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Abstract

Spatial-temporal relations among facial muscles carry
crucial information about facial expressions yet have not
been thoroughly exploited. One contributing factor for this
is the limited ability of the current dynamic models in cap-
turing complex spatial and temporal relations. Existing dy-
namic models can only capture simple local temporal rela-
tions among sequential events, or lack the ability for incor-
porating uncertainties. To overcome these limitations and
take full advantage of the spatio-temporal information, we
propose to model the facial expression as a complex activity
that consists of temporally overlapping or sequential primi-
tive facial events. We further propose the Interval Temporal
Bayesian Network to capture these complex temporal re-
lations among primitive facial events for facial expression
modeling and recognition. Experimental results on bench-
mark databases demonstrate the feasibility of the proposed
approach in recognizing facial expressions based purely on
spatio-temporal relations among facial muscles, as well as
its advantage over the existing methods.

1. Introduction

Facial expressions are the outcome of a set of muscle
motions over a time interval. These movements interact in
different patterns and convey different expressions. Under-
standing such complex facial activity not only requires us
to study each individual facial muscle motion, but also how
they interact with each other in both the space and time
domain. Spatially, facial muscle motions can co-occur or
can be mutually exclusive at each time slice. Temporally,
the movement of one facial muscle can activate, overlap
or follow another muscle. These spatio-temporal relations
capture significant information about facial expressions yet
have not been thoroughly studied, partially due to the lim-
itations of the current models. Unlike most of the exist-

ing works that perform facial expression recognition on the
manually labeled peak frame, we model a facial expression
as a complex activity that spans over a time interval and
consists of a group of primitive facial events happening se-
quentially or in parallel. More importantly, modeling fa-
cial expression as such a complex activity allows us to fur-
ther study and capture a larger variety of complex spatial
and temporal interactions among the primitive events. In
this work, we aim to overcome the limitations of current
models and thoroughly explore and exploit more complex
spatio-temporal relations in the facial activities for expres-
sion recognition.

Understanding a complex activity and capturing the un-
derlying temporal relations is challenging and most of the
existing methods do not handle this adroitly. Modeling and
recognizing a complex activity is naturally solved by build-
ing a structure that is able to semantically capture the spatio-
temporal relationships among primitive events. Among
various visual recognition methodologies, such as graphi-
cal, syntactic and description-based approaches, time-sliced
graphical models, i.e. hidden Markov models (HMMs) and
dynamic Bayesian networks (DBNs), have become the most
popular tool for modeling and understanding complex ac-
tivities [2, 11, 13, 5]. Syntactic and description-based ap-
proaches have also gained attention and used mainly for ac-
tion units detection in recent years [10]. While these ap-
proaches have been applied to capture the dynamics of fa-
cial expressions, they face one or more of the following is-
sues when modeling and understanding complex visual ac-
tivities that involve interactions between different entities
over durations of time.

First, time-sliced (based on time points) graphical mod-
els (e.g. HMM, DBN, or their variants) typically repre-
sent an activity as a sequence of instantaneously occurring
events, which is generally unrealistic for facial expression.
For example, the eye movement and nose movement may
both last for a period of time and they may overlap. More-



over, time-sliced dynamic models can only offer three time-
point relations (precedes, follows, equals), and so they are
not expressive enough to capture many of the temporal re-
lations between events that happen over the duration of an
activity. Secondly, time-sliced graphical models typically
assume first order Markov property and stationary transi-
tion. Hence, they can only capture local stationary dynam-
ics and cannot represent global temporal relations. Finally,
syntactic and description-based models lack the expressive
power to capture and propagate the uncertainties associated
with event detection and with their temporal dependencies
in a principled manner.

To address these issues and comprehensively model fa-
cial expression, we propose a unified probabilistic frame-
work that combines the probabilistic semantics of Bayesian
networks (BNs) with the temporal semantics of interval
algebra (IA). Termed an interval temporal Bayesian net-
work (ITBN), this framework employs the BN’s proba-
bilistic basis and the IA’s temporal relational basis in a
principled manner that allows us to represent not only the
spatial dependences among the primitive facial events but
also a larger variety of time-constrained relations, while re-
maining fully probabilistic and expressive of uncertainty.
In particular, ITBN is time-interval based in contrast to
time-sliced models, which allows us to model the relations
among both sequential and overlapping temporal events. In
this paper we take a holistic approach to modeling the fa-
cial activities. We will first identify all of the related prim-
itive facial events, which provide us the basis to define a
larger variety of temporal relations. We then apply ITBN
to capture their spatio-temporal interactions for expression
recognition.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview of the related works. Section 3
introduces the definition and implementation of ITBN. We
discuss how we identify the primitive facial events and how
we model the facial expressions with ITBN in Section 4.
Experiments and the discussions will be illustrated in Sec-
tion 5. The paper is concluded in Section 6.

2. Related Works
Recognizing facial expressions generally involves

bottom-level feature extraction and top-level classifier de-
sign. Features for expression classification can be grouped
into appearance features such as Gabor [8] and LBP [9],
and geometric features that are extracted from the location
of the salient facial points. While appearance features cap-
ture the local or global appearance information of the fa-
cial components, studying the movement of the facial fea-
ture points provides us a more explicit manner to analyze
the dynamics. Classifiers for facial expression recognition
include static models and dynamic models. Static models
recognize facial expressions based on the apex frame of an

image sequence and have achieved successful performance.
However, peak frames usually require manual labeling and
the static approach completely disregards the dynamic inter-
actions among the facial muscles that are very important for
discriminating facial activates. In contrast dynamic models
rely on the whole image sequence and study their tempo-
ral dynamics for facial expression recognition. In this paper
we focus on expression recognition works that are based on
the facial feature points and image sequences. A more com-
prehensive literature review of facial expression recognition
ban be found in [14].

Dynamic models that have been widely applied for facial
expression recognition include the hidden Markov model
(HMM) and its variants [2, 11, 13], the dynamic Bayesian
network (DBN) [5], and latent conditional random fields
(LCRF) [4]. HMM captures local state transitions that are
assumed to be stationary. In [2] a multilevel HMM is intro-
duced to automatically segment and recognize human facial
expressions from image sequences based on the local de-
formations of the facial feature points tracked with a piece-
wise Bezier volume deformation tracker. In [11], a non-
parametric discriminant HMM is applied to recognize the
expression and the facial features are tracked with Active
Shape Model. A different approach is used in [13], where
an HMM was used together with support vector machines
and AdaBoost to simultaneously recognize action units and
facial expressions by modeling the dynamics among the ac-
tion units. Similarly, DBN also captures local temporal
interactions and an example can be found in [5]. Besides
these generative models, discriminative approaches such as
LCRF have also been applied for expression analysis. For
instance, in [4], features from 68 landmark points of video
sequences were fed into an LCRF to perform expression
recognition. However, all of these models are time-slice
based and as a result can only capture a small portion of the
temporal relations. Moreover, these relations are assumed
to be stationary and time-independent. Therefore the cap-
tured dynamics remain local. To overcome these restric-
tions our proposed method models a complex activity as
sequential or overlapping primitive events, and each event
spans over a time interval. This allows us to capture a wider
variety of complex temporal relations which can further en-
hance the performance of facial activity recognition.

3. Interval Algebra Bayesian Network
Different spatial and temporal configurations of primi-

tive facial events lead to different expressions. Unlike the
related works, ITBN looks at facial activity from a global
view and is able to model a larger variety of spatio-temporal
relations. To formally introduce the definition of ITBN, we
will first define the primitive events that constitute a com-
plex activity and several related concepts. A primitive event
is also called a temporal entity and we do not differentiate
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between these two terms in the remainder of this paper. We
then introduce how we model the temporal relations among
primitive events. Finally, we will formally introduce ITBN
and its implementation.

Definition 1 (Temporal Entity) A temporal entity is char-
acterized by a pair 〈Σ,Ω〉 in which Σ is a set of all possible
states for the temporal entity, and Ω = {[a, b] ⊂ R : a < b}
is a period of time spanned by the temporal entity, where a
and b denote the start time and the end time, respectively.

Temporal entities form the primitive events of a complex
activity. Spatio-temporal relations act as the joints connect-
ing the temporal entities to form different patterns.

Definition 2 (Temporal Reference) If a temporal entityX
is used as a time reference for specifying temporal relations
to another temporal entity Y , then X is the temporal refer-
ence of Y .

Definition 3 (Temporal Dependency) A temporal depen-
dency (TD) denoted as IX,Y describes a temporal rela-
tion between two temporal entities X = 〈ΣX ,ΩX〉 and
Y = 〈ΣY ,ΩY 〉, where X is the temporal reference of Y .

Relation Symbol Inverse Illustration 
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Figure 1: Temporal Relations

Following Allen’s Interval Algebra [1], there are a to-
tal of 13 temporal relationships between two temporal en-
tities as illustrated in Figure 1. The thirteen possible re-
lations I = {b, bi, m, mi, o, oi, s, si, d, di, f, fi, eq} respec-
tively represent before, meets, overlaps, starts, during, fin-
ishes, equals and their inverses. The horizontal bars repre-
sent the time interval of the corresponding temporal entity.
Given X and Y with X serving as the temporal reference,
the dependency or temporal relation can be uniquely ascer-
tained by the interval distance between two temporal enti-
ties as defined in Equation 1, where txs and txe (tys and
tye) represent the start and end time of X (Y ). Table 1
shows how we map the temporal distance to the temporal
relationship.

d(X,Y ) = [txs − tys, txs − tye, txe − tys, txe − tye] (1)

The temporal dependency IXY is graphically repre-
sented as a directed link leading from the node X to the
node Y labeled with IXY ∈ I, as shown in Figure 2a. The

Table 1: Interval relation determined by interval distance

No. r txs − tys txe − tye txs − tye txe − tys

1 b < 0 < 0 < 0 < 0
2 bi > 0 > 0 > 0 > 0
3 d > 0 < 0 < 0 > 0
4 di < 0 > 0 < 0 > 0
5 o < 0 < 0 < 0 > 0
6 oi > 0 > 0 < 0 > 0
7 m < 0 < 0 < 0 = 0
8 mi > 0 > 0 = 0 > 0
9 s = 0 < 0 < 0 > 0
10 si = 0 > 0 < 0 > 0
11 f > 0 = 0 < 0 > 0
12 fi < 0 = 0 < 0 > 0
13 eq = 0 = 0 - -

strength of the temporal dependency can be quantified by a
conditional probability as follows:

P (IXY = i|X = x, Y = y), (2)

where x ∈ ΣX and y ∈ ΣY are the states of the tempo-
ral entities and i ∈ I denotes an interval temporal relation.
Here, we only consider pairwise temporal dependencies.

Given the above concepts, we can formally introduce the
ITBN as follows.

Definition 4 (Interval Temporal Bayesian Network) An
interval temporal Bayesian network (ITBN) is a directed
graph (DAG)G(V,E), where V is a set of nodes represent-
ing temporal entities and E is a set of links representing
both the spatial and temporal dependencies among the
temporal entities in V .

A link in an ITBN is a carrier of the interval temporal re-
lationship, and the link direction leading from X to Y indi-
cates Y is temporally dependent on X and X is the temporal
reference of Y. Once the temporal reference is established,
the direction of the arc cannot be changed. It can only point
from the temporal reference to the other temporal entity,
thereby avoiding temporal relationship ambiguity. An ex-
ample of ITBN can be seen in Figure 2b, which contains
three temporal entities: A, B and C.
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 𝐴  𝐵 
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 𝐶 

𝐼𝐴𝐶  𝐼𝐵𝐶  

(b)
Figure 2: (a) Graphical notation of the temporal dependency be-
tween primitive events X and Y . (b) An example of ITBN.

We propose to implement ITBNs with a corresponding
Bayesian network (BN) to exploit the well-developed BN
mathematical machinery. Figure 3 is the corresponding BN
graphical representation for the ITBN shown in Figure 2b,
where another set of nodes (the square nodes) are intro-
duced to represent the temporal relations. Specifically, an
ITBN implemented as a BN, includes two types of nodes:
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temporal entity nodes (circular) and temporal relation nodes
(square). There are also two types of links, spatial links
(solid lines) and temporal links (dotted lines). The spatial
links connect temporal entity nodes and capture the spatial
dependencies among the temporal entities. The temporal
links connect the temporal relation nodes with the corre-
sponding temporal entities and characterize the temporal
relationships between the two connected temporal entities.
Given this representation, the joint probability of the tempo-
ral entities as well as their spatial and temporal information
can be calculated with Equation 3:

P (Y, I) =
n∏
j

P (Yj |π(Yj))

K∏
k

P (Ik|π(Ik)) (3)

where Y = {Yj}nj=1 and I = {Ik}Kk=1 represent all tempo-
ral entity nodes and all temporal relation nodes respectively
in an ITBN. π(Yj) is the set of parental nodes of Yj ; Ik rep-
resents the kth interval temporal relation node and π(Ik)
are the two temporal entity nodes that produce Ik.

B A 

C 

IAC 
IBC 

IAB 

Figure 3: BN Implementation of ITBN

4. Facial Expression Recognition with ITBN
ITBN provides a powerful tool to model complex activi-

ties such as facial expression that consists of interval-based
primitive temporal entities or events and captures a wider
variety of spatial and temporal relations among them. In
this section we will introduce the definitions of the primi-
tive events that constitute a facial activity and how we cap-
ture their spatial and temporal relations with ITBN.

4.1. Facial Expression Modeling

To comprehensively incorporate different levels of infor-
mation from facial expression, the first step is to identify all
of the related primitive facial events that constitute a facial
activity. Primitive events for facial expressions are defined
as the local facial muscle movements. Due to the difficulty
of measuring facial muscle motions, we propose to approx-
imate them using the movements of facial feature points.
Facial feature points near different facial components are
tracked and their movements are the result of different fa-
cial muscles (see Figure 6 for the facial feature points in our
experiments). Therefore, each primitive facial event is de-
fined as the movement of one facial feature point. Figure
4a shows two primitive facial events. Facial feature point
P1 corresponds to event E1 and represents the movement
of one of the left eye muscles. Point P2 corresponds to

event E2 and captures the movement of one of the mouth
muscles. A primitive facial event includes its temporal du-
ration and state. In our case, the duration of the primitive
event Ei starts when point Pi leaves its neutral position and
ends at the time when it finally comes back. Basically, it
is the time interval that point i stays away from its neu-
tral position as shown in Figure 4b in which T1 and T2 are
the corresponding duration for E1 and E2. For simplicity,
only the trace along the vertical direction is shown in Fig-
ure 4. Each event hasm possible states, which represent the
m movement patterns of point Pi over the time interval as
shown in Figure 4c. The first state represents the point stay-
ing still throughout the process. The other states represent
m− 1 movement patterns. For example, state S3 represents
that the point moves down and then comes back. State Sm

shows a relatively more complex pattern in which the point
moves down in the beginning and moves up later. These m
states are mutually exclusive and encode the motion and di-
rection information of each facial feature point. Movement
features in the interval are collected and a k-means clus-
tering is performed to determine the state of each primitive
event. In conclusion, each facial feature point generates one
primitive event. This event has m possible states and its du-
ration is the time interval when the corresponding point is
away from its neutral position.

The defined primitive facial events cover all of the local
motions of the key facial components and provide us the
basis to further study the spatio-temporal relations among
them. They are explicitly obtained based on the tracking of
the facial feature points and hence are easy to get without
human labeling, training or prediction which could be time-
consuming. Meanwhile, they also provide the time-interval
information of the events and therefore allow us to study the
relations of not only sequential but also overlapping events.

Given the time intervals of a pair of primitive facial
events, we can then measure their temporal relation by cal-
culating their temporal interval distance according to Equa-
tion 1 and Table 1. For instance, in Figure 4b the temporal
relation is that E2 overlaps E1, with E1 as the temporal ref-
erence. Figure 4d depicts the time intervals of a total of
26 facial feature points estimated from an image sequence
in our experiment in which the expression is fear. From it
we can clearly see the various temporal relations among the
primitive facial events. The temporal relations will be eval-
uated for all the possible pairs of primitive facial events, but
only those that exhibit high variance across different expres-
sions will be maintained for expression recognition. This
step is called temporal relation node selection and will be
discussed in details in section 4.3.1.

4.2. Facial Expression Recognition

To recognize N facial expressions, we will build N
ITBN’s, with each corresponding to one expression. For
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Figure 4: (a) Facial muscle movement as captured by the movement of facial points. (b) Duration for event E1 and E2 and their temporal
relation. (c) Typical movement patterns of a primitive facial event. (d) Time intervals for the primitive facial events.

each ITBN, the entity node represents the primitive event
and the temporal relation node has K possible values, each
of which corresponds to one temporal relation. Given a
query sample x, its expression will be determined accord-
ing to Equation 4, where My stands for the ITBN model
of expression y. Since different ITBN models may have
different spatial structures, the model likelihood P (x|My)
will be divided by the model complexity for balance. We
use the total number of the links as the model complexity.
The ITBN model that produces the highest likelihood will
be selected.

y∗ = argmax
My

logP (x|My)

Complexity(My)
(4)

4.3. Learning ITBN for Facial Expression

Learning the ITBN model for facial expression consists
of three parts: temporal nodes selection, structure learning,
and parameter estimation.

4.3.1 Temporal Relation Nodes Selection

While ITBN can capture the complex relations among the
temporal entities, it is not necessary to consider the relation
among all the possible pairs of events for facial expression
recognition. A selection routine is hence performed to re-
move the pairs that may not contribute or may even do harm
to expression recognition. With the goal of discriminating
expressions, the relation between two temporal entities is
expected to be strong and can maximally differentiate be-
tween different expressions. To meet this requirement, we
define a KL divergence-based score to evaluate the relation
node between each pair of events, and only retain those that
have a relatively high score. The score of relation RAB be-
tween event A and event B is defined in Equation 5, where
Pi (Pj) is the conditional probability of RAB for the ith

(jth) expression with i (j) ranging over all the possible ex-
pressions. DKL stands for the KL divergence. All the entity
pairs are ranked according to their score. The top M pairs
are selected and their temporal relations will be instantiated
in the ITBN model.

SAB =
∑
i>j

(DKL(Pi||Pj) +DKL(Pj ||Pi)) (5)

4.3.2 Structure Learning

The next step is to learn the spatial and temporal links
(i.e. the solid and dotted links in Figure 3) among the en-

tity nodes and selected relation nodes. The temporal re-
lation nodes can be directly linked to their corresponding
events. Here we mainly focus on learning the spatial struc-
ture. Learning the ITBN structure means finding a network
G that best matches the training datasetD. We use Bayesian
information criterion (BIC) to evaluate each ITBN:

max
G

S(G : D) = max
Θ

(logP (D|G,Θ)− |Θ| logN

2
) (6)

where S denotes the BIC score, Θ the vector of the esti-
mated parameters, logP (D|G,Θ) the log-likelihood func-
tion, and |Θ| the number of free parameters. The struc-
ture learning method proposed in [3] is employed to find
the structure that has the highest BIC score.

4.3.3 Parameter Estimation

Parameters for ITBN involve the conditional probability
distribution (CPD) for each node given its parents. Specif-
ically, the conditional probability of each temporal relation
node may have a large number of parameters since we have
a large number of temporal relations and often don’t have
enough training data. To reduce the number of parameters
to estimate, we employ a tree-structured CPD for each tem-
poral node. An example is shown in Figure 5, which il-
lustrates how we use a tree-structure CPD to parameterize
the conditional probability of relation node IAB given the
event pair A and B. When A or B equals zero, meaning
that they do not move, no information can be obtained about
their temporal relation. Therefore the conditional probabil-
ity is set to be uniform. When both of them move, the tem-
poral relation probability holds regardless of their moving
patterns. This parameterization method is specifically de-
signed for insufficient training data, and does not limit us to
use more complex CPD’s if we have enough training sam-
ples.

Given a training dataset D which contains the properly
estimated state of each primitive event and their temporal
relations, the goal of parameter estimation is to find the
maximum likelihood estimate (MLE) of the parameters Θ,
which is shown in Equation 7. Θ denotes the parameter set
and D represents the data.

Θ∗ = arg max
Θ

logP (D|Θ) (7)
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5. Experiments
To evaluate ITBN, we study its performance on two

widely used benchmark datasets, namely the extended
Cohan-Kanade dataset [7, 6] and MMI dataset [12]. The
goal is to evaluate if ITBN can improve performance by in-
corporating complex spatio-temporal relations, and to com-
pare ITBN with the existing works.

5.1. Data

The extended Cohn-Kanade dataset (CK+) contains fa-
cial expression videos from 210 adults in which 69% are
female, 81% are Euro-American, 13% are Afro-American
and 6% are from other groups. Participants are 18 to 50
years of age. A total of 7 expressions are labeled in the
dataset, including anger, contempt, disgust, fear, happy,
sadness and surprise.

The MMI dataset includes more than 30 subjects in
which 44% are female. The subjects age from 19 to 62
and are either European, Asian or South American. In this
dataset, 213 sequences have been labeled with facial ex-
pressions, out of which 205 are with frontal face. Unlike
other works that manually selected a subset of 96 image
sequences for expression recognition, we use all 205 im-
age sequences of 6 expressions from the MMI dataset in
our experiment and perform recognition based on the im-
age sequence without knowing the ground truth of the apex
frames. Table 2 illustrates the number of samples for each
expression in the two datasets.

Table 2: Number of Samples
Expression CK+ MMI
Anger (An) 45 32
Contempt (Co) 18
Disgust (Di) 59 31
Fear (Fe) 25 28
Happy (Ha) 69 42
Sadness (Sa) 28 32
Surprise (Su) 83 40

The two datasets present different challenges for facial
expression recognition. All of the image sequences in CK+
start from the neutral face and end at the peak frame. There-
fore, they only cover the first half of the expressions, which
means for each event, we have its starting time and but not
the end time. This effectively limits the temporal relation-
ships to three relations which are A starts before B, A starts

after B, and A starts at the same time as B. Image sequences
in MMI cover the whole expression process from the onset
to the offset. However, some subjects wear glasses, acces-
sories or have mustaches, and there are greater intra-subject
variations and head motions when performing expressions
in MMI. These make it very difficult to analyze expressions.

The facial feature points that are used in our experiments
are shown in Figure 6. For CK+, the facial feature points
are provided by the database. For the MMI dataset, the fa-
cial feature points are obtained using an ASM model based
method. The tracking results are normalized such that the
eye centers fall on the given positions for all the frames
based on affine transformation. To measure the duration of
each event and deal with tracking noise, the point is said to
move only when its relative distance from the neutral posi-
tion exceeds 2 pixels.

Figure 6: Facial Feature Points. Left: CK+; right: MMI.

Determining the moving pattern for each event requires
collecting features during the motion interval. Since CK+
only covers half the process of the expression, we collect the
moving directions during the motion interval and quantize
them into four moving patterns. For MMI, moving features
are collected as follows. We take the discrete Fourier trans-
form of the moving trace of a point along both the horizontal
and vertical direction and use the first 5 FFT coefficients as
the feature. The direction of this point relative to its neu-
tral position is collected for each frame and quantized into
4 orientations. A histogram of directions can be computed
given the directions of all the frames during the event. All of
these features are used to determine the state of the event by
performing k-means clustering and a total of 9 patterns are
used in MMI, including the stationary pattern. Experiments
are performed based on 15-fold cross subject validation in
CK+ and 20-fold cross subject validation in MMI.

5.2. Performance Vs Number of Relation Nodes

The first experiment is to evaluate if incorporating tem-
poral relations could enhance the performance of facial ex-
pression recognition. Since not the relation of all the event
pairs will be helpful for expression recognition, we per-
formed a selection subroutine and picked those that have
relatively high scores. In this section we evaluate the per-
formance with respect to the number of temporal relation
nodes we selected. Figure 7 illustrate the performance of
ITBN in CK+ and MMI when we gradually increase the
number of relation nodes. The x axis represents the num-
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Figure 7: Performance of ITBN with respect to the num of event
pairs in CK+ dataset (left) and MMI dataset (right).

ber of temporal relation nodes we selected. The average
recognition rate is calculated by averaging the classification
accuracy for each expression and corresponds to the y axis.
The starting point of each curve is the performance of the
model when no temporal relation is incorporated. From the
results we can see that by incorporating the temporal rela-
tion information, the recognition rates of both models are
significantly improved. The performance reaches its peak
when approximately the 50 events pairs for CK+ and 35
pairs for MMI are selected. In CK+ the recognition im-
provement is about 4% and in MMI the improvement is
about 6%. This demonstrates the benefits of temporal infor-
mation for expression recognition and the ability of ITBN to
capture such knowledge. As more and more relation nodes
are added to ITBN, the performance will eventually decline.
This is partially because the contributions of the low-score
relation nodes to classification could be less than the noise
they bring. Table 3 and Table 4 show the confusion matrices
of ITBN in two datasets when 50 event pairs for CK+ and
35 pairs for MMI were selected. The corresponding aver-
age recognition rates of these two matrices are 86.3% and
59.7%.

Table 3: Confusion Matrix of ITBN in CK+

An Di Fe Ha Sa Su Co
An 91.1 0.0 0.0 4.4 0.0 2.2 2.0
Di 1.2 94.0 1.2 0.0 1.2 2.4 0.0
Fe 5.6 0.0 83.3 0.0 0.0 0.0 11.1
Ha 3.4 0.0 0.0 89.8 1.7 3.4 1.7
Sa 0.0 20.0 0.0 0.0 76.0 4.0 0.0
Su 0.0 5.8 1.5 0.0 0.0 91.3 1.5
Co 7.1 0.0 3.6 0.0 10.7 0.0 78.6

Table 4: Confusion Matrix of ITBN in MMI

An Di Fe Ha Sa Su
An 46.9 18.8 0.0 3.1 31.2 0.0
Di 16.1 54.8 9.7 6.5 6.5 6.5
Fe 7.1 10.7 57.1 10.7 3.6 10.7
Ha 0.0 7.1 19.1 71.4 2.4 0.0
Sa 9.4 3.1 18.8 3.1 65.6 0.0
Su 0.0 2.5 32.5 2.5 0.0 62.5

Figure 8a illustrates the learned ITBN model in MMI
dataset, where each node represents an event corresponding
to a facial feature point, and each link denotes a pair-wise
temporal dependency. To gain some insight of the tempo-
ral interactions of the facial muscles, Figure 8b graphically

depicts all of the 35 selected temporal relation nodes in the
MMI dataset. If the relation node RAB is selected, then a
line is connected between event pair A and B. In particu-
lar, the frequencies of all the thirteen relations between fea-
ture point 1 and 11 are shown in Figure 9. We can see that
selected interactions provide discriminative information to
recognize expressions and they involve all components of
the face.
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Figure 8: (a) The learned ITBN model in MMI dataset. (b) Graph-
ical depiction of the selected event pairs in MMI.
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Figure 9: Frequencies of thirteen relations among a pair of events
with respect to different expressions in MMI. X-axis represents the
index of relationships.

5.3. Comparison with Related Works

From the previous experiment we can see that ITBN can
successfully capture and exploit the spatio-temporal infor-
mation to enhance expression recognition. In this section
we compare the performance of ITBN with related works.
We also evaluate ITBN against other time-sliced dynamic
models. Specifically a hidden Markov model (HMM) which
is based on the locations of facial feature points is imple-
mented, and we expect similar results for the DBN model.

Our experiment faces more challenges than those repre-
sented in many other works. First, we perform recognition
on a given sequence without knowing the ground truth of
the peak frame. Secondly, our model only uses the tracking
results without any texture features such as LBP or Gabor.
This makes it more difficult for us to recognize expressions.
Furthermore, in the MMI dataset, we use all of the 205 im-
age sequences instead of manually selecting 96 sequences
for recognition.

Table 5 compares the result of ITBN with that in
[7] where they use the similarity normalized shape fea-
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tures (SPTS) and canonical normalized appearance features
(CAPP) that are computed based on the tracking results of
68 facial feature points. We can see that ITBN outperforms
[7] by about 3%.

Few works can be found that use tracking results for ex-
pression recognition in MMI dataset. Among all the works
we can find, [15] is the most similar to ours in that they
also use all of the 205 sequences. Their method is based on
the LBP features and they propose to learn the common and
specific patches for classification. Table 6 shows both our
and their results, in which CPL stands for their method that
only uses common patches, CSPL is their method that uses
common and specific patches and ADL is the patches that
are selected by AdaBoost. We can see that our results are
much better than CPL and ADL. Although CSPL outper-
forms our result, their experiment is based on appearance
features and requires the peak frames while we only use
the features from the tracking results and do not have the
ground truth of peak frame.

On both datasets, the results of HMM are also illustrated
in the above two tables. During the experiment, we chose 4
and 10 latent states for HMM in CK+ and MMI respectively
such that the recognition rate of HMM is maximized. ITBN
outperforms HMM in both cases.

Table 5: Comparison in CK+

Method ITBN HMM Lucey et al. [7]
AR % 86.3 83.5 83.3

Table 6: Comparison in MMI

Method CPL CSPL ADL ITBN HMM
AR % 49.4 73.5 47.8 59.7 51.5

Overall we can see that ITBN can successfully cap-
ture the complex temporal relations and translate them into
the significant improvement of facial expression recogni-
tion. ITBN outperforms the time-sliced dynamic models
and other works that also use tracking-based features and
can achieve comparable and even better results than those
appearance-based approaches.

6. Conclusions
In this paper we model a facial expression as a complex

activity that consists of temporally overlapping or sequen-
tial primitive facial events. More importantly, we have pro-
posed a probabilistic approach that integrates Allen’s tem-
poral Interval Algebra with Bayesian Network to fully ex-
ploit the spatial and temporal interactions among the primi-
tive facial events for expression recognition. Experiments
on the benchmark datasets demonstrate the power of the
proposed method in exploiting complex relations compared
to the existing dynamic models as well as its advantages
over the existing methods, even though it is purely based

on facial feature movements without using any appearance
information. Moreover, ITBN is not limited to model rela-
tions among the primitive facial events and could be widely
applicable for analyzing other complex activities.
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