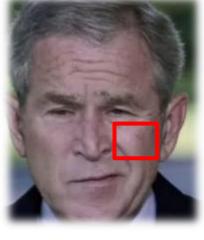
Capturing Global Semantic Relationships for Facial Action Unit Recognition Shangfei Wang² Ziheng Wang¹ Yongqiang Li³ Qiang Ji¹ University of Science and Technology of China² Harbin Institute of Technology³ Rensselaer Polytechnic Institute¹

1. Problem

Facial Action Unit Recognition

Pull Lip Corner



Raise Cheek

Lower Eyebrow

2. Main Idea Surprise Happines

- Facial action units are NOT independent
- AUs do not occur alone and some combinations of action units are frequently observed
- \circ Some AUs must or must not be present at the same time due to the limitations of facial anatomy
- \succ Relationships among AUs are influenced by facial expression
- "Stretch mouth" and "raise brow" are likely to be both absent during happiness, both present during surprise, and mutually exclusive during anger or fear
- Propose to use restricted Boltzmann machine (RBM) to capture global complex relationships among AUs for AU recognition
- \succ Propose to use 3-way RBM to capture facial expression to more accurately characterize AU relationships

3. Related Work

> Existing approaches

- Treat AUs are uncorrelated entities
- Use Bayesian network (BN) to model AU relationships

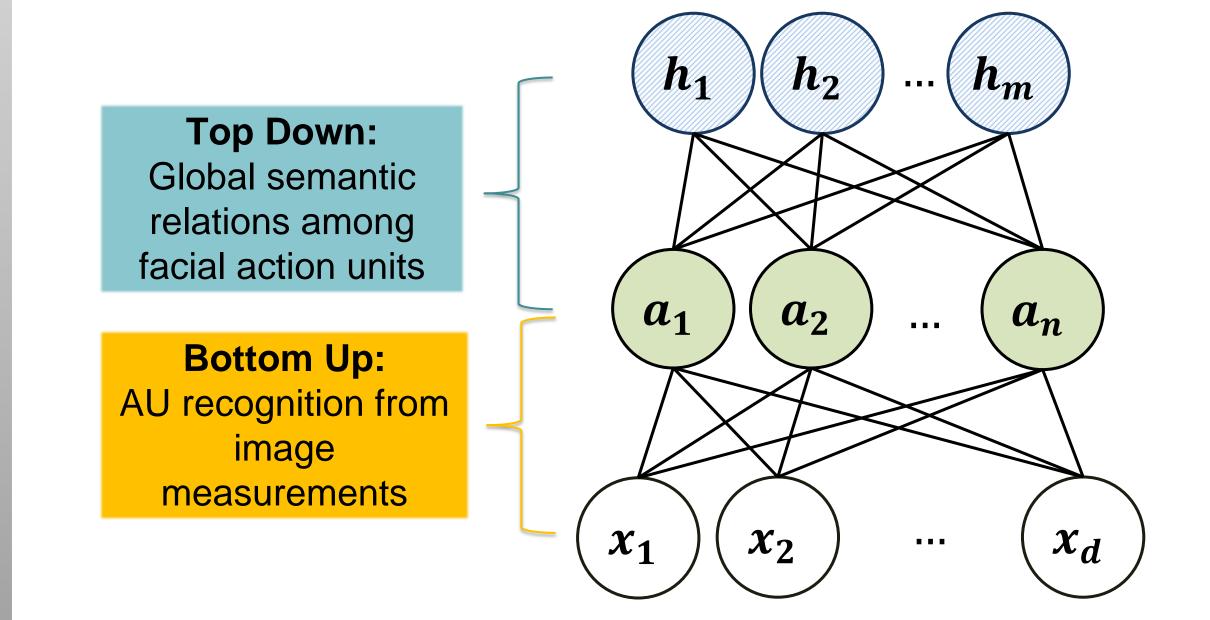
Limitations

- Models such as BN are based on the first-order Markov assumption and therefore can only capture local, i.e. *pairwise* relationships between action units
- Finding the optimal structure of a large AU network is difficult
- Modeling AU relationships without considering the influence of facial expression, which could lead to incorrect estimation of AU dependencies

Proposed Method

• Model global AU relationships and consider the influence of expression

4. Hierarchical Model for AU Recognition



 \succ Middle layer a_1 to a_n :

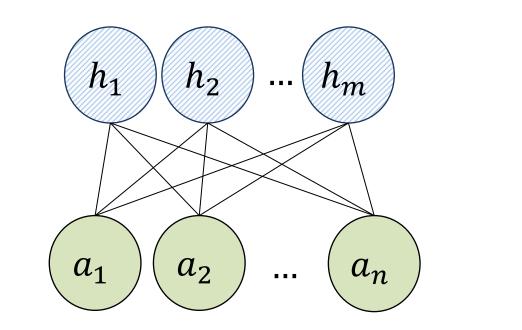
> Bottom layer x_1 to x_d :

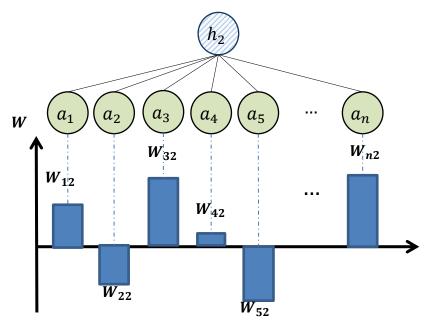
> Top layer h_1 to h_m :

- binary state of AU_1 to AU_n image features latent nodes modeling AU relationships
- > Total Energy:

$$E(\mathbf{x}, \mathbf{a}, \mathbf{h}; \theta) = -\sum_{i} \sum_{j} a_i W_{ij}^1 h_j - \sum_{j} c_j h_j - \sum_{i} b_i a_i - \sum_{i} \sum_{t} W_{it}^2 a_i x_t$$

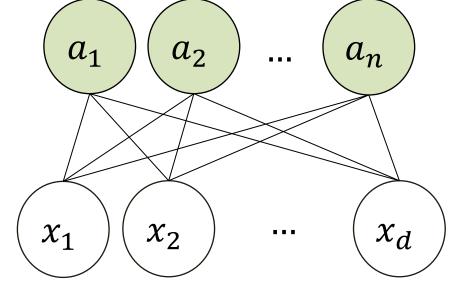
- $\circ a_i W_{ij}^1 h_j$: compatibility between AU_i and latent node h_j
- $\circ c_i h_i$: bias for each latent node h_i
- $\circ b_i a_i$: bias for each AU node a_i
- $\circ W_{it}^2 a_i x_t$: compatibility between AU_i and feature x_t
- > Top down capturing global relations among AUs





- Each latent node is connected to all AU nodes and therefore modeling their higher-order relationships
- The captured AU relationships can be implicitly inferred from the model parameters W_{ii}^1
- Vector $[w_{im}]_{i=1}^n$ captures a specific presence and absence pattern of all the action units
- $\circ W_{im}^1$ large $\rightarrow AU_i$ more likely to occur in pattern m
- $\circ W_{im}^1$ small $\rightarrow AU_i$ less likely to occur in pattern m

Bottom up: AU recognition from image features



- Each AU node is connected to all the image features with the energy $E(a_i, x) = -\sum_t W_{it}^2 a_i x_t$
- Equivalent to a set of linear AU classification models

5. Learning and Inference

> Discriminative Learning

• Given training data $\{(x_i, a_i)\}_{i=1}^N$

$$\boldsymbol{\theta}^* = \arg \max_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) = \arg \max \frac{1}{N} \sum_{i=1}^N \log P(\boldsymbol{a}_i | \boldsymbol{x}_i; \boldsymbol{\theta})$$
$$\frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_i} = \left(\frac{\partial E}{\partial \boldsymbol{\theta}_i}\right) \qquad -\left(\frac{\partial E}{\partial \boldsymbol{\theta}_i}\right)$$

$$\frac{\partial \boldsymbol{\omega}(\boldsymbol{\sigma})}{\partial \boldsymbol{\theta}} = \left\langle \frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{\theta}} \right\rangle_{P(\boldsymbol{h}|\boldsymbol{a},\boldsymbol{x};\boldsymbol{\theta})} - \left\langle \frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{\theta}} \right\rangle_{P(\boldsymbol{h},\boldsymbol{a}|\boldsymbol{x};\boldsymbol{\theta})}$$

- Calculating the gradient requires $P(h|a, x; \theta)$ and $P(h, a|x; \theta)$
- $\circ P(h|a, x; \theta)$ can be analytically computed

$$P(h_j | \boldsymbol{a}, \boldsymbol{x}; \boldsymbol{\theta}) = P(h_j | \boldsymbol{a}; \boldsymbol{\theta}) = \sigma \left(-c_j - \sum_i W_{ij}^1 a_i \right)$$
(1)

- $\circ P(h, a | x; \theta)$ is intractable, we revised contrastive divergence (CD) algorithm to compute it
- The basic idea is to approximate $P(h, a | x; \theta)$ by sampling h with Equation 1 and then sampling a with Equation 2

$$P(a_i | \boldsymbol{h}, \boldsymbol{x}; \theta) = \sigma \left(-b_i - \sum_j W_{ij}^1 h_j - \sum_t W_{it}^2 x_t \right)$$
(2)

> Inference

 \circ Given a query sample x, each action unit can be inferred by

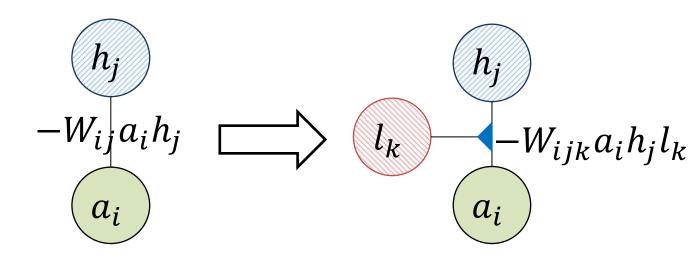
$$a_i^* = \arg \max_{a_i} P(a_i | \mathbf{x})$$

Can be efficiently performed with Gibbs sampling by iteratively sampling **h** from $P(\mathbf{h}|\mathbf{x}, \mathbf{a})$ and sampling a from $P(\boldsymbol{a}|\boldsymbol{h},\boldsymbol{x})$

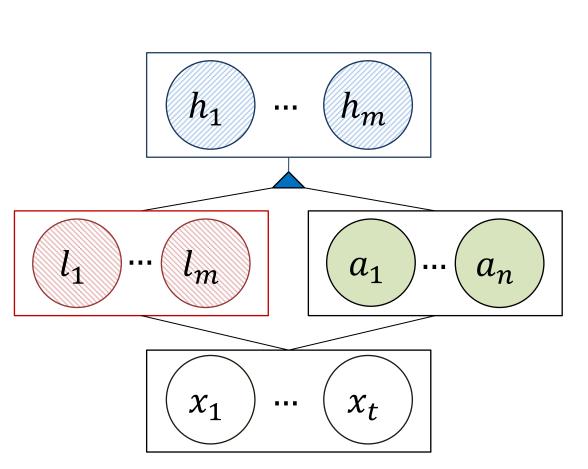
6. Incorporating Expression to Model AU Relations

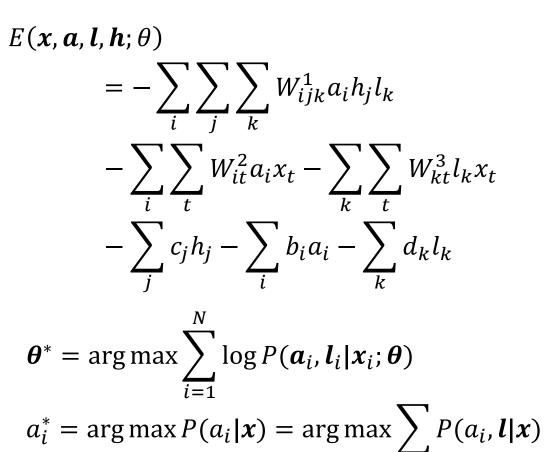
Relations among the AUs depend on facial expressions

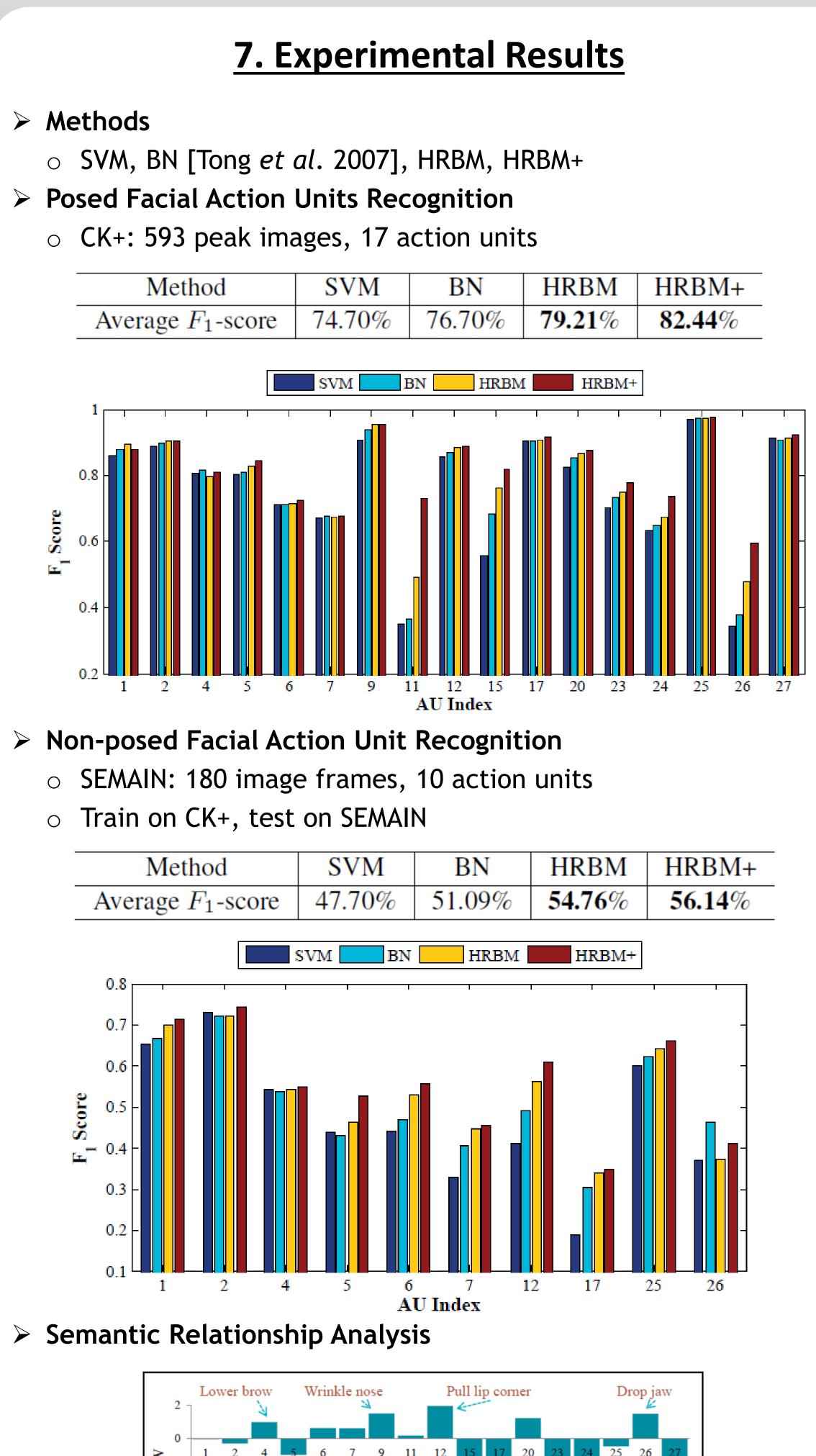
- Expression is known during training but known during testing
- Basic idea: modulate the connection between each pair of action unit and latent unit (a_i, h_i) with an expression variable l

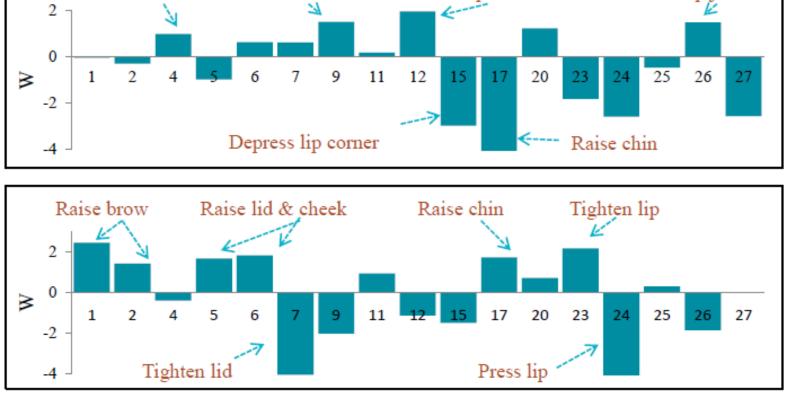


Model









8. Conclusions

- Proposed a hierarchical model for AU recognition
- Capture higher-order AU interactions
- Consider the influence of facial expression on AU relations
- > Experimental results demonstrate the effectiveness of the proposed approach