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Overview
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Major Tasks
▪ Analyze Dynamic Data 

▪ Modeling 
• Provide a mathematical description of the dynamic process

▪ Analysis
• Prediction: Forecast future values of dynamic data

• Regression: Estimate a target value given dynamic data

• Classification: Divide dynamic data into different categories 

• Synthesis: Generate new dynamic data
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Challenges
▪ Insufficient annotation 

▪ Uncertainty in data and model

▪ Intra-class variation

▪ Complex dynamics
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Related Work
▪ A taxonomy of modeling techniques
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Part 1: Dynamic Pattern 
Localization
▪ Problem: Temporally localize the dynamic pattern in a time 
series by determining its starting and ending time

▪ Applications: 
• Brain computer interface (BCI)

• Speech recognition

• Event recognition

▪ Our Solution: 
• Combine dynamic model (HMM) with robust estimation (RANSAC)
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Methods
▪ Overview
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Methods
▪ Step 1: Divide complete sequences into overlapping 
subsequences
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Methods
▪ Step 2: Randomly select a subsequence from each 
complete sequence to train HMM
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Methods
▪ Step 3: Vote for the learned HMM using remaining 
subsequences
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Methods
▪ Step 1: Divide complete sequences into overlapping 
subsequences

▪ Step 2: Randomly select a subsequence from each complete 
sequence to train HMM

▪ Step 3: Vote for the learned HMM using remaining 
subsequences

▪ Step 4: Go back to Step 2 and repeat for enough times

▪ Step 5: Find the HMM with the highest vote and use it to 
identify the inlier subsequences

▪ Step 6: Retrain the HMM using inlier subsequences

▪ Step 7: Identify inlier subsequences and merge to get signals of 
interest
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Experiments
▪ Electrocorticographic (ECoG) data
• Data collection

• Preprocessing & Feature Extraction: Spectrum filter (70-170Hz) + Hilbert 
transform

Experiment protocol
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Experiments
▪ Data Statistics
• 4 subjects

• Each has 10 trials, each of length 800

• Average hit time

▪ Classification Results:
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Part 2: Dynamic Regression 
under Insufficient Annotation
▪ Problem: Given sequential data x1, … x𝑇, we want to 
compute a regression function 𝑦𝑡 = 𝑓(x𝑡), for some target 
value 𝑦𝑡

▪ Challenge: 
• Only part of the sequential data are annotated

▪ Applications: 
• Facial expression intensity estimation

• Sensor fault detection

• Part-of-speech tagging

▪ Our solution: Incorporate temporal information as 
additional constraints
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Problem Statement
▪ Goal: Given input set with partial labels,

find a regression function from 𝐱 to 𝑦

▪ Example:
𝑥1, 𝑦1 𝑥2 𝑥3 𝑥4 (𝑥5, 𝑦5)

𝐕 = 1,5
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onset
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offset

𝑦 ↑ 𝑦 ↓

𝐄 =
1,2 , 1,3 , 1,4 , 1,5 , (2,3)
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/ 51 

Ordinal Support Vector 
Regression (OSVR)
▪ Regression model                                          with parameters

▪ Dataset with weak labels:

▪ Optimization problem

▪ Optimization method: alternating direction method of multipliers (ADMM)

Regression Loss Ordinal LossRegularizationObjective = + +
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Experiments: Facial Expression 
Intensity Estimation
▪ Overview

▪ Dataset: PAIN

▪ Feature: Gabor features, landmark, LBP + PCA

▪ Evaluation Criteria:
• Pearson correlation coefficient (PCC)
• Intra-class correlation (ICC)
• Mean absolute error (MAE)
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Experiments
▪ PAIN dataset
• Experiments under different annotation settings

• Partial labels: about 8.8% of the total number of frames

• Use of ordinal information is very helpful
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Experiments
▪ PAIN dataset
• Comparison with state-of-the-art
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Part 3: Classification and Synthesis 
under Large Intra-class Variation
▪ Challenge:
• Same underlying dynamic pattern can

manifest significant intra-class variation

▪ Applications: 
• Human action recognition

• Human motion synthesis

• Speech recognition

• Language translation

▪ Our Solution: 
• Hidden Semi-Markov Model

• Bayesian Hierarchical Modeling
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Methods
▪ Hidden Markov Model (HMM)
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Methods
▪ Hidden Semi-Markov Model (HSMM)
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Methods
▪ Bayesian Hierarchical Dynamic Model (HDM) 

𝛼
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Methods
▪ Learning: estimating hyperparameter 𝛼
• Overall objective

• Approximate objective

• An alternating strategy

Intractable

▪ Optimization methods:

MAP-EM

ML
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Methods
▪ Bayesian Inference: predictive likelihood

• Advantage: reduce overfitting and improve generalization

• Posterior inference:

• Method: Gibbs Sampling

• Classification: 
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Experiments: Action Recognition
▪ Overview:

▪ Dataset: MSR-Action3D, UTD-MHAD, G3D, Penn

▪ Feature: Joint position and motion in 3D or 2D
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Experiments: Action Recognition
▪ Individual dataset: comparison with different baselines
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Experiments: Action Recognition
▪ Individual dataset: comparison with different state-of-the-art
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Experiments: Action Recognition
▪ Cross dataset classification accuracy
• A: MSR

• B: UTD

• C: G3D
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Methods: Adversarial Learning
▪ Adversarial Learning: a better criterion for data synthesis

• Overall objective
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Methods: Adversarial Inference
▪ Bayesian adversarial inference
• Sample both generator 𝜃 and discriminator 𝜙
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Methods: Adversarial Inference
▪ Bayesian adversarial inference
• Sample generator 𝜃 conditioned on 𝜙

33

𝜙

𝐙,𝐃

𝐗− 𝜃

𝛼𝑔

𝐻−

Generator

likelihood prior

▪ Inference method: Stochastic Gradient 
Hamiltonian Monte Carlo (SGHMC)



/ 51 

Methods: Adversarial Inference
▪ Bayesian adversarial inference
• Sample discriminator 𝜙 conditioned on 𝜃
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Methods
▪ Bayesian adversarial inference: data synthesis
• Overall synthesis target: 

• Steps:
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Experiments: Motion Synthesis
▪ Dataset
• CMU Motion capture
• Berkeley Motion capture

▪ Feature: Joint angles

▪ Qualitative Results

36
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Experiments: Motion Synthesis
▪ Quantitative Results
• Metric: BLEU score: fidelity

CMU Berkeley
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Experiments: Motion Synthesis
▪ Quantitative Results

Inception score: diversity MMD: distribution-level similarity
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Part 4: Modeling Complex 
Dynamics
▪ Challenge:
• Structural dependency

• Long-term temporal dependency 

•Uncertainty and large variations 

▪ Application: 
▪ Action recognition

▪ Our solution: Bayesian Graph Convolution LSTM

39
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Methods
▪ Overall framework: 

40
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Methods
▪ GC-LSTM
• Overall architecture 

41
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Methods
▪ GC-LSTM
• Graph convolution: generalize convolution to arbitrary graph 

structured data
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Methods
▪ GC-LSTM
• Long short-term memory (LSTM) network: 

modeling long-term temporal dynamics
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Methods
▪ Bayesian GC-LSTM
• Extend GC-LSTM to a probabilistic model: 𝜃~𝑃(𝜃|𝛼𝜃)

• Infer the posterior distribution of parameters
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Methods
▪ Bayesian GC-LSTM
• Adversarial Prior: use additional discriminator to regularize parameters

• Intuition: promote a feature representation to be invariant of subject
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Methods
▪ Bayesian Inference

• Classification:
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Experiments
▪ Ablation study
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Experiments
▪ Comparison with state-of-the-art
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Experiments
▪ Generalization across different datasets
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Thesis Summary
▪ Localization of dynamic pattern
• Propose a method that combines robust estimation and dynamic model 

for localization

▪ Dynamic pattern regression under insufficient annotation
• Incorporate ordinal information as addition constraints for model learning
• Develop an optimization algorithm for parameter estimation

▪ Dynamic pattern classification and synthesis under large intra-
class variation
• Propose a Bayesian hierarchical model
• Develop two Bayesian inference algorithms

▪ Modeling complex dynamics
• Propose a Bayesian neural network model
• Develop a Bayesian inference algorithm
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Thank You!                    
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