

Electrical, Computer, and Systems Engineering at Rensselaer

Dynamic Data Modeling, Recognition, and Synthesis

Rui Zhao

Thesis Defense Advisor: Professor Qiang Ji

Contents

- **·** Introduction
- Related Work
- **Dynamic Data Modeling & Analysis**
	- Temporal localization
	- Insufficient annotations
	- Large intra-class variations
	- Complex dynamics
- **E** Summary

Overview

Major Tasks

E Analyze Dynamic Data

- Modeling
	- Provide a mathematical description of the dynamic process
- **Analysis**
	- Prediction: Forecast future values of dynamic data
	- Regression: Estimate a target value given dynamic data
	- Classification: Divide dynamic data into different categories
	- Synthesis: Generate new dynamic data

Challenges

- **· Insufficient annotation**
- **Uncertainty in data and model**
- **· Intra-class variation**
- **E** Complex dynamics

Related Work

Part 1: Dynamic Pattern Localization

• Problem: Temporally localize the dynamic pattern in a time series by determining its starting and ending time

- **E** Applications:
	- Brain computer interface (BCI)
	- Speech recognition
	- Event recognition
- **Our Solution:**
	- Combine dynamic model (HMM) with robust estimation (RANSAC)

EXTER 1: Divide complete sequences into overlapping subsequences

Example 2: Randomly select a subsequence from each complete sequence to train HMM

Examps 3: Vote for the learned HMM using remaining subsequences

- **Example 1: Divide complete sequences into overlapping** subsequences
- **Example 1 Step 2: Randomly select a subsequence from each complete** sequence to train HMM
- **Example 3: Vote for the learned HMM using remaining** subsequences
- **Step 4: Go back to Step 2 and repeat for enough times** $S = \frac{\ln(1-p)}{\ln(1-(1-p)^K)}$
- **E** Step 5: Find the HMM with the highest vote and use it to identify the inlier subsequences
- **Example 13 Step 6: Retrain the HMM using inlier subsequences**
- **Example 7: Identify inlier subsequences and merge to get signals of** interest

Electrocorticographic (ECoG) data

• Data collection

Experiment protocol

• Preprocessing & Feature Extraction: Spectrum filter (70-170Hz) + Hilbert transform

- Data Statistics
	- 4 subjects
	- Each has 10 trials, each of length 800
	- Average hit time

Exercise Classification Results:

Part 2: Dynamic Regression under Insufficient Annotation

- **Problem: Given sequential data** $x_1, ..., x_T$ **, we want to** compute a regression function $y_t = f(x_t)$, for some target value y_t
- Challenge:
	- Only part of the sequential data are annotated
- **E** Applications:
	- Facial expression intensity estimation
	- Sensor fault detection
	- Part-of-speech tagging
- **Our solution: Incorporate temporal information as** additional constraints

Problem Statement

Goal: Given input set with partial labels,

$$
\mathbf{X} = \{ \mathbf{x}_i \in \mathbb{R}^d | i = 1, ..., |\mathbf{X}| \}
$$

$$
\mathbf{Y} = \{ y_i \in \mathbb{R} | i \in \mathbf{V} \}
$$

$$
\mathbf{V} \subseteq \{ 1, ..., |\mathbf{X}| \}
$$

find a regression function from x to y

$$
f \; : \; \mathbb{R}^d \; \mapsto \; \mathbb{R} \quad y = f(\mathbf{x}; \theta)
$$

 $V = \{1,5\}$ $E =$ $(1,2)$, $(1,3)$, $(1,4)$, $(1,5)$, $(2,3)$ 2,4), (2,5), (3,4), (3,5), (4,5)

Ordinal Support Vector Regression (OSVR)

- **Regression model** $f(\mathbf{x}; \theta) = \mathbf{w}^T \mathbf{x} + b$ with parameters $\theta = {\mathbf{w}, b}$
- **Dataset with weak labels:** $\mathcal{D} = \{X_n, Y_n, V_n, E_n\}, n = 1, ..., N$
- **Optimization problem**

$$
\begin{aligned}\n\text{Objective} &= \boxed{\text{Regularization}} + \boxed{\text{Regression Loss}} + \boxed{\text{Ordinal Loss}} \\
\min_{\theta, \eta, \xi} & \boxed{\frac{1}{2} ||\mathbf{w}||^2} + \gamma_1 \sum_{n=1}^N \sum_{k \in \mathbf{V}_n} \left[\left(l_1(\eta_k^{(n)+}) + l_1(\eta_k^{(n)-}) \right) \right] + \gamma_2 \sum_{n=1}^N \sum_{(i,j) \in \mathbf{E}_n} \left[l_2(\xi_{ij}^{(n)}) \right] \\
\text{s.t. } & \mathbf{w}^T \mathbf{x}_k^{(n)} + b - y_k^{(n)} \le \epsilon + \eta_k^{(n)+} \\
& y_k^{(n)} - \mathbf{w}^T \mathbf{x}_k^{(n)} - b \le \epsilon + \eta_k^{(n)-} \\
& \mathbf{w}^T (\mathbf{x}_i^{(n)} - \mathbf{x}_j^{(n)}) \ge 1 - \alpha_{ij} \xi_{ij}^{(n)} \\
& \eta_k^{(n)+}, \eta_k^{(n)-}, \xi_{ij}^{(n)} \ge 0 \\
& \forall k \in \mathbf{V}_n, (i, j) \in \mathbf{E}_n, \ n = 1, \dots, N\n\end{aligned}
$$

Optimization method: alternating direction method of multipliers (ADMM)

Experiments: Facial Expression Intensity Estimation

• Overview

- Dataset: PAIN
- Feature: Gabor features, landmark, LBP + PCA
- **Evaluation Criteria:**
	- Pearson correlation coefficient (PCC)
	- Intra-class correlation (ICC)
	- Mean absolute error (MAE)

PAIN dataset

- Experiments under different annotation settings
- Partial labels: about 8.8% of the total number of frames
- Use of ordinal information is very helpful

PAIN dataset

• Comparison with state-of-the-art

Part 3: Classification and Synthesis under Large Intra-class Variation

▪ Challenge:

- Same underlying dynamic pattern can manifest significant intra-class variation
- **E** Applications:
	- Human action recognition
	- Human motion synthesis
	- Speech recognition
	- Language translation
- **Our Solution:**
	- Hidden Semi-Markov Model
	- Bayesian Hierarchical Modeling

· Hidden Markov Model (HMM)

- Hidden Semi-Markov Model (HSMM)

Bayesian Hierarchical Dynamic Model (HDM)

 $P(\mathbf{X}, \mathbf{Z}, \mathbf{D}, \theta | \alpha) = P(\mathbf{X}, \mathbf{Z}, \mathbf{D} | \theta) P(\theta | \alpha)$ likelihood prior

- **Example 1** Learning: estimating hyperparameter α
	- Overall objective

$$
\alpha^* = \arg \max_{\alpha} \log P(\mathbf{X}|\alpha)
$$

=
$$
\arg \max_{\alpha} \log \int_{\theta} \sum_{\mathbf{Z}, \mathbf{D}} P(\mathbf{X}, \mathbf{Z}, \mathbf{D}|\theta) P(\theta|\alpha) d\theta
$$
 Intractable

• Approximate objective

$$
\alpha^* = \arg \max_{\alpha} \log \left[\arg \max_{\theta} \sum_{\mathbf{Z}, \mathbf{D}} P(\mathbf{X}, \mathbf{Z}, \mathbf{D} | \theta) P(\theta | \alpha) \right]
$$

• An alternating strategy

▪ Optimization methods:

$$
\theta^* = \underset{\alpha}{\arg\max} \log P(\mathbf{X}|\theta) + \log P(\theta|\alpha) \longrightarrow \text{MAP-EM}
$$

$$
\alpha^* = \underset{\alpha}{\arg\max} \log P(\theta^*|\alpha) \longrightarrow \text{ML}
$$

Bayesian Inference: predictive likelihood

$$
P(\mathbf{X}|\mathcal{D}, \alpha_i^*) = \int_{\theta} \sum_{\mathbf{Z}, \mathbf{D}} P(\mathbf{X}, \mathbf{Z}, \mathbf{D}|\theta) P(\theta|\mathcal{D}, \alpha_i^*) d\theta
$$

$$
\approx \frac{1}{L} \sum_{l=1}^{L} \sum_{\mathbf{Z}, \mathbf{D}} P(\mathbf{X}, \mathbf{Z}, \mathbf{D}|\theta^{(l)}), \theta^{(l)} \sim P(\theta|\mathcal{D}, \alpha_i^*)
$$

- Advantage: reduce overfitting and improve generalization
- Posterior inference: $\theta^{(l)} \sim P(\theta | \mathcal{D}, \alpha_i^*)$
	- Method: Gibbs Sampling
- Classification: $y^* = \arg \max_i P(\mathbf{X} | \mathcal{D}, \alpha_i^*)$

Overview:

- **Dataset: MSR-Action3D, UTD-MHAD, G3D, Penn**
- Feature: Joint position and motion in 3D or 2D

· Individual dataset: comparison with different baselines

▪ Individual dataset: comparison with different state-of-the-art

EXPOSS dataset classification accuracy

- A: MSR
- B: UTD
- C: G3D

Methods: Adversarial Learning

E Adversarial Learning: a better criterion for data synthesis

• Overall objective

$$
\min_{\theta} \max_{\phi} \; -\mathbb{E}_{P_{data}(\mathbf{X})}[H(\mathbf{X}|\phi)] + \mathbb{E}_{P(\mathbf{X}|\theta)}[H(\mathbf{X}|\phi)]
$$

Methods: Adversarial Inference

- **Bayesian adversarial inference** $\theta, \phi \sim P(\theta, \phi | \mathcal{D}^+, \alpha_q, \alpha_d)$
	- Sample both generator θ and discriminator ϕ

Methods: Adversarial Inference

- **Bayesian adversarial inference** $\theta, \phi \sim P(\theta, \phi | \mathcal{D}^+, \alpha_q, \alpha_d)$
	- Sample generator θ conditioned on ϕ

$$
\theta \sim P(\theta | \mathcal{D}^+, \alpha_g, \alpha_d, \phi)
$$

$$
\propto \prod_i \exp\{-H(\mathbf{X}_i^- | \phi)\} P(\theta | \alpha_g)
$$
likelihood

Inference method: Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)

Methods: Adversarial Inference

- **Bayesian adversarial inference** $\theta, \phi \sim P(\theta, \phi | \mathcal{D}^+, \alpha_a, \alpha_d)$
	- Sample discriminator ϕ conditioned on θ

- Bayesian adversarial inference: data synthesis
	- Overall synthesis target:

$$
\mathbf{X} \sim P(\mathbf{X}|\mathcal{D}^+, \alpha) = \int_{\theta} P(\mathbf{X}|\theta) P(\theta|\mathcal{D}^+, \alpha) d\theta
$$

• Steps: Posterior sampling

 $\{\theta_m, \phi_m\} \sim P(\theta, \phi | \mathcal{D}^+, \alpha)$

Generate new data using all the $\{\theta_m\}$

 $\{D_i, Z_i\} \sim P(D, Z | \theta_m)$ $\mathbf{X}_i \sim P(\mathbf{X}|\mathbf{D}_i, \mathbf{Z}_i, \theta_m)$

Experiments: Motion Synthesis

- Dataset
	- CMU Motion capture
	- Berkeley Motion capture
- **E** Feature: Joint angles
- **E** Qualitative Results

Experiments: Motion Synthesis

Quantitative Results

Experiments: Motion Synthesis

E Quantitative Results

Inception score: diversity

Part 4: Modeling Complex Dynamics

- Challenge:
	- Structural dependency
	- Long-term temporal dependency
	- Uncertainty and large variations
- **E** Application:
	- **E** Action recognition
- Our solution: Bayesian Graph Convolution LSTM

▪ Overall framework:

■ GC-LSTM

■ GC-LSTM

• Graph convolution: generalize convolution to arbitrary graph structured data

: number of nodes D: dimension of each node

- GC-LSTM
	- Long short-term memory (LSTM) network: modeling long-term temporal dynamics

$$
i_t = \sigma(W_{xi}X_t + W_{zi}Z_{t-1} + b_i)
$$

\n
$$
f_t = \sigma(W_{xf}X_t + W_{zf}Z_{t-1} + b_f)
$$

\n
$$
o_t = \sigma(W_{xo}X_t + W_{zo}Z_{t-1} + b_o)
$$

\n
$$
g_t = \phi(W_{xg}X_t + W_{zg}Z_{t-1} + b_g)
$$

\n
$$
c_t = f_t \odot c_{t-1} + i_t \odot g_t
$$

\n
$$
Z_t = o_t \odot \phi(c_t)
$$

- **Bayesian GC-LSTM**
	- Extend GC-LSTM to a probabilistic model: $\theta \sim P(\theta|\alpha_{\theta})$
	- Infer the posterior distribution of parameters

Bayesian GC-LSTM

- Adversarial Prior: use additional discriminator to regularize parameters
- Intuition: promote a feature representation to be invariant of subject

 $\log P(\theta|\mathcal{D}, \phi, \alpha_{\theta}) = \log P(y^+|\mathbf{X}^+, \theta) + \log P(\theta|\alpha_{\theta}) + \log P_D(G(\mathbf{X}^-, \theta)|\phi) + C$

Bayesian Inference

$$
P(y'|\mathbf{X}', \mathcal{D}, \alpha) = \int_{\theta} P(y'|\mathbf{X}', \theta) P(\theta | \mathcal{D}, \alpha) d\theta
$$

$$
\approx \frac{1}{M} \sum_{m=1}^{M} P(y | \mathbf{X}', \theta_m), \theta_m \sim P(\theta | \mathcal{D}, \alpha)
$$

• Classification: $y^* = \arg \max_{y'} \frac{1}{M} \sum_{m=1}^M P(y'|X', \theta_m)$

E Ablation study

Effect of graph convolution

Effect of Bayesian inference

R: random rotation N: random noise

EX Comparison with state-of-the-art

MSR Action3D SYSU

Method	Accuracy
D-Skeleton [9]	75.5
ST-LSTM [13]	76.5
DPRL [20]	76.9
SR-TSL [18]	80.7
Ours	81.7

UTD MHAD

• Generalization across different datasets

Thesis Summary

- **ELocalization of dynamic pattern**
	- Propose a method that combines robust estimation and dynamic model for localization
- **Dynamic pattern regression under insufficient annotation**
	- Incorporate ordinal information as addition constraints for model learning
	- Develop an optimization algorithm for parameter estimation
- Dynamic pattern classification and synthesis under large intraclass variation
	- Propose a Bayesian hierarchical model
	- Develop two Bayesian inference algorithms
- **EXPLO Modeling complex dynamics**
	- Propose a Bayesian neural network model
	- Develop a Bayesian inference algorithm

Thank You!

■ Related Publications:

- **Rui Zhao**, Quan Gan, Shangfei Wang and Qiang Ji, Facial Expression Intensity Estimation Using Ordinal Information, CVPR 2016.
- **Rui Zhao**, Md Ridwan Al Iqbal, Kristin Bennett and Qiang Ji, Wind Turbine Fault Prediction Using Soft Label SVM, ICPR 2016.
- **Rui Zhao**, Gerwin Schalk, Qiang Ji, Robust Signal Identification for Dynamic Pattern Classification, ICPR 2016.
- **Rui Zhao,** Qiang Ji, An Adversarial Hierarchical Hidden Markov Model for Human Pose Modeling and Generation, AAAI 2018.
- **Rui Zhao**, Gerwin Schalk, Qiang Ji, Temporal Pattern Localization using Mixed Integer Linear Programming, ICPR 2018.
- **Rui Zhao,** Qiang Ji, An Empirical Evaluation of Bayesian Inference Methods for Bayesian Neural Networks, NIPS Workshop 2018 (To appear)
- **Rui Zhao,** Wanru Xu, Hui Su, Qiang Ji, Bayesian Hierarchical Dynamic Model for Human Action Recognition (Under review)
- **Rui Zhao,** Hui Su, Qiang Ji, Bayesian Adversarial Human Motion Synthesis (Under review)
- **Rui Zhao,** Kang Wang, Hui Su, Qiang Ji, Bayesian Graph Convolution LSTM for Skeleton based Action Recognition (Under review)