# An EEG Workload Classifier for Multiple Subjects

Ziheng Wang, Ryan M. Hope, Zuoguan Wang, Qiang Ji, Wayne Gray

#### Overview

#### 1. Challenge

#### 2. Approach

#### **3.** Experiment

**4.** Discussion

**5.** Future Direction

## Challenge

\* Large amount of noise

\* Large between-subject/day/trial variations

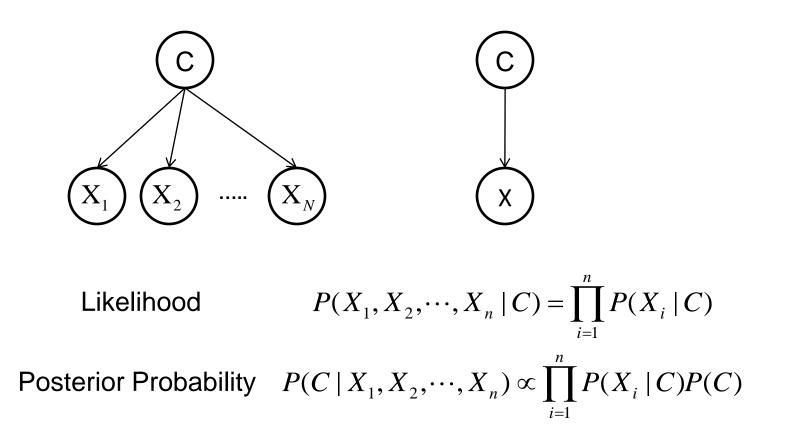
|    | Individual subject | 8 subjects |  |
|----|--------------------|------------|--|
| NB | 80%                | 45%        |  |
| NN | 80%                | 58%        |  |

#### Goal

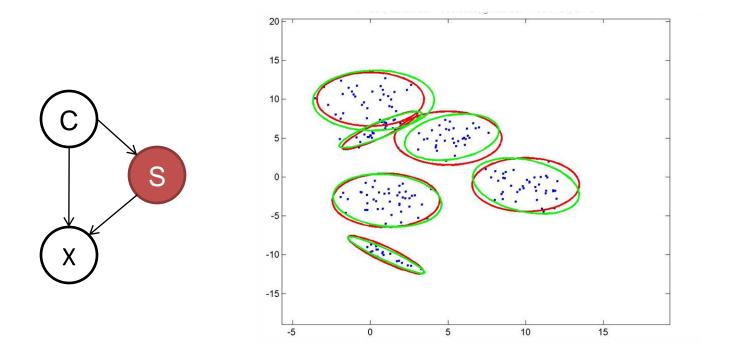
# A Classifier for Multiple Subjects!

#### Stimulation

\* A subject-specific classifier Trained and tested on individual subjects


\* A cross-subject classifier

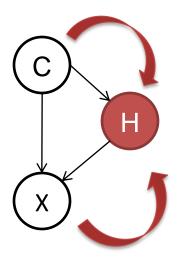
Trained on a group of subjects and tested on the same group of subjects


\* A subject-independent classifier

Trained on a group of subjects but tested on a novel subject that has not been trained on

Naïve Bayes Classifier

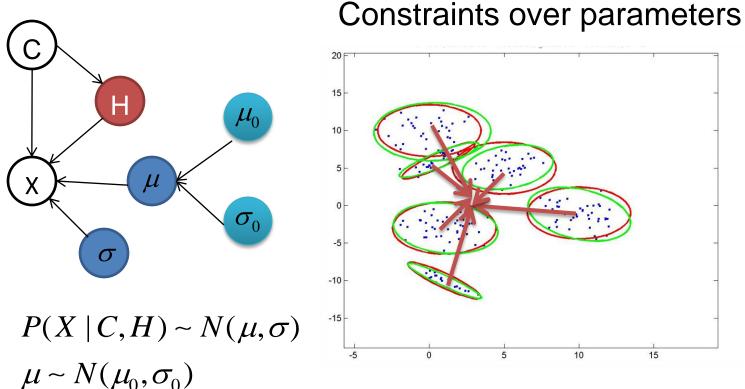



1<sup>st</sup> Attempt to Deal with Between-Subject Variations



S is known during training but not testing

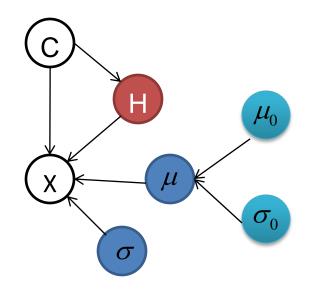
$$P(C \mid X) \propto \sum_{S} P(X \mid C, S) P(S \mid C) P(C)$$


2<sup>nd</sup> Attempt to Deal with Between-Subject Variations



\* Factors including subject that could cause variations
\* Hidden Component

- H is unknown during both training and testing
- EM algorithm is used to uncover H node for training


3<sup>rd</sup> Attempt to Deal with Between-Subject Variations



Properties:

- \* No a prior information is needed during both training and testing
- \* Able to capture the between-subject variations automatically

\* Avoid overfitting by high level constraints

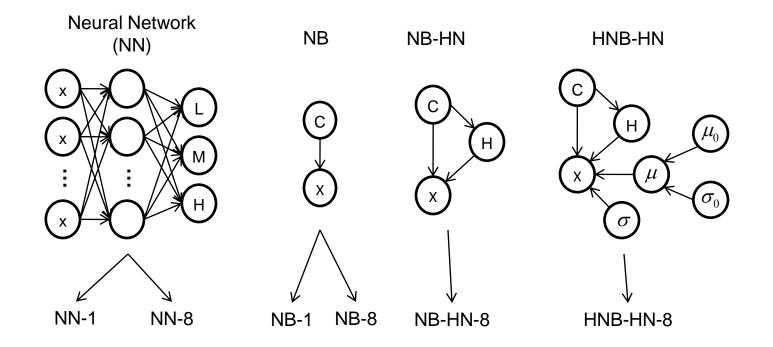


## Experiment

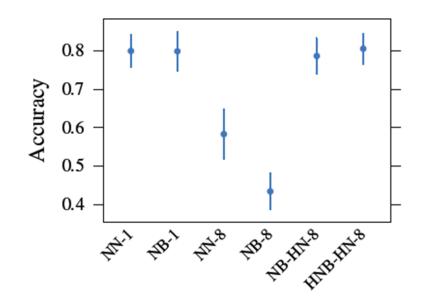
#### Data

|           | Trial 1     | Trial 2     |        | Trial 12    |
|-----------|-------------|-------------|--------|-------------|
| Subject 1 | L<br>M<br>H | L<br>M<br>H | •<br>• | L<br>M<br>H |
| Subject 2 | L<br>M<br>H | L<br>M<br>H | <br>•  | L<br>M<br>H |
| Subject 3 | L<br>M<br>H | L M<br>M H  | •      | L<br>M<br>H |
|           |             |             |        |             |
| Subject 8 | L<br>M<br>H | L<br>M<br>H |        | L<br>M<br>H |

#### Experiment


Feature

- \* 19 EEG channels
- \* Down sampled to 128 Hz
- \* No artifact correction or rejection
- \* Short-term Fourier transform
- \* 40s windows with 35s of overlap
- \* No taper function was applied to the windows
- \* Magnitude of 5 standard clinical bands
- \* Delta [2-4Hz], theta [5-8Hz], alpha [9-13Hz], beta [14-32Hz], gamma [33-43Hz], expanded gamma [33-57Hz], [63-100Hz]
- \* A total of 133 input features


#### Experiment

Classifiers

- \* '-1': classifier that is trained and tested on individual subjects
- \* '-8': classifier that is trained on all 8 subjects but tested on individual subjects



#### Discussion



\* As expected, NN-8 and NB-8 performs much worse than NN-1 and NB-1 when presented to a group of subjects

\* NB with a hidden node performs as well as subject specific classifiers NN-1 and NB-1

\* Constraints on the parameters led to further improvement

#### **Future Direction**

- \* Cross-trial, cross-day workload classification
- \* A subject-independent classifier

For more details, you can also refer to our paper in the NeuroImage journal:

http://dx.doi.org/10.1016/j.neuroimage.2011.07.094

The work was supported in part by grant N0001410019 to Wayne D. Gray from the Office of Naval Research, Dr. Ray Perez, Project Officer.

## Questions?