Capturing Global Semantic Relationships for Facial Action Unit Recognition
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1. Problem

» Facial Action Unit Recognition
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2. Main ldea

Happiness

» Facial action units are NOT independent

o AUs do not occur alone and some combinations of action units
are frequently observed

o Some AUs must or must not be present at the same time due to
the limitations of facial anatomy

» Relationships among AUs are influenced by facial expression

o “Stretch mouth” and “raise brow” are likely to be both absent
during happiness, both present during surprise, and mutually
exclusive during anger or fear

» Propose to use restricted Boltzmann machine (RBM) to capture
global complex relationships among AUs for AU recognition

» Propose to use 3-way RBM to capture facial expression to more
accurately characterize AU relationships

3. Related Work

> Existing approaches

o Treat AUs are uncorrelated entities

o Use Bayesian network (BN) to model AU relationships
» Limitations

o Models such as BN are based on the first-order Markov
assumption and therefore can only capture local, i.e. pairwise
relationships between action units

o Finding the optimal structure of a large AU network is difficult

o Modeling AU relationships without considering the influence of
facial expression, which could lead to incorrect estimation of
AU dependencies

> Proposed Method

o Model global AU relationships and consider the influence of
expression

4. Hierarchical Model for AU Recognition

Top Down:
Global semantic
relations among

facial action units

Bottom Up:
AU recognition from
Image
measurements

> Middle layer a; to a,;: binary state of AU, to AU,

> Bottom layer x; to x;: 1image features

> Top layer hy to h,,: latent nodes modeling AU relationships
> Total Energy:
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0 aiWﬁ-hj: compatibility between AU; and latent node h;

o cjh;: bias for each latent node h;
o b;a;: bias for each AU node q;

o W¢ga;x,: compatibility between AU; and feature x,

» Top down - capturing global relations among AUs

o Each latent node is connected to all AU nodes and therefore
modeling their higher-order relationships

o The captured AU relationships can be implicitly inferred from
the model parameters W;;

o Vector [w;,,]i=, captures a specific presence and absence
pattern of all the action units

o W2 large - AU; more likely to occur in pattern m
o W2 small - AU; less likely to occur in pattern m
> Bottom up: AU recognition from image features

o Each AU node is connected to all the image features with the
energy E(a;,x) = — Y, WZa;x;
o Equivalent to a set of linear AU classification models

5. Learning and Inference

» Discriminative Learning
o Given training data {(x;, a;)}.,
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o Calculating the gradient requires P(h|a, x; 8) and P(h, a|x; 0)
o P(h|a,x;0) can be analytically computed

P(h]‘a, X, 9) — P(h]‘a, 0) — 0 <—Cj — 2 W&Cli> (1)

o P(h,a|x;0) is intractable, we revised contrastive divergence
(CD) algorithm to compute it

o The basic idea is to approximate P(h, a|x; 8) by sampling h
with Equation 1 and then sampling a with Equation 2

P(a;|h,x;0) =0 (—bi — z Wi}hj — z Wi%xt> (2)
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> Inference
o Given a query sample x, each action unit can be inferred by

a; = argmax P(a;|x)
aj

o Can be efficiently performed with Gibbs sampling by

iteratively sampling h from P(h|x, a) and sampling a from

P(a|h, x)

6. Incorporating Expression to Model AU Relations

> Relations among the AUs depend on facial expressions
o Expression is known during training but known during testing

o Basic idea: modulate the connection between each pair of
action unit and latent unit (a;, h;) with an expression variable

—Wijaih :> Q —Wijraih;ly

E(x,a,l,h;0)

@ @ =—yyyWi}kaihjlk
[ -k

J
/\ - z z Wita;x, — Z z Wicelixe
kKt

i

t
e [@@ I
j i K
N

0* = arg maxz log P(a;, l;|x;; 0)
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a; = argmax P(a;|x) = arg maxz P(a; l|x)
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o Model

7. Experimental Results

> Methods

o SVM, BN [Tong et al. 2007], HRBM, HRBM+
» Posed Facial Action Units Recognition

o CK+: 593 peak images, 17 action units

Method SVM BN HRBM | HRBM+
Average Fi-score | 74.70% | 76.70% | 79.21% | 82.44%
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» Non-posed Facial Action Unit Recognition
o SEMAIN: 180 image frames, 10 action units
o Train on CK+, test on SEMAIN

Method SVM BN HRBM | HRBM+
Average Fi-score | 47.70% | 51.09% | 54.76% | 356.14%
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» Semantic Relationship Analysis
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8. Conclusions

» Proposed a hierarchical model for AU recognition
» Capture higher-order AU interactions
» Consider the influence of facial expression on AU relations

> Experimental results demonstrate the effectiveness of the
proposed approach
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