Capturing Complex Spatio-Temporal Relations among Facial Muscles for Facial Expression Recognition Shangfei Wang² Ziheng Wang¹ Qiang Ji¹ University of Science and Technology of China²

1. Problem

Facial Expression Recognition

Sadness

- Model Facial expression as a complex activity consisting of sequential or overlapping facial muscle events
- > Propose an Interval Temporal Bayesian Network (ITBN) to explicitly capture a larger variety of complex spatio-temporal relations among facial muscle events for expression recognition

3. Related Work

Existing approaches

- Time-sliced graphical models such as hidden Markov models (HMMs) and dynamic Bayesian networks (DBNs)
- Syntactic and description-based approaches

> Limitations

- Can only model a sequence of instantaneously occurring events
- Only offer three time point relations: precedes, follows and equals
- Typically assume first order Markov property and local stationary transition.
- Syntactic and description-based models lack the expressive power to capture uncertainties

The proposed model

- Model both sequential and overlapping events
- Do no reply on local assumptions and capture global relations
- Capture a larger variety of complex relations
- Remains fully probabilistic

Existing Dynamic Models	Proposed Model			
Sequential events	Sequential or overlapping events			
Local stationary relations	Global relations			
3 relations (precede, follow, equal)	13 complex relations			

Rensselaer Polytechnic Institute¹

4. Interval Temporal Bayesian Network

> Node: Temporal Entity (Event)

• A temporal entity is characterized by a pair $\langle \Sigma, \Omega \rangle$ where Σ is a set of all possible states for the temporal entity, and $\Omega =$ $\{[a, b] \in \mathbb{R}: a < b\}$ is the period of time spanned by the temporal entity.

> Link: Temporal Dependency

- \circ A temporal dependency denoted as I_{XY} describes a temporal relation between two temporal entities $X = \langle \Sigma_X, \Omega_X \rangle$ and $Y = \langle \Sigma_Y, \Omega_Y \rangle$ with X as the reference.
- \circ The strength of I_{XY} is quantified by the conditional probability $P(I_{XY}|\Sigma_X,\Sigma_Y)$
- 13 temporal dependencies are defined according to Allen's Interval Algebra

5. Implementation of ITBN

 \succ We propose to implement ITBN with a corresponding Bayesian Network (BN) to exploit the well developed BN mathematical machinery

- *Circular node*: state of each temporal event
- Square node: type of temporal relation
- Solid links: capture the spatial dependencies among events
- **Dotted links:** connect the relation node with the corresponding temporal event nodes and capture the temporal dependencies
- Given a set of temporal events $\mathcal{E} = \{E_i\}_{i=1}^n$ and their pairwise relations $\mathcal{I} = \{I_k\}_{k=1}^K$, the joint distribution can be written as

$$P(\mathcal{E}, \mathcal{R}) = \prod_{i=1}^{n} P(E_i | \pi(E_i)) \prod_{k=1}^{K} P(I_k | \pi(I_k))$$

Spatial Relations Temporal Relations

Facial Expression Recognition with ITBN

- To recognize N expressions, we build N ITBN's $\{M_{\nu}: y = 0\}$ 1, ..., N, each of which models one expression.
- \circ Given a query sample x, its expression is classified as:

 $P(x|M_y)$ $y^* = \arg\max_{v} \frac{1}{Complexity(M_y)}$

7. Learning and Inference

Step 1: Temporal Relation Node Selection

- It is not necessary to consider the relations among all possible pairs of events
- A selection routine is performed to select those that maximize discrimination
- The following score is used to rank all the relation nodes. The top L nodes are selected and instantiated in the model

$$S(I_{AB}) = \sum_{i>j} \left[D_{KL} \left(P_i \parallel P_j \right) + D_{KL} \left(P_j \parallel P_i \right) \right]$$

Step 2: Structure Learning

- Temporal nodes are linked to their corresponding event nodes
- Spatial links are learned by finding a network G that maximizes the BIC score on the training data D

$$\max_{G} \left[\log P(D|G,\Theta) - \frac{|\Theta| \log N}{2} \right]$$

> Step 3: Parameter Estimation

- Parameters include the conditional probability distribution (CPD) $P(E_i|\pi(E_i))$, and the CPD $P(I_k|\pi(I_k))$
- Tree structured CPD is introduced to reduce the number of parameters
- Parameters are learned by maximizing the log likelihood

> Data Sets

- CK+: 7 expressions, 327 video sequences
- MMI: 6 expressions, 205 video sequences
- Performance Vs Number of Relation Nodes

Performance Vs Related works

	ITBN		HMM		Lucey <i>et al.</i>				
CK+	86.3%		83.5%		83.3%				
	ITON		R <i>A</i> R <i>A</i>		Zhong <i>et al.</i>				
		п		CPL		CSPL	ADL		
MMI	59.7%	52	1.5%	49.4%	0	73.5%	47.8%		

- ITBN outperforms time-slice based models such as HMM
- ITBN achieves comparable and even better performance than the related works, even though it is based purely on the tracking results

Relationship Analysis

9. Conclusions

- \succ Model a facial expression as a complex activity of temporally sequential or overlapping facial events
- Propose a novel ITBN to capture global and a larger variety of complex spatio-temporal relations among facial events
- > The proposed model achieves comparable and even better results than existing methods, without using appearance information
- \succ ITBN can be widely applied for analyzing other complex activities