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Abstract— This paper describes a real-time non-intrusive
prototype driver fatigue monitor. It uses remotely located
CCD cameras equipped with active IR illuminators to acquire
video images of the driver. Various visual cues typically
characterizing the alertness of the driver are extracted in
real time and systematically combined to infer the fatigue
level of the driver. The visual cues employed characterize
eyelid movement, gaze movement, head movement, and facial
expression. A probabilistic model is developed to model human
fatigue and to predict fatigue based on the observed visual cues
and the available contextual information. The simultaneous use
of multiple visual cues and their systematic combination yields
a much more robust and accurate fatigue characterization
than using a single visual cue. The feasibility of our system is
demonstrated using synthetic data. Further validation of our
system under real life fatigue conditions with human subjects
shows that it was reasonably robust, reliable and accurate in
fatigue characterization.

I. INTRODUCTION

The ever-increasing number of traffic accidents in the
U.S. due to a diminished driver’s vigilance level has become
a problem of serious concern to society. Drivers with a
diminished vigilance level suffer from a marked decline
in their abilities of perception, recognition, and vehicle
control and therefore pose serious danger to their own
life and the lives of other people. Statistics show that a
leading cause for fatal or injury-causing traffic accidents
is due to drivers with a diminished vigilance level. In the
trucking industry, 57% fatal truck accidents are due to driver
fatigue. It is the number one cause for heavy truck crashes.
70% of American drivers report driving fatigued. With the
ever-growing traffic conditions, this problem will further
deteriorate. For this reason, developing systems actively
monitoring a driver’s level of vigilance and alerting the
driver of any insecure driving conditions is essential to
accident prevention.

Many efforts have been reported in the literature on
developing active real-time image-based fatigue monitoring
systems [1], [2], [3], [4], [5], [6], [7]. But most of them
focus on only a single visual cue such as facial expression,
eyelid movement or line of gaze or head orientation to
characterize driver’s state of alertness. The system relying
on a single visual cue may encounter difficulty when the
required visual features cannot be acquired accurately or
reliably.

All those visual cues, however imperfect they are individ-
ually, if combined systematically, can provide an accurate

characterization of a driver’s level of vigilance. It is our
belief that simultaneous extraction and use of multiple
visual cues can reduce the uncertainty and resolve the am-
biguity present in the information from a single source. The
systematic integration of these visual parameters, however,
requires a fatigue model that models the fatigue generation
process and is able to systematically predict fatigue based
on the available visual as well as the relevant contextual
information. The system we propose can simultaneously,
non-intrusively, and in real time monitor several visual
behaviors that typically characterize a person’s level of
alertness while driving. These visual cues include eyelid
movement, gaze movement, head movement and facial
expression. The fatigue parameters computed from these
visual cues are subsequently combined probabilistically
to form a composite fatigue index that could robustly,
accurately, and consistently characterize one’s vigilance
level. Figure 1 gives an overview of our driver vigilance
monitoring system.
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Fig. 1. A flowchart of the proposed driver vigilance monitoring
system

The paper consists of three parts. First, the paper focuses
on discussion of the computer vision algorithms and the
necessary hardware components to extract the needed visual
cues. Second, after extracting these visual cues, the issue of



sensory data fusion and fatigue modeling and inference is
discussed. Finally, experiments under real life conditions
are conducted to validate our driver vigilance monitoring
system.

II. VISION-BASED VISUAL CUES EXTRACTION

Fatigue monitoring starts with extracting visual param-
eters typically characterizing a person’s level of vigilance.
This is accomplished via a computer vision system. In this
section, we discuss the computer vision system we devel-
oped to achieve this goal. Figure 2 provides an overview
of our visual cues extraction system for driver fatigue
monitoring. The system consists of two cameras: one wide
angle camera focusing on the face and another narrow
angle camera focusing on the eyes. The wide angles camera
monitors head movement and facial expression while the
narrow angle camera monitors eyelid and gaze movements.

Fig. 2. Overview of the driver vigilance monitoring system

A. Eye Detection and Tracking

The system starts with eye detection and tracking. The
goal of eye detection and tracking is for subsequent eyelid
movement monitoring, gaze determination, face orienta-
tion estimation and facial expression analysis. A robust,
accurate, and real-time eye tracker is therefore crucial.
In this research, we proposed a real-time robust method
for eye tracking under variable lighting conditions and
face orientations, based on combining the appearance-
based methods and the active IR illumination approach.
When the eyes are completely closed or the eyes are
partially occluded due to the large face orientations, our
eye tracker can still track them successfully as shown in
Figure 3. Details about the algorithm can be found in
[8]. Video demos of the eye tracker may be found at
http://www.ecse.rpi.edu/∼cvrl/Demo/demo.html.

B. Eyelid Movement Parameters

Eyelid movement is one of the visual behaviors that
reflect a person’s level of fatigue. The primary purpose of

Fig. 3. Image results with successfully tracked eyes.

eye tracking is to monitor eyelid movements and compute
the relevant eyelid movement parameters. Here, we focus on
two ocular measures to characterize the eyelid movement.
The first one is Percentage of Eye Closure Over Time
(PERCLOS) and the second is Average Eye Closure Speed
(AECS). PERCLOS has been validated and found to be the
most valid ocular parameter for monitoring fatigue [1].

The eye closure/opening speed is a good indicator of
fatigue. It’s defined as the amount of time needed to fully
close the eyes or to fully open the eyes. Our previous study
indicates that the eye closure speed of a drowsy person is
distinctively different from that of an alert person [9].

The degree of eye opening is characterized by the shape
of pupil. It is observed that as eyes close, the pupils start
getting occluded by the eyelids and their shapes get more
elliptical. So, we can use the ratio of pupil ellipse axes
to characterize degree of eye opening. The cumulative eye
closure duration over time excluding the time spent on
normal eye blinks is used to compute PERCLOS. To obtain
a more robust measurement for these two parameters, we
compute their running average (time tracking). To obtain
running average of PERCLOS measurement, for example,
the program continuously tracks the person’s pupil shape
and monitors eye closure at each time instance. We compute
these two parameters in 30 seconds window and output
them onto the computer screen in real time, so we can easily
analyze the alert state of the driver. The plots of the two
parameters over time are shown in Figure 4.

C. Face (Head) Orientation Estimation

Face (head) pose contains information about one’s atten-
tion, gaze, and level of fatigue. Face pose determination
is concerned with computation of the 3D face orientation
and position to detect such head movements as head tilts.
Frequent head tilts indicate the onset of fatigue. Further-
more, the nominal face orientation while driving is frontal.
If the driver faces in the other directions (e.g., down or
sideway) for an extended period of time, this is due to either
fatigue or inattention. Face pose estimation, therefore, can
indicate both fatigued and inattentive drivers. For this study,
we focus on the former, i.e., detection of frequent head tilts.

We present a new technique to perform the 2D face
tracking and 3D face pose estimation synchronously. In our
method, 3D face pose is tracked by Kalman Filtering. The
initial estimated 3D pose is used to guide face tracking in
the image, which is subsequently used to refine the 3D face
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Fig. 4. (a) Detected eyes and pupils (b) Plots for eyelid movement
parameters: the top one displays AECS parameter and the bottom
one displays PERCLOS parameter.

pose estimation. Face detection and pose estimation work
together and benefit from each other. Details about our 3D
face pose tracker can be found in [10].

The proposed algorithm is tested with numerous image
sequences of different people. The image sequences in-
clude a person rotating his head before an un-calibrated
camera, which is approximately 1.5 meter from the per-
son. Figure 5 shows some tracking results under differ-
ent face rotations. The accuracy of the estimated face
pose can be achieved around 2 degrees [10]. Video de-
mos of the 3D face pose tracker may be found at
http://www.ecse.rpi.edu/∼cvrl/Demo/demo.html.

Fig. 5. Face pose tracking results for images randomly selected
from one video sequence. The white rectangle indicates the tracked
face region and the white line represents the normal of the face
plane, which is drawn according to the estimated face pose.

To quantitatively characterize one’s level of fatigue by
face pose, we introduce a new fatigue parameter called
NodFreq, which measures the frequency of head tilts over
time. Figure 6 shows the running average of the estimated
head tilts for a period of 140 seconds. As can be seen,
our system can accurately detect head tilts, which are
represented in the curve by the up-and-down bumps.

D. Eye Gaze Determination and Tracking

Gaze has the potential to indicate a person’s level of
vigilance. A fatigued individual tends to have a narrow
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Fig. 6. Head tilts monitoring over time (seconds)

gaze. Gaze may also reveal one’s needs and attention. The
direction of a person’s gaze is determined by two factors:
the orientation of the face (face pose), and the orientation of
eye (eye gaze). Face pose determines the global direction of
the gaze, while eye gaze determines the local direction of
the gaze. Global gaze and local gaze together determine
the final gaze of the person. So far, the most common
approaches for ocular-based gaze estimation [11], [12],
[13] are based on local gaze by using the relative position
between pupil and the glint (cornea reflection) via a remote
IR camera. Therefore, these methods work well only for
a static head, and need to perform a rather cumbersome
calibration process whenever his/her head moved. This is
because only local gaze is accounted for while global gaze
due to face pose is ignored. This poses a significant hurdle
for practical application of the system.

In view of these limitations, we present a gaze estima-
tion approach [14] that accounts for both the local gaze
computed from the ocular parameters and the global gaze
computed from the head pose. The global gaze (face pose)
and local gaze (eye gaze) are combined together to obtain
the precise gaze information of the user. Our approach,
therefore, allows natural head movement while still esti-
mating gaze accurately. Another effort is to make the gaze
estimation calibration free. New users or the existing users
who have moved, do not need undergo a personal gaze
calibration before using the gaze tracker. Therefore, the
proposed gaze tracker can perform robustly and accurately
without calibration and under natural head movements.

Experiments were conducted to study the performance
of our gaze estimation technique. An average of gaze
classification accuracy of (96% accuracy) was achieved.
Details on our gaze estimation algorithm may be found in
[14].

Given the gaze, we can compute a new fatigue parameter
named GAZEDIS, which represents the gaze distribution
over time to indicate the driver’s fatigue or attention level.
GAZEDIS measures the driver’s situational awareness. An-
other fatigue parameter we compute is PERSAC, which is
the percentage of saccade eye movement over time. Saccade
eye movements represent the deliberate and conscious driver
action to move eye from one to another place. It therefore
can measure the degree of alertness. The value of PERSAC
is very small for a person in fatigue. Figure 7 plots the
PERSAC parameter over 30 seconds.



Fig. 7. Plot of PERSAC parameter over 30 seconds.

E. Facial Expression Analysis

Besides eye and head movements, another visual cue
that can potentially capture one’s level of fatigue is his/her
facial expression. In general, people tend to exhibit different
facial expressions under different levels of vigilance. The
facial expression of a person in fatigue or in the onset
of fatigue can usually be characterized by lagging facial
muscles, expressionless, and frequent yawnings.

Our recent research has led to the development of a
feature-based facial expression analysis algorithm [15].
The facial features around eyes and mouth represent the
most important spatial patterns composing the facial ex-
pression. Generally, these patterns with their changes in
spatio-temporal spaces can be used to characterize facial
expressions. For the fatigue detection application, in which
there are only limited facial expressions, the facial features
around eyes and mouth include enough information to
capture these limited expressions. So in our research, we
focus on the facial features around eyes and mouth.

In our method, the multi-scale and multi-orientation
Gabor wavelets are used to represent and detect each facial
feature. The detected features and their spatial connections
are used to characterize facial expressions. Details can be
found in [15].

A series of experiments are conducted in [15], and
results show that our proposed algorithm can track the
facial features robustly under large head movements, self-
occlusion and different facial expressions. Figure 8 shows
some results of a typical sequence of a person in fatigue.

Fig. 8. Tracked facial features and local graphes.

For now, we focus on monitoring mouth movement to
detect yawning. A yawning is detected if the features around
mouth significantly deviate from its closed configuration,
especially in vertical direction. The degree of mouth open-
ing is characterized by the shape of mouth. Therefore, the
openness of the mouth can be represented by the ratio of
mouth height and width.

We develop a new measure of facial expression, Yawn-

Freq, which computes the occurrence frequency of yawning
over time. Figure 9 shows the plot of YawnFreq over time,
and a yawning is represented by an up-and-down bump.
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Fig. 9. The plot of the openness of the mouth over time. The
bumps A, B, C, D, E, F are the detected yawns.

III. FATIGUE MODELING USING BAYESIAN NETWORKS

As we discussed above, human fatigue generation is
a very complicated process. Several uncertainties may be
present in this process. First, fatigue is not observable and
it can only be inferred from the available information. In
fact, fatigue can be regarded as the result of many contextual
variables such as working environments, health and sleep
history. Also, it is the cause of many symptoms, e.g. the
visual cues, such as irregular eyelid movements, yawning
and frequent head tilts. Second, human’s visual characteris-
tics vary significantly with age, height, health and shape of
face. To effectively monitor fatigue, a system that integrates
evidences from multiple sources into one representative
format is needed. Naturally, a Bayesian Networks (BN)
model is the best option to deal with such an issue. After
integrating these evidences, the BN model will output a
value (or composite fatigue index) to represent the fatigue
level of the driver.

A BN provides a mechanism for graphical representation
of uncertain knowledge and for inferring high level activities
from the observed data. The main purpose of a BN model
is to infer the unobserved events from the observed or
contextual data. The vision system discussed in previous
sections can compute several visual fatigue parameters.
They include PERCLOS & ACSE for eyelid movement,
NodFreq for head movement, GAZEDIS and PERSAC for
gaze movement, and YawnFreq for facial expression. Putting
all these factors together, the BN model for fatigue is
constructed as shown in Fig.10. The target node is fatigue.
The nodes above the target node represent various major
factors that could lead to one’s fatigue. They are collectively
referred to as contextual information. The nodes below the
target node represent visual observations from the output of
our computer vision system. These nodes are collectively
referred to as observation nodes.

IV. SYSTEM VALIDATION

A. Validation with Synthetic Data

Before using the BN for fatigue inference, the network is
parameterized as discussed in [16]. Given the parameterized
model, fatigue inference can then commence upon the
arrival of visual evidences via belief propagation. Here we
use some typical combination of evidences and their results
are summarized in Table I.
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Fig. 10. Bayesian Network model for monitoring human fatigue

TABLE I
THE INFERENCE RESULTS OF FATIGUE BAYESIAN NETWORK

MODEL

Ref. No. Evidences Instantiated Fatigue Prob.
1 No any evidence 0.5755
2 YawnFreq (high) 0.8204
3 PERCLOS (high) 0.8639
4 AECS (slow), 0.9545

Sleep time (insufficient),
Time (drowsy time)

5 YawnFreq (high), 0.9552
AECS(slow)

6 Sleep time (insufficient), 0.8363
Time (drowsy time),
Temperature (high)

From Table I, we can see that the prior probability of
fatigue (e.g. when there is not any evidence) is about 0.5755
(ref#1). The observation of single visual evidence does
not usually provide conclusive finding since the estimated
fatigue probability is less than the critical value 0.951

(ref#2 and ref#3). Even when PERCLOS is instantiated,
the fatigue probability reaches 0.8639, which is still below
the threshold 0.95. This indicates that one visual cue is not
sufficient to conclude if the person is fatigued. On the other
hand, when combined with some contextual evidences, any
visual parameter can lead to a high fatigue probability
(ref#4). This demonstrates the importance of contextual
information. The simultaneous observation of abnormal
values for two visual parameters (ref#5) such as NodeFreq
and PerSAC can lead to a fatigue probability higher than
0.95. This makes sense since they quantify fatigue from
two different perspectives: one is gaze and the other is

1a hypothesized critical fatigue level. It may vary from application to
application

head movement. Any simultaneous observation of abnormal
values of three or more visual parameters guarantees that
the estimated fatigue probability exceeds the critical value.
The simultaneous presence of several contextual evidences
only leads to a high probability of fatigue, even in the
absence of any visual evidence. These inference results,
though preliminary and synthetic, demonstrate the utility
of the proposed framework for predicting and modelling
fatigue.

B. System Validation with Real Data

The last part of this research is to experimentally and
scientifically demonstrate the validity of the computed fa-
tigue parameters as well as the composite fatigue index. The
validation consists of two parts. The first part involves the
validation of the measurement accuracies of our computer
vision techniques, and the second part studies the validity
of the fatigue parameters and the composite fatigue index
that our system computes in characterizing fatigue.

Experiments are conducted to quantitatively characterize
the measurement accuracies of our computer vision tech-
niques in measuring eyelid movement, gaze, face pose and
facial expressions. The measurements from our system are
compared with those obtained either manually or using
conventional instruments. The study shows that our eye
tracker is quite accurate, with a false alarm rate of 0.05%
and a misdetection rate of 4.2%. For the 3D face pose
tracker, quantitatively, the RMS errors for the estimated
pan and tilt angles are 1.92 degrees and 1.97 degrees
respectively. It demonstrates that our face pose estimation
technique is sufficiently accurate.

To study the validity of the proposed fatigue parameters
and that of the composite fatigue index, we performed
a human subject study. The study included a total of 8



subjects. Two test bouts were performed for each subject.
The first test was done when they first arrived in the lab at
9 pm and when they were fully alert. The second test was
performed about 12 hours later early in morning about 7

am the following day, after the subjects have been deprived
of sleep for a total of 25 hours.

During the study, the subjects are asked to perform a
TOVA (Test of Variables of Attention) test. The TOVA test
consists of a 20-minute psychomotor test, which requires
the subject to sustain attention and respond to a randomly
appearing light on a computer screen by pressing a button.
TOVA test was selected as the validation criterion because
driving is primarily a vigilance task requiring psychomotor
reactions, and psychomotor vigilance. The response time is
used as a metric to quantify the subject’s performance.

Figure 11 plots the TOVA performance versus the com-
posite fatigue score. It clearly shows that the composite
fatigue score (based on combining different fatigue param-
eters) highly correlates with the subject’s response time.

Fig. 11. The estimated composite fatigue index (dashed line)
versus the normalized TOVA response time. The two curves track
each other well.

It is clear that the two curves’ fluctuations match well,
proving their correlation and co-variation, therefore proving
the validity of the composite fatigue score in quantifying
performance.

V. CONCLUSION

Through research presented in this paper, we developed
an non-intrusive prototype computer vision system for real-
time monitoring a driver’s vigilance. First, the necessary
computer vision algorithms are developed to simultaneously
extract multiple visual cues that typically characterize a
person’s level of fatigue. Then, a probabilistic framework
is built to model fatigue, which systematically combines
different visual cues and the relevant contextual information
to produce a robust and consistent fatigue index.

Experiment studies in a real life environment with sub-
jects of different ethnic backgrounds, different genders and
ages were scientifically conducted to validate the fatigue
monitoring system. Experiment results show that our fatigue
monitor system is reasonably robust, reliable and accurate
in characterizing human fatigue. It represents state of the art
in real time on-line and non-intrusive fatigue monitoring.
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