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Abstract— EEG data has been used to discriminate levels of
mental workload when classifiers are created for each subject,
but the reliability of classifiers trained on multiple subjects
has yet to be investigated. Artificial neural network and naive
Bayesian classifiers were trained with data from single and
multiple subjects and their ability to discriminate among three
difficulty conditions was tested. When trained on data from
multiple subjects, both types of classifiers poorly discriminated
between the three levels. However, a novel model, the naive
Bayesian classifier with a hidden node, performed nearly as well
as the models trained and tested on individuals. In addition, a
hierarchical Bayes model with a higher level constraint on the
hidden node can further improve its performance.

I. INTRODUCTION

Adaptive automation technologies promise to meliorate the
demands made on mental capabilities by modern automation
and computerized systems [7], [11]. A critical aspect of these
adaptive technologies is accurate and reliable assessment
of operator workload. Traditionally, workload is assessed
by questionnaires which are quantified through statistical
techniques such as factor loading, discriminant analysis,
and correlation/covariance analysis [6]. Although progress
has been made, there are no globally accepted methods
for measuring and predicting workload [10], [13], [12]. In
addition, subjective measures are invasive and cannot be
obtained in real-time as they require interrupting the task to
complete a questionnaire. As a result, many researchers have
moved towards using electrophysiological measures to pre-
dict workload [5], [4]. In particular, electroencephalography
(EEG) has been used extensively to examine the changes in
the brain’s electrical activity in response to cognitive activity.
The main assumption is that if brain-state classifiers can be
found, then they can be used by a brain-computer interface
(BCI) in real-time to detect operator mental workload [17].

While a number of different classifiers have been used
with EEG data, such as linear discriminant analysis, support
vector machines and artificial neural networks, it is not clear
which method is superior (see [1] and [9] for extensive
reviews). Artificial neural networks (NN) are very popular
classifier and have shown success discriminating at least
two levels of cognitive workload [14], [15], [16], [19], [18].
In this paper we present the first application of Bayesian
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networks to the detection of cognitive workload and compare
these to NNs.

In principle, EEG provides an objective and relatively
unobtrusive means for measuring workload. In practice,
much work needs to be done in the development of quan-
titative methods for analyzing and interpreting EEG data.
Training classifiers is time consuming and requires a lot of
data, especially in situations that involve multiple subjects.
Currently, the standard practice is to train a new classifier
for each subject. Recent research suggests it might even
be necessary to train new classifiers each day [18]. One
way to potentially reduce overall training time is to train
one model across subjects. The large variability between
subjects poses a significant challenge to building a common
classifier, which has not previously been investigated. With
traditional techniques such as NN, it seems likely that
the classifier would not separate signal from noise across
multiple subjects. However if measures can be incorporated
to account for between subject variation, such a classifier
might produce more robust and stable classifications.

The present paper has two goals. The primary goal is to
investigate the effect of between subject variability on work-
load classifier accuracy. The secondary goal is to introduce a
cross-subject Bayesian network and compare its performance
with NN. In order to accomplish these goals, we first com-
pare the accuracy of a NN, a standard naive Bayes classifier,
a novel naive Bayes classifier with a hidden node and a
hierarchical Bayes classifier when each are trained on EEG
data from multiple subjects and tested on individual subjects.
We then compare these classifiers to the performance of NNs
and standard naive Bayes classifiers which were trained and
tested on single subjects. The current paper is organized as
follows: section II presents the graphical models we used to
handle between-subject variations. Following the models we
will introduce the experiments in section III and show the
results in section IV. Finally we will discuss the results and
the future directions.

II. MODELS

A. Naive Bayes Classifier

Naive Bayes Classifier (NB) is a very simple classifier
based on the Bayes’ theorem. Its structure is shown in
Fig. 1a where the C node represents different classes and
X1, X2, · · · , Xn represent different components or features
of a sample. NB assumes all the feature nodes are indepen-
dent of each other given the class, and typically, the feature
variables are assumed to have Gaussian distribution if they
are continuous. Despite its naive design and apparently over-
simplified assumptions, NB has worked quite well in many
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complex real-world situations. Compared to other complex
graphical models, it requires smaller amount of training
data to accurately estimate the parameters necessary for the
classification [20]. For the view of simplicity, the feature
nodes are always grouped into one node X and the structure
of NB is plotted as Fig. 1b.

The classification results are determined by the posterior
probability P (C|X1, X2, ..., Xn), which can be transformed
using the chain rule and Bayes’ theorem into (1), where α
is a normalization constant.

P (C|X1, X2, · · · , Xn)

=αP (X1, X2, · · · , Xn|C)P (C)

=α

n∏
i=1

P (Xi|C)P (C) (1)

Given a test sample (X1, X2, · · · , Xn), the class is deter-
mined by (2):

C∗ = argmax
C

n∏
i=1

P (Xi|C)P (C) (2)

In our case, the class node represents three workload condi-
tions and the feature nodes (X1, X2, · · · , Xn) represent the
EEG frequency features.

B. Modeling Between-subject Variations with a Hidden Node

The between subject variations pose a big challenge when
training a common classifier for use on multiple subjects.
To deal with the variations we propose a novel naive Bayes
Classifier with a hidden node (NB-HN).

Despite a large amount of variation between subjects, it is
reasonable to assume that there exists some commonalities
in their brain signals in response to the task demands. By
introducing a hidden node to the standard NB model we
can account for both the common aspects of each subject’s
as well as the individual differences. A graphical model of
NB-HN classifier is shown in Fig. 1c, where an additional
node H is connected to each feature node and the class node.
Node H is used to model the inter-subject differences. For
easier understanding, H can represent different subjects in
the simplest case. However in our model it is not restricted
to any specific meaning and may stand for any factor that
can cause variations. The expectation maximization (EM)
algorithm is used to uncover the hidden node H [3]. No
a priori information is needed during the training stage to
compute the hidden node. Additionally, the value of the
hidden node is not needed at the testing stage. The likelihood
can be computed by marginalizing over the hidden node H
with (3).

P (X|C) =
∑
H

P (X|C,H)P (H|C) (3)

The hidden node may be a discrete node or continuous
node. Intuitively, the larger its size is, the more information
it contains. For this experiment, we used a discrete hidden
node of size 18.

C. Constraining Variation with a Hierarchical Model

Despite the advantage of the hidden node to capture
the large unknown variations, it also brings the risk of
overfitting. That is, variations as well as noises are both
captured by the hidden node. We propose a hierarchical
model to alleviate this risk by imposing some constraints on
the hidden states. The assumption is that variations should
not depart significantly from the common part. Fig. 1d shows
this hierarchical model (HNB-HN). X represents the feature
vector. H is still the hidden node. µ and σ are the parameters
of P (X|C,H). The hyper parameters µ0 and σ0 are used
to represent the commonality among different subjects. By
introducing this top node µ0, σ0 which is connected to the
parameter µ, the variations are restricted to follow a Gaussian
distribution N(µ0, σ0) and thus are constrained to a certain
area close to the shared commonality.

The training procedure of this hierarchical model is di-
vided into 2 steps. Firstly, The commonality (parameters µ0

and σ0) among different subjects is learned using the training
data as well as the prior knowledge from the expert domain.
Secondly the hidden node H are uncovered with EM under
these constraints.

Mathematically, the model can be described by (4) - (5):

P (X|H,C) ∼ N(X|µ, σ) (4)
µ ∼ N(µ|µ0, σ0) (5)

III. METHOD

The EEG data used in the present article comes from a
previously published study by [18] in which eight partici-
pants (3 males; mean age 21.1 years) performed the Multi-
Attribute Task Battery (MATB) [2] on five separate sessions
spread over the course of a month. The five sessions were
separated by 1 day, 1 week, 3 weeks and 4 weeks. The MATB
includes monitoring, communication, and resource allocation
tasks which are performed concurrently in a continually
changing task environment. The demands of each subtask
were varied so that three levels of overall MATB difficulty
were available. In an attempt to reduce learning effects,
participants were trained until performance scores reached
asymptote with minimal errors. Each day’s session consisted
of three trials where a trial was comprised of a low, medium
and high difficulty block. Each block lasted five minutes and
the order of blocks within each trial was random. Three of
the participants did not fully complete all of the trials on
day 3. For this reason, day 3 was excluded resulting in 12
complete trials for each participant.

A. Feature

Nineteen EEG channels were recorded using the Interna-
tional 10-20 montage [8]. Mastoids were used as reference
and ground with electrode impedances 5K ohms or less. The
EEG data was down sampled to 128 samples per second and
no artifact correction or rejection procedures were performed
prior to analysis. Discrete-time short-term Fourier transform
(STFT) was performed on the down sampled EEG data using
40 second windows with 35 seconds of overlap. No taper
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Fig. 1. The Evolution from A Naive Bayes Classifier to the Hierarchical Bayes Model: (a) A Naive Bayes Classifier, where C represents the class node
and X represents the feature node; (b) A simplified Graphical Model of Naive Bayes Classifier; (c) A Naive Bayes Classifier plus a Hidden Node; (d) A
Hierarchical Bayesian model where µ0 and σ0 describes the prior distribution of µ.

function was applied to the windows. The magnitude of the
5 standard clinical bands (delta [2-4 Hz], theta [5-8 Hz],
alpha [9-13 Hz], beta [14-32 Hz] and gamma [33-43 Hz])
as well as two expanded gamma bands ([33-57 Hz] and [63-
100 Hz]) from the 19 sites were used resulting in 133 input
features to the classifiers.

B. Classifiers in the Present Paper

Six different classifiers are compared in our experiment,
namely, the neural net and naive Bayes classifiers trained and
tested on individual subjects (NN-1 and NB-1), the neural
net and naive Bayes classifiers trained on multiple subjects
and tested on individual subjects (NN-8 and NB-8), naive
Bayes classifier with a hidden node (NB-HN-8) and the
hierarchical hidden node naive Bayes classifier (HNB-HN-8)
both of which are trained on multiple subjects and tested on
individual subjects.

For the neural network classifier used for comparison in
our experiment, we followed the same setup in [19]. The
hidden layer has the same number of nodes as the input layer
and the output nodes are the three conditions (Low, Medium
and High). One fifth of the training data was randomly
selected as the validation set and Scaled Conjugate Gradient
algorithm was used to train the net. The parameters of neural
network were also tuned so that the results reflected the best
performance we can achieve.

The size of the hidden node of NB-HN-8 and HNB-HN-8
are 12 and 18 respectively. Besides, all the models are multi-
class classifiers trained on all the three workloads instead of
binary ones.

C. Experimental Setup

Models were trained and tested using a fivefold cross-
validation setup. For the purpose of testing the algorithm
with little amount of training data, only one fifth of the EEG
data from each trial was randomly sampled for the purpose
of training the models. The data not selected for training was
used for testing. Data was sampled evenly across workload
blocks, and for the models including multiple subjects’ data,
evenly across subjects. This procedure was repeated for each
trial.

IV. RESULTS

The mean classification accuracy for each model ×
training × workload combination is shown in Fig. 2. See
Table I for results of Tukey’s honestly significant difference
test. NN-1, NB-1, NB-HN-8 and HNB-HN-8 had signifi-
cantly higher mean classification accuracies than NN-8 and
NB-8. The classification accuracy of NN-8 was significantly
higher than NB-8. There were no significant differences
between NN-1, NB-1, NB-HN-8 and HNB-HN-8. Our pro-
posed common classifier HNB-HN-8 for multiple subjects
achieves performance comparable to the individually trained
classifiers NN-1 and NB-1.

V. DISCUSSION

We had two goals in the present paper, explore the affects
of between-subject variability on classifier accuracy, and
compare the performance of artificial neural networks and
Bayesian networks. In order to ensure fair comparisons,
identical features were used for all models. We had no
interest in feature selection or optimization. Therefore, the
accuracy levels achieved do not necessarily represent the
best possible performance of any of the models. However
the advantage of such our proposed model HNB-HN for
handling multiple subjects remains.

Previous research has demonstrated that artificial neural
networks can achieve high classification accuracy rates. It
is worth noting that in our experiments, the individually
trained naive Bayesian classifiers (NB-1) and the naive
Bayesian classifiers trained on multiple subjects (NB-HN-
8 and HNB-HN-8) had mean classification accuracies that
are comperable to the individually trained neural network
classifiers (NN-1).

As expected, both the neural net and standard naive Bayes
classifiers trained on multiple subjects (NN-8 and NB-8
respectively) performed worse than the individually trained
classifiers of the same type (i.e., NN-8 < NN-1 and NB-8
< NB-1). The performance of NN-8 and NB-8 were both
poor, but NB-8 was essentially no better than chance. These
classifiers were not able to pick out the signal from the noise
when presented with data from multiple subjects. However,
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Fig. 2. Mean classification accuracy from testing on each of the 8 subjects
for each of the five classifiers. The error bars represent 95% confidence
intervals.

TABLE I
TUKEY MULTIPLE COMPARISONS OF MEANS 95% FAMILY-WISE

CONFIDENCE LEVEL

diff sig
NB-HN-8 HNB8 -0.0189

NB1 HNB8 -0.0067
NB8 HNB8 -0.3701 *
NN1 HNB8 -0.0058
NN8 HNB8 -0.2216 *
NB1 NB-HN-8 0.0122
NB8 NB-HN-8 -0.3512 *
NN1 NB-HN-8 0.0131
NN8 NB-HN-8 -0.2027 *
NB8 NB1 -0.3634 *
NN1 NB1 0.0009
NN8 NB1 -0.2149 *
NN1 NB8 0.3643 *
NN8 NB8 0.1485 *
NN8 NN1 -0.2158 *

when a constrained hidden node that performed expectation-
maximization was introduced to the standard naive Bayes
classifier (HNB-HN-8), its performance increased to that of
a individually trained naive Bayes classifier.

VI. CONCLUSION

In this paper, we demonstrated that a classifier trained
on multiple subjects can achieve performance comparable
to classifiers trained on individual subjects. This was ac-
complished by adding a hidden node to a naive Bayes
classifier. The hidden node in this case used the expectation-
maximization algorithm to account for between subject vari-
ations. The performance is further improved by imposing
constraints on the hidden node. These results take EEG
classification one step closer to being able to discriminate
workload levels on subjects that the classifier was not trained
on. Since this work focuses on a study of cross-subject
workload classification, the data used for both training and
testing is limited to the same trial. One possible future

work is to extend our method to cross-trial or even cross-
day workload classification. This can be achieved by either
introducing additional hidden nodes or additional hidden
states to current hidden node or a combination of two.
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