physical RC via a sample-hold
operation. A piecewise mask functionm(t) is multiplied with u(t) to increase the diversity of the projected
input data in the reservoir [14]. The discrete levels ofm(t) are randomly generated in the range of [−1, 1]
with a time duration of θ for each level and raw input data are normalized to u(t) ∈ [−1, 1]. The period of
mask function is set equal to the duration time of each u(t) level τ ′. In this work, the input layer is
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Figure 1. Schematic of photonic implemented time-delay RC system. The optical path is marked in red and the electrical path is
marked in green. AWG: arbitrary waveform generator.

Figure 2. (a) Measured transfer function of the MZM versus external bias. (b) MZM operation near peak. The red triangle marks
the DC operating points and red dashed lines represent the reference levels (x= 0) of MZM output intensity. Positive x are
recorded above reference level and negative x are recorded below reference level. (c) Measured transfer function of the MZM
versus hyperparameter φ.

implemented digitally in an external computer and the operation ofm(t) · u(t) is carried on in MATLAB
program. Duport et al [29] reported using cascade Mach–Zehnder modulators (MZMs) to perform the
multiplication in optical domain so a fully hardware implementation of the input layer is feasible. The
masked input data sequencem(t) · u(t) is fed into the reservoir layer through the AWG. The amplitude of
m(t) · u(t) at the AWG output is to be adjusted as a key parameter closely related to β.

In the reservoir layer, a LiNbO3 MZM serves as the single physical node to provide a nonlinear response
to the encoded input optical signals. The MZM has a marked half-wave voltage (Vπ) of 3.35 V (DC) and
3.7 V (RF). The DC operating point of the MZM is set by an external bias VDC. The measured transfer
function of the MZM is plotted in figure 2(a) and a built-in phase offset φos = 0.24π is measured at VDC = 0.
An optical splitter is used at the MZM output to tap out 10% of the optical power to a readout photodetector
(PD) in the output layer. An electrical amplifier is used to compensate the optical loss in the delay line as well
as provide an easy way to adjust the input gain β and the feedback gain α in addition to the optical attenuator
in the delay line loop. The electrical amplifier can be eliminated from the RC hardware setup when the laser
power is sufficiently large or the loss in the delay line loop is low. The elimination of the electrical amplifier
helps to reduce the power consumption of the RC network as well as reduce thermal noise in the system.
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The output intensity I(t) of the MZM with RF port is fed with V(t) can be expressed as

I(t) = I0cos
2

[
1

2

(
πV(t)

Vπ
+φ0

)]
(1)

where I0 is the MZMmaximum output power with insertion loss and φ0 is defined as

φ0 = φos +
πVDC

Vπ
. (2)

The RF signal V(t) to the MZM comprises the summation of feedback signals after a round trip in the
delay line loop and the newly added input u(t) at the combiner and it can be expressed as

V(t) = ηO × ηE ×R× I∗ (t− τ)+ ηE ×VAWG ×m(t)× u(t) (3)

where ηO = Ifb (t)/I(t) is the feedback PD optical power retaining ratio, ηE is the total gain/loss of the
electrical path (green part in figure 1),R (unit: V/W) is the multiplication of the feedback PD responsivity
with the PD’s effective resistance, VAWG is the maximum amplitude of AWG output and I∗ (t− τ) denotes the
feedback optical intensity as a function of time.

The output photocurrent (Iph) of both the feedback PD and the readout PD is proportional to the PD
input optical intensity while Iph of the feedback PD multiplied with the input impedance of the oscilloscope
(50 ohm) yields a voltage that corresponds to the reservoir state value and is displayed at the oscilloscope. For
future work of an integrated optical delay-line RC, a transimpedance amplifier can be employed to produce
the reservoir states. In Paquot’s work [14], the output signal intensity I(t) was normalized following

x(t) = I(t)−I0/2
I0/2

to get x(t) ∈ [−1, 1] under the assumption that the reference of the output intensity (x= 0)

is set at IDC = I0/2 which is different from how the reservoir states are read out from the oscilloscope in our
work. Here, we utilized an AC coupled approach to obtain both positive and negative reservoir state. The
feedback PD is connected to a high pass filter with a cut-off frequency of 30 kHz so that the DC component
of the PD output is blocked. Impedance matched transmission line ensures the AC signals are efficiently
delivered to record reservoir states, where a positive/negative AC component of PD output corresponds to
positive/negative reservoir state reading.

For illustration, an example is shown in figure 2(b) where VDC is set at 4.9V, corresponding to a 0.3π
phase difference from the peak transmission. This gives a reference of output intensity set at IDC =
I0cos2 (φ0/2) = 0.8I0 without any signal fed to the RF port. The instant MZM output I(t) determined by the
VDC +V(t) can then give either a positive (above red line) or a negative (below red line) reservoir state value
using IDC as the reference. Normalizing to I0, the reservoir state can be expressed as

x(t) =
I∗ (t)

I0/2
=

I(t)− I0cos2 (φ0/2)

I0/2
=

2I(t)

I0
− 1− cosφ0. (4)

Here x(t) varies in [−1− cosφ0, 1− cosφ0], effectively having an offset of cosφ0 from [−1, 1] based on
VDC. Combining equations (1)–(3) and normalizing all the optical power terms based on equation (4), the
time evolution equation can be expressed using hardware parameters as

x(t)+ cosφ0 = cos

[
πηOηERI0

2Vπ
x(t− τ)+

πηEVAWG

Vπ
m(t)u(t)+φ0

]
. (5)

Note the coefficient of x(t− τ) and u(t) of equation (5) marks the delay-line loop feedback strength α
and input signal strength β respectively with the following definition:

α=
πηOηERI0

2Vπ
(6)

β =
πηEVAWG

Vπ
. (7)

Combining the phase terms yields

φ= φ0 +
π

2
= φoffset +

πVDC

Vπ
+

π

2
. (8)

A transfer function of the MZM with respect to the hyperparameter φ defined by equation (8) is plotted
in figure 2(c). The general form of a sinusoidal time evolution equation can then be expressed as

x(t)+ sinφ= sin [αx(t− τ)+βm(t)u(t)+φ] (9)
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where α, β, φ are three hyperparameters of this RC network to be optimized based on the computation
tasks. Replacing the time variable t by index n, a discretized time evolution equation can be derived for
convenience of theoretical studies:

xi (n)+ sinφ= sin [αxi (n− 1)+βmiu(n)+φ] (10)

where n represents the nth input data and i denotes the ith virtual node on the delay line.
In the output layer, a one-step training is performed by calculating the output matrixWout via ridge

regression

Wout = YXT
(
XXT +λI

)−1
(11)

where Y is the targeted output matrix consisting of targeted outputs y(n), and X is the reservoir states matrix
concatenating the projected reservoir state vectors of each input data point. The superscript T represents the
matrix transpose operation and I denotes the identity matrix. λ is a regularization parameter to prevent
overfitting and is chosen according to the virtual node number N ′ and the computation task.

3. Delay-line RC system dynamics

The dynamics of OE time-delay systems have been investigated in several works [30–32]. Passive optical
systems subject to delayed feedback can be described by Ikeda delay differential equation (DDE) or slightly
modified forms [33] to model the nonlinearity [34]. The dynamics of the delay-line RC used in this work can
be described as

τrx
′ (t) =−x(t)+ sin [αx(t− τ)+φ]− sinφ (12)

where the dimensionless dynamical variable x represents the normalized MZM output power and α, φ
follows the same notation as discussed in section 2. Though the detailed form of the DDEs may vary due to
system configuration variations, two parameters are common for OE delayed systems in characterizing the
dynamics: relaxation time τr and delay time τ . The parameter τr in equation (12) characterizes how fast the
system reacts to the input changes and is limited by the system cutoff frequency fH. In our RC network, the
slowest component is the feedback PD (and the readout PD) with a marked bandwidth of 1 GHz. The
estimated τr of the RC is τr = 1/2πfH ≈ 0.16ns [16] which is several orders of magnitude smaller than the
oscillator cavity delay time τ . For the case of τr/τ ≪ 1, the derivative term x ′ (t) in equation (12) can be
neglected as suggested in [33]. In some delayed dynamical systems [8, 10], τr is comparable to the node
separation θ to incite interactions between the neighboring nodes to further boost the reservoir dynamics. In
this work, we set τr ≪ θ and τr ≪ τ so neighbor nodes interaction is negligible. Consider a discrete-time
system with index n, equation (12) can then be simplified to

x(n) = sin [αx(n− 1)+φ]− sinφ. (13)

Equation (13) shows an explicit mapping of the current dynamical state x(n) with the past state x(n− 1),
which agrees with the time evolution equation (10) when β = 0. The stability of the system can be revealed
from a Hopf bifurcation diagram. In general, the system is stable for small α and oscillatory or chaotic when
α value is large.

We define αH as the α value at the onset of oscillatory state on the Hopf bifurcation diagram. When the
system has no input feed, i.e. β = 0, varying φ from 0 to 2π, αH versus φ is plotted in figure 3 given the initial
state x(0) = 1. Above the αH curve, the system is oscillatory or chaotic, and below it, the system is stable. The
reservoir layer, utilizing the system dynamics, projects the input signals to a higher dimensional space to
increase separation ability of the inputs signals. Dimensionality expansion is the underline physics of RC
inference. Richer dynamics of the reservoir gives better RC inference results. Hence, the hyperparameters
should be chosen so that the RC operates near the bifurcation point where the system has the richest
dynamics while still in the stable regime. Below the αH (φ) curve, we marked a region in cyan bounded by
αH (φ)−∆ (red dash line) where∆ is a small value to visualize a set of ideal hyperparameter combinations
on the φ−α plane.

The αH (φ) curve in figure 3 reveals the intrinsic dynamics of the system without input signals, i.e. β = 0.
As shown in equations (9) and (10), the input signalm(t) · u(t)multiplied with the input gain β produces an
extra phase to the MZM cosine transfer function. When the input data is normalized to [−1, 1], the input
layer signals, i.e.m(t) · u(t) projected to the reservoir layer at the combiner is proportional to [-β, β]. If β is
too small, the extra phase induced by β will cause the reservoir states to only vary in a small portion of the
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Figure 3. Simulated values of Hopf bifurcation point αH where the system goes from steady states to oscillation as the function of
phase φ. Initial state x(0) = 1. Dashed red curves are plotted by shifting down the simulated curves (solid) by 0.5, i.e.
αH (φ)− 0.5.

sinusoidally varying curve of the nonlinear node. For example, when the MZM is biased near its quadrature
point, we can only obtain a near linear response of the reservoir with small β, so the reservoir layer acts more
like a linear classifier rather than a complex dynamic system. On the other hand, if β is large, the feedback
signals produced at the PD become insignificant compared to the input at the combiner, which diminishes
the memory effect of the RC. β is mainly tuned by adjusting the amplitude of the AWG output and in general
has minor impact on the shape of optimized regions on φ−α plane. However, proper choice of β can give us
lower error rates for different RC tasks and more relaxed restriction to α and φ conditions.

4. Benchmark tasks using bifurcation dynamics guided hyperparameter optimization

For the photonic delay-line RC of this study, the feedback gain (α), input gain (β) and bias phase offset of the
modulator (φ) are the RC hyperparameters to be adjusted, though the RC inference results are not equally
sensitive to all these hyperparameters. The feedback gain and the phase value are more crucial in determining
the RC network performance. Based on the theoretical study of α−φ dynamic regime while choosing the
proper input gain β, the hyperparameter optimization can be simplified to a 2D grid search. Furthermore,
using the simulated bifurcation diagram based on hardware parameters extracted to construct the evolution
equation, there is no need to run a full space 2D optimization of α and φ while a much reduced α−φ grid
range would produce good results. This bifurcation dynamic guided optimization utilizing mathematic
modeling of hardware RC leads to a significant time reduction in hardware setting optimization.

We tested our method of bifurcation dynamic guided hyperparameter optimization on three commonly
studied benchmark tasks: NCE, NARMA10 and Santa Fe tasks. For the RC numerical study based on
equation (10), we perform a fine 2D grid search for α and φ in which φ and α are scanned in a range of 0 to
2π with a step of 0.02π and 0 to 4 with a step of 0.02, respectively. This mathematic modeling is carried on in
MATLAB with fine resolution to achieve the best RC inference results. β is set at different fixed values for
three benchmark tasks and more discussion of β effect on RC performance will be provided in section 4(d).

To examine how closely the experimental testing results match the simulated results, we also run a 2D
grid search for α and φ configurations on the photonic delay line RC. The hyperparameter φ, tuned by
changing the value of MZM DC bias voltage, is tested with a step of π/6 for each setting. Hyperparameter α
and β are experimentally adjusted by tuning the optical attenuator and AWGmaximum output amplitude,
respectively. For the photonic RC, the reservoir enters either an oscillatory or chaotic state at large α so the
photonic RC hardware settings corresponding to large α are excluded from the experimental tests. For very
small α value, close to zero, the photonic RC performance is limited by the system noise originating from
analog-to-digital conversion (ADC) of oscilloscope, laser relaxation oscillations, and PD dark current and
shot noise, etc [17, 32], so α with small values (< 0.05) are also excluded from the tests. In general, we choose
α with a small interval (∼ 0.05) near chaotic states and a larger interval as α decreases. The total number of
tested (φ, α) settings is 80− 100 for each task, sufficient to distinguish the error rate difference caused by
varying the hyperparameter setting. Detailed experimental settings of three tasks are listed in table 1.

For our current experimental setup, optical attenuator and DC bias voltage are tuned manually, making
it time consuming to adjust the hardware for all possible combinations of φ and α values, therefore a much
larger grid size is utilized compared with numerical simulation. The theoretical modeling results are plotted
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Table 1. Detailed experimental settings of NCE, NARMA10 and Santa Fe tasks.

Benchmark RC task Fiber length Round-trip delay time AWG processing speed θ N N ′ β λ

NCE 125 m 650.6 ns 250 MSa s−1 4 ns 163 161 0.74 0.001
NARMA10 1 km 4950 ns 125 MSa s−1 8 ns 619 613 1.07 0.01
Santa Fe 125 m 650.6 ns 250MSa s−1 4 ns 163 161 1.75 0.001

Figure 4. Flow diagram showing the overall optimization process.

in 2D color contour maps where ‘islands’ of good inference results are identified. Based on the optimal values
of φ and α obtained by theoretical modeling, we identify four combinations of (φ, α) in the photonic
delay-line RC setting that is closest to simulation. An empirical factor 0.6 is applied in determining the
optimal α and scaled in the 2D plots of the experimental results. The overall optimization process is shown
through the flow diagram in figure 4.

4.1. NCE task
NCE task is widely studied in the RC community [14, 15, 35, 36]. The input d(n) is randomly generated
from the set {-3,−1, 1, 3} following uniform distribution. The nonlinear channel provides a transformation
following

q(n) = 0.08d(n+ 2)− 0.12d(n+ 1)+ d(n)+ 0.18d(n− 1)− 0.1d(n− 2)+ 0.091d(n− 3)− 0.05d(n− 4)

+ 0.04d(n− 5)+ 0.03d(n− 6)+ 0.01d(n− 7)

u(n) = q(n)+ 0.036q(n)2 − 0.011q(n)3 + υ (n) (14)

where υ (n) is the i.i.d. Gaussian noise term with zero mean. In this work, the signal-to-noise ratio is set to be
28 dB and a dataset length of 3000, a training length of 1200, and a testing length of 1600 is used.

The symbol error rate (SER) of the 2D RC simulated result is plotted in a color contour map with varying
α and φ, shown in figure 5(a). Each contour line corresponds to an SER reading while the filled-in colored
area represents the level of SER. The SER contour plot is close to symmetric about φ= π. SER lower than
0.01 is widely achieved over a large φ range near two quadrature points for α ∈ [0.25, 1]. SER lower than
0.001 is found to form a small ‘island’ near φ= π and a larger ‘island’ near φ= 2π (0), both marked in dark
blue. Numerical modeling of the RC gives SER< 6× 10−4 at φ= 1.82π, α= 0.64 marked by red ‘x’ mark in
figure 5(a).

The α−φ grid search was performed on the photonic delay-line RC and the SER results are shown in
figure 5(b). Two areas of SER< 6× 10−4 are identified in the experimental grid search: one is between φ= 0
and φ= 0.5π and the other one between φ= 1.5π and φ= 2π. The achieved SER is on the same order as
Paquot et al [14] that reported SER of 1.3× 10−4 and we expect the upper bound of our best SER to be
smaller if more data points are utilized for testing. These low SER areas in the photonic RC testing are closely
matched with the RC numerical modeling of equation (10). Due to φ being continuous with a period of 2π,
these two areas are indeed connected and correspond to the quadrature point φ= 0 (2π). The general trend
of the SER by photonic RC matches well with the RC by numerical modeling. Four closest grid points to the
optimal (φ, α) were identified, marked by green ‘x’ marks in figure 5(b) on the photonic RC 2D SER map
and summarized in table 2.
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Figure 5. NCE 2D SER results: (a) RC theoretical modeling. The red and blue dashed curves correspond to αH −φ relation in
figure 3, respectively. The red ‘x’ mark is the setting giving rise to the lowest SER. (b) Time-delay photonic RC implementation.
Red ‘x’ mark represents the optimal (φ, α) condition suggested by numerical study and four closest photonic RC hardware
settings are marked by green ‘x’ marks.

Table 2.Matched photonic hyperparameter settings for NCE task based on the numerical study.

φ α SER

Test setting 1 1.83π 0.62 0
Test setting 2 1.83π 0.78 0
Test setting 3 1.67π 0.62 6.25× 10−4

Test setting 4 1.67π 0.77 0

To examine how the numerical RC matches with the photonic RC, we performed 2D α—φ grid search by
both numerical and experimental approach. In practice, the photonic RC hyperparameter optimization can
be reduced to examining those four (φ, α) settings closely matching the bifurcation dynamics analysis to set
the hardware parameters of the photonic RC. This would allow significant time reduction in tedious
hardware adjusting.

4.2. NARMA10 task
The emulation of the nonlinear auto regressive moving average model, i.e. NARMA10 task, is a commonly
used benchmark prediction task for nonlinear dynamic systems. It was first introduced in [1] and studied as
a benchmark prediction task in [5, 8]. The discrete time input u(n) and targeted output y(n) follows the
dynamic

y(n+ 1) = 0.3y(n)+ 0.05y(n) ·
9∑

i=0

y(n− i)+ 1.5u(n)u(n− 9)+ 0.1 (15)

where u(n) follows a uniform distribution over the range of [0, 0.5] and is randomly generated. The goal of
this task is to predict the output y(n) given the input u(n). A dataset with a length of 3000 is used to run the
task, with a training length of 1000, testing length of 1800 and first 200 datapoints discarded. The RC
performance of NARMA10 task is characterized by the normalized mean square error (NMSE) [29]. The
color map of NMSE with respect to φ, α by numerically modeled RC is shown in figure 6(a). There are five
‘islands’ that correspond to low NMSE on the bifurcation diagram. A large ‘island’ of ideal (φ, α)
combinations was found near φ= π, just below the system bifurcation, on which the lowest NMSE by the
RC numerical simulator is found to be 0.0256 at φ= 0.88π, α= 0.92, marked by red ‘x’ mark as shown in
figure 6(a). Those two isolated dark blue islands near α= 2 are not experimentally measurable due to
chaotic response of the photonic RC system. Those two low NMSE areas at bottom left and right of the
bifurcation diagram (α ∼ 1), near symmetric and connected at φ= 0 and 2π considering an unfolded
diagram, are also ideal operation regimes for NARMA10 task. If we consider NMSE⩽ 0.2 acceptable, both
lower ‘islands’ near two quadrature points with α ∼ 1 meet the criterion while the 2D photonic grid search
matches well with the numerical RC modeling.
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Figure 6. NARMA10 2D NMSE results: (a) RC theoretical modeling. The red and cyan dashed curves correspond to αH −φ
relation in figure 3, respectively. The red ‘x’ mark indicates the condition with the lowest NMSE. (b) Time-delay photonic RC
implementation. Four closest grid points by green ‘x’ marks are labeled near the optimal (φ, α) by numerical RC simulator.

Table 3.Matched photonic hyperparameter settings for NARMA10 task based on the numerical study.

φ α NMSE

Test setting 1 0.83π 0.92 0.101
Test setting 2 0.83π 1.02 0.0930
Test setting 3 π 0.87 0.142
Test setting 4 π 0.80 0.155

The color map trends of experimental results shown in figure 6(b) overall matches the numerical RC
simulator results, where the low NMSE [dark blue in figure 6(b)] area is also found near two quadrature
points and close to bifurcation. Those 4 closet grid points on the photonic RC to the optimal (φ, α) by
numerical RC simulator were marked by green ‘x’ marks on Fib. 5(b) the calculated NMSE results are
summarized in table 3. Using photonic RC, the lowest NMSE is 0.0930 corresponding to setting 2 on table 3,
better than Paquot’s [14] result NMSE= 0.168 obtained from similar experimental setup as ours. Photonic
RC testing overall yields higher prediction error rate than the RC simulator mainly because of the
quantization noise in the ADC process at the output layer [17]. Both simulated and experimental results
show that peak and valley of MZM transmission should be avoided.

4.3. Santa Fe task
The Santa Fe laser time-series prediction task is another well studied RC benchmark task [9, 18]. We
performed one-step ahead prediction using a dataset with 4100 data points where the first 100 data points
are discarded, the next 3000 are used for training, and the remaining 1000 data points are used for testing.

The 2D NMSE plots by numerical RC simulator and photonic RC are plotted in figure 7, both indicating
higher prediction error near 0.5π and 1.5π at low α values. Compared to the NCE and NARMA10 tasks,
Santa Fe task is less sensitive to hyperparameter settings as suggested by both numerical RC simulator and
the photonic RC. The simulated contour map in figure 7(a) shows a band of all φ values near α ∼ 0.8 that
gives NMSE< 0.01. Simulation reveals a lowest NMSE of 0.0054 at φ= 1.36π, α= 1.1. Four closely
matched hyperparameter settings on the photonic RC are identified, two of which correspond to the
modulator transmission valley so not considered. The other two matched settings are summarized in table 4.
Test setting 1 gives a NMSE of 0.0341, which is 6.3 times higher than the RC simulator result mainly due to
the quantization noise similar as NARMA10 task. Both settings result in lower NMSE than Larger’s result of
NMSE= 0.124 that used similar photonic RC setup.

4.4. Hyperparameter β effect
In this work, we performed a simple analysis of the effect of β to the RC system on the numerical RC
simulator. We scanned β from 0.5 to 2.5 with a relatively large step of 0.1. The choice of lower end of β is due
to the concern of photonic RC noise, while the AWG output amplitude level determines the highest β. A 3D
grid hyperparameter scan with lower resolution of α and φ is performed and the lowest SER or NMSE
varying with β for those three benchmark tasks are plotted in figure 8. In the tested range of β, the NMSE
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Figure 7. Santa Fe 2D NMSE results: (a) RC theoretical modeling. The red and yellow dashed curves correspond to αH −φ
relation in figure 3, respectively. The red ‘x’ mark corresponds to the condition leading to the lowest NMSE. (b) Time-delay
photonic RC implementation. Red crossing represents the optimal (φ, α) condition suggested by numerical study and two closest
photonic RC testing conditions (excluding MZM valley transmission) are marked with green ‘x’ marks. The cyan ‘x’ mark
represents the condition giving lowest NMSE of 0.0232 in photonic RC testing.

Table 4.Matched photonic hyperparameter settings for Santa Fe task based on the numerical study.

φ α NMSE

Test setting 1 1.33π 1.30 0.0341
Test setting 2 1.33π 0.92 0.0648

Figure 8. Simulated lowest error rate (SER/NMSE) as the function of β for three benchmark tasks: (a) NCE task; (b) NARMA10
task; (c) Santa Fe task.

only changes for a factor 2.4 and 3 for the NARMA 10 task and Santa Fe task, respectively. As a comparison,
NMSE can vary several orders of magnitude with (φ, α) choices.

For the NCE task, SER< 10−3 is obtained for β < 1. In our photonic RC test, β = 0.7 was set that gives
SER= 0. For the NARMA10 task, a valley of low NMSE values is obtained for β in the range of 0.7–1.1. In
the photonic RC test, β = 1 was selected as larger β is preferred for relatively higher signal-to-noise ratio. For
the Santa Fe task, the NMSE decreases monotonically with β that shows a different trend as the NCE and
NARMA 10 task. During the Santa Fe task test, due to an equipment failure, we changed to a different AWG
(Tektronix 70 000) that has a maximum output voltage VAWG = 0.25V, corresponding to β = 1.8. We expect
reduced NMSE for the Santa Fe task if a higher AWG output voltage is available.

5. Conclusion

In this work, we explored a practical engineering approach in selecting proper hyperparameter values of a
photonic delay-line RC through bifurcation dynamic analysis. The time-evolution equation of the photonic
RC is derived and modeled numerically based on the hardware settings. The intrinsic dynamics and
bifurcation behaviors of the time-delay system are analyzed to give insight on how each hyperparameter
affects the RC dynamics, so a reduced range of grid search is possible in determining the optimal operation
conditions of a RC. It shows that a good RC performance can be obtained by tuning the delay-line system
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close to the bifurcation point while operating in the steady-state regime. The low-error-rate region shows
good alignment with the αH (φ) curve near quadrature points in both the numerical study and the
experimental hardware testing for all three benchmark tasks. A general good agreement in the 2D bifurcation
diagram is obtained between the numerical model and the photonic RC experimental test. Among the three
hyperparameters of the photonic RC, delay-line loop feedback strength α, modulator phase φ, and input
signal strength β, the photonic RC appears to be more sensitive to the choice of α and φ so a 2D grid
optimization for α and φ was performed at a fixed β value chosen from both empirical as well as a simple
numerical analysis. Using the numerical RC modeling results, 4 experimental settings of (α, φ) are
exanimated on the photonic RC and assessed by NMSE or SER. Good agreement is obtained between the
photonic RC test results and the numerical simulation.
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