Workload Classification Across Subjects Using EEG

EEG data has been used to discriminate levels of mental workload when classifiers
are created for each subject, but the reliability of classifiers trained on multiple sub-
jects has yet to be investigated. Artificial neural network and naive Bayesian clas-
sifiers were trained with data from single and multiple subjects and their ability to
discriminate among three difficulty conditions was tested. When trained on data from
multiple subjects, both types of classifiers poorly discriminated between the three
levels. However, a novel model, the naive Bayesian classifier with a hidden node,
performed nearly as well as the models trained and tested on individuals.

Adaptive automation technologies promise to melio-
rate the demands made on mental capabilities by mod-
ern automation and computerized systems (Moray, In-
agaki, & Itoh, [2000; Inagaki, 2003). A critical aspect
of these adaptive technologies is accurate and reliable
assessment of operator workload. Traditionally, work-
load is assessed by questionnaires which are quanti-
fied through statistical techniques such as factor load-
ing, discriminant analysis, and correlation/covariance
analysis (Hart & Staveland, [1988])). Although progress
has been made, there are no globally accepted methods
for measuring and predicting workload (Lysaght et al.,
1989; [Rubio, Diaz, Martin, & Puente, 2004; [Noyes &
Bruneau, 2007). In addition, subjective measures are
invasive and cannot be obtained in real-time as they re-
quire interrupting the task to complete a questionnaire.
As a result, many researchers have moved towards us-
ing electrophysiological measures to predict workload
(Gevins et al., {1998} |Gevins & Smith, 2003). In partic-
ular, electroencephalography (EEG) has been used ex-
tensively to examine the changes in the brain’s electri-
cal activity in response to cognitive activity. The main
assumption is that if brain-state classifiers can be found,
then they can be used by a brain-computer interface
(BCD) in real-time to detect operator mental workload
(Wilson & Russell, 2007).

While a number of different classifier algorithms
have been used with EEG data, such as linear discrim-
inant analysis, support vector machines and artificial
neural networks, it is not clear which method is superior
(see (Bashashati, Fatourechi, Ward, & Birch, [2007) and
(Lotte, Congedo, Lécuyer, Lamarche, & Arnaldi, 2007)
for extensive reviews). Artificial neural networks (NN)
are by far the most popular classifier and have shown
success discriminating at least two levels of cognitive
workload (Wilson & Fisher, 1995; |Wilson & Russel,

2003a, 2003b; | Wilson, Estepp, & Davisl 2009; |[Wilson,
Estepp, & Christensen, |2010). In this paper we present
the first application of naive Bayesian models to the
detection of cognitive workload and compare these to
NNs. To preview our results, the best workload classi-
fiers are Bayesian and a Bayesian variant trained on data
from all participants does almost as well as the set of
Bayesian models trained on individual performers (i.e.,
one model for all participants versus a separate model
for each participant).

The Promise of EEG

In principle, EEG provides an objective and rela-
tively unobtrusive means for measuring workload. In
practice, much work needs to be done in the develop-
ment of quantitative methods for analyzing and inter-
preting EEG data. Training classifiers is time consum-
ing and requires a lot of data, especially in situations
that involve multiple subjects. Currently, the standard
practice is to train a new classifier for each subject.
Recent research suggests it might even be necessary
to train new classifiers each day (Wilson et al., [2010).
One way to potentially reduce overall training time is
to train one model across subjects. The large variability
between subjects poses a significant challenge to build-
ing a common classifier and has not previously been
investigated. With traditional techniques such as NN, it
seems likely that the classifier would not separate sig-
nal from noise across multiple subjects. However if
measures can be incorporated to account for between
subject variation, such a classifier might produce more
robust and stable classifications.

The present paper has two goals. The primary goal
is to investigate the effect of between subject variability
on workload classifier accuracy. The secondary goal is
to compare the performance of NNs to Bayesian graph-



ical models. In order to accomplish these goals, we
first compare the accuracy of a NN, a standard naive
Bayesian classifier, and a novel naive Bayesian classi-
fier with a hidden node when each are trained on EEG
data from multiple subjects and tested on individual
subjects. We then compare these classifiers to the per-
formance of NNs and standard naive Bayesian classi-
fiers which were trained and tested on single subjects.
Since naive Bayesian classifiers have not been used as
workload classifiers before, a little time needs be spent
discussing how they function before getting into the de-
tails of our experiment.

Naive Bayes Classifier

Naive Bayes Classifier (NB) is a very simple classi-
fier based on the Bayes’ theorem. Its structure is shown
in Figure[I] The C node represents different classes and
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Figure 1. Naive Bayes Classifier

X1, Xo, -+, X, represent different components or fea-
tures of a sample. NB assumes all the feature nodes are
independent of each other given the class, and typically,
the feature variables are assumed to have Gaussian dis-
tribution if they are continuous. Despite its naive de-
sign and apparently over-simplified assumptions, NB
has worked quite well in many complex real-world sit-
uations. Compared to other complex graphical models,
it requires smaller amount of training data to accurately
estimate the parameters necessary for the classification
(Zhang, [2004).

The classification results are determined by the pos-
terior probability P(C|Xy, Xa, ..., X,), which can be
transformed using the chain rule and Bayes’ theorem

into equation [TH3]
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Given a test sample (X1, X», - -+ , X)), the class is deter-
mined by equation [3} In our case, the class node rep-
resents three workload conditions and the feature nodes
(X1, Xp, -+, X,,) represent the EEG frequency features.

Hidden Node Naive Bayes Classifier

The between subject variations pose a big challenge
when training a common classifier for use on multiple
subjects. In order to deal with these variations we in-
troduce a novel naive Bayesian classifier with a hidden
node (NB-HN).
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Figure 2. Hidden Node Naive Bayes Classifier

Despite a large amount of variation between subjects,
it is reasonable to assume that there exists some com-
monalities in their brain signals in response to the task
demands. By introducing a hidden node to the stan-
dard NB model we can account for both the common
aspects of each subject’s data as well as the individual
differences. A graphical model of the NB-HN classifier
is shown in Figure 2] where an additional node H is
connected to each feature node. The structure of NB
here models the shared attributes of different subjects
and node H is used to model the inter-subject differ-
ences. The node H may represent any factor that could
cause the between subject variation. The expectation-
maximization (EM) algorithm is used to uncover hidden
node variables (Dempster, Laird, & Rubin, (1977). No
a priori information is needed during the training stage
to compute the hidden node. Additionally, the value of
the hidden node is not needed at the testing stage. The
posterior probability can be computed by marginalizing
over the hidden node as shown in equations #H6]
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The hidden node may be a discrete node or continuous
node. Typically, the larger its size is, the more infor-



mation it contains. In the present experiment we used a
discrete hidden node with size of 12.

Method

The EEG data used in the present article comes from
a previously published study by |Wilson et al., [2010|in
which eight participants (3 males; mean age 21.1 years)
performed the Multi-Attribute Task Battery (MATB)
(Comstock & Arnegard, (1992) on five separate ses-
sions spread over the course of a month. The five ses-
sions were separated by 1 day, 1 week, 3 weeks and
4 weeks. The MATB includes monitoring, commu-
nication, and resource allocation tasks which are per-
formed concurrently in a continually changing task en-
vironment. The demands of each subtask were varied
so that three levels of overall MATB difficulty were
available. In an attempt to reduce learning effects, par-
ticipants were trained until performance scores reached
asymptote with minimal errors. Each day’s session con-
sisted of three trials where a trial was comprised of
a low, medium and high difficulty block. Each block
lasted five minutes and the order of blocks within each
trial was random. Three of the participants did not fully
complete all of the trials on day 3. For this reason, day
3 was excluded resulting in 12 complete trials for each
participant.

EEG

Nineteen EEG channels were recored using the In-
ternational 10-20 montage (Jasper, |1958). Mastoids
were used as reference and ground with electrode
impedances 5K ohms or less. The EEG data was cor-
rected for eye movement and blinks and stored at 256
samples per second. The EEG data was then down
sampled to 128 samples per second prior to analysis.
Discrete-time short-term Fourier transform (STFT) was
performed on the down sampled EEG data using 40
second windows with 35 seconds of overlap. No taper
function was applied to the windows. The magnitude of
the alpha band (9-13 Hz) from the 19 sites was used as
inputs to the classifiers.

Model Training

Models were trained and tested using a fivefold
cross-validation setup. One fifth of the EEG data from
each trial was randomly sampled for the purpose of
training the models. The data not selected for training
was used for testing. Data was sampled evenly across
workload blocks, and for the models including multiple

subjects data, evenly across subjects. This procedure
was repeated for each trial.

Table 1

Fisher’s LSD t-test, P value adjustment method: bon-
ferroni, alpha: 0.05, Df Error: 35, Critical Value of t:
2.03.

Difference pvalue sig

NB-1 NB-8 0.339 0.0013  **
NB-1 NB-HN-8 0.107  1.0000
NB-1 NN-1 0.127  1.0000

NB-1 NN-8 0.342  0.0012  **
NB-HN-8 NB-8 0.232 0.0571
NN-1 NB-8 0.212  0.1089
NB-8 NN-8 0.003  1.0000
NB-HN-8 NN-1 0.020  1.0000
NB-HN-8 NN-8 0.235 0.0522
NN-1 NN-8 0.215 0.0998

Results

The mean classification accuracy for each model X
training X workload combination is shown in Figure
Bl NN-1 and NB-1 represent the performance of the
neural net and naive Bayes classifiers trained and tested
on individual subjects. NN-8 and NB-8 represents the
performance of the neural net and naive Bayes classi-
fiers trained on multiple subjects and tested on individ-
ual subjects. NB-HN-8 represents the performance of
the hidden node native Bayes classifier trained on mul-
tiple subjects and tested on individual subjects. See Ta-
ble [T] for results of Fisher’s LSD t-tests. NB-1 had a
significantly higher mean classification accuracy than
NN-8 and NB-8. NB-HN-8 had a marginally signifi-
cant higher mean classification accuracy than NN-8 and
NB-8. NN-1 had a marginally significant higher mean
classification accuracy than NN-8.

Discussion

We had two goals in the present paper, explore the
affects of between-subject variability on classifier accu-
racy, and compare the performance of artificial neural
networks and Bayesian networks. In order to ensure
fair comparisons, identical features were used for all
models; we had no interest in feature selection or op-
timization. Therefore, the accuracy levels achieved do
not necessarily represent the best possible performance
of any of the models.



I
o
|
I

g
= 0.6 — + * -
2
% 0.4 — [ B
Q
=

0.2 L

N N % % %
éb

Figure 3. Mean classification accuracy from testing on each
of the 8 subjects for each of the five classifiers. The error bars
represent 95% confidence intervals.

Previous research has demonstrated that artificial
neural networks can achieve high classification accu-
racy rates. In our experiments, individually trained
naive Bayesian classifiers (NB-1) had a mean classifi-
cation accuracy that was 12.7% higher than individu-
ally trained neural network classifiers (NN-1). Despite
this difference not being significant, it is worthy to note
that Bayesian classifiers can achieve comparable per-
formance to artificial neural networks.

As expected, both the neural net and standard naive
Bayes classifiers trained on multiple subjects (NN-8
and NB-8 respectively) performed worse than the indi-
vidually trained classifiers of the same type (i.e., NN-8
< NN-1 and NB-8 < NB-1). Indeed, the performance of
NN-8 and NB-8 were essentially no better than chance.
These classifiers were not able to pick out the signal
from the noise when presented with data from multiple
subjects. However, when a hidden node that performed
expectation-maximization was introduced to the stan-
dard naive Bayes classifier (NB-HN-8), its performance
increased to that of a individually trained neural net
classifier.

Conclusion

In this paper, we demonstrated that a classifier
trained on multiple subjects can achieve performance
comparable to classifiers trained on multiple subjects.
This was accomplished by adding a hidden node to

a naive Bayes classifier. The hidden node in this
case used the expectation-maximization algorithm to
account for between subject variations. These results
take EEG classification one step closer to being able to
discriminate workload levels on subjects that the classi-
fier was not trained on.
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