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Major Tasks

* Analyze Dynamic Data

" Modeling

* Provide a mathematical description of the dynamic process

= Analysis
* Prediction: Forecast future values of dynamic data
* Regression: Estimate a target value given dynamic data
* Classification: Divide dynamic data into different categories
* Synthesis: Generate new dynamic data
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Challenges

= Insufficient annotation

= Uncertainty in data and model
" Intra-class variation

= Complex dynamics
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Related Work

= A taxonomy of modeling techniques
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Part 1: Dynamic Pattern
Localization

" Problem: Temporally localize the dynamic pattern in a time
series by determining its starting and ending time

1€<— lIrrelevant segment —>i€ Signals of interest >i€— |Irrelevant segment >
1 1

DN P

Inlier subsequence

= Applications:
* Brain computer interface (BCl)
* Speech recognition
* Event recognition

= Qur Solution:
* Combine dynamic model (HMM) with robust estimation (RANSAC)

7 /51



Methods

= Qverview

sth subset
g In(1 —p)
CIn(1 — (1 —e)K)

p: Probability of selecting all inliers
€: Proportion of outliers
K: Total number complete sequences

- -
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Methods

= Step 1: Divide complete sequences into overlapping
subsequences

|| — L—M+1




Methods

= Step 2: Randomly select a subsequence from each
complete sequence to train HMM

Learning: EM algorithm




Methods

= Step 3: Vote for the learned HMM using remaining
subsequences

Votes:

1 R v="> 6(P(X;]0) > Prrain)




Methods

= Step 1: Divide complete sequences into overlapping
subsequences

= Step 2: Randomly select a subsequence from each complete
sequence to train HMM

= Step 3: Vote for the learned HMM using remaining

subsequences
= Step 4: Go back to Step 2 and repeat for enough times s = 1n(1]n_(1(1_i]fq

= Step 5: Find the HMM with the highest vote and use it to
identify the inlier subsequences

= Step 6: Retrain the HMM using inlier subsequences

= Step 7: Identify inlier subsequences and merge to get signals of
interest

12 /51



Experiments

" Electrocorticographic (ECoG) data

e Data collection
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* Preprocessing & Feature Extraction
transform
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Experiments

= Data Statistics
* 4 subjects
* Each has 10 trials, each of length 800

* Average hit time

Subject A B C D | Average
Duration (s) | 1.43 | 1.80 | 1.48 | 0.92 1.41

= Classification Results:

Subject | A B C D | Average (CI95)
Manual | 32.5 | 65.4 | 74.5 | 42.5 | 53.7 (42.9,64.2)
ACA | 63.0 | 58.1 | 58.8 | 41.8 | 55.4 (44.5,65.8)
SC 63.8 | 60.6 | 80.4 | 38.8 | 60.9 (49.9,70.9)
Ours | 63.8 | 67.3 | 100 | 50.0 | 70.3 (59.5,79.2)
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Part 2: Dynamic Regression
under Insufficient Annotation

" Problem: Given sequential data x4, ... X7, we want to
compute a regression function y, = f(x;), for some target
value y;

= Challenge:

* Only part of the sequential data are annotated

= Applications:
* Facial expression intensity estimation
* Sensor fault detection
* Part-of-speech tagging

= Qur solution: Incorporate temporal information as
additional constraints
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Problem Statement

" Goal: Given input set with partial labels,
X ={x; € RYi = 1.....|X]|}
Y ={y; €Rli € V}
vV C{L, ... X[}

find a regression function from xto y
f:RE—= R y=f(x:0)

" Example:
Peak

y T yi

(1,2),(1,3),(1,4),(1,5), (2,3)}
(2,4),(2,5),(3,4),(3,5), (4,5
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Ordinal Support Vector
Regression (OSVR)

= Regression model f(x;#) = w!x + b with parameters § = {w,b}
= Dataset with weak labels: D ={X,.Y,.V..E,}.n=1,..,.N
= Optimization problem

Objective = [ Regularization ] + Regression Loss ] + [ Ordinal Loss ]

g N
m1n+ :12 > L") + Ly ] Z Z
n=1 keEV,\_ n=1 (i,j)eE

s.t. wag?)—kb (”)<E+T;

—

(n)+

y,g") WTXR —b<e+ ’r](”)
w(x; " )_XJS )) zl_aijfe'j
e >0

VeV, (i,j)e E,, n=1,..,N

= Optimization method: alternating direction method of multipliers (ADMM)
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Experiments: Facial Expression
Intensity Estimation

= OQverview
— Intensit
- Ordinal
Extracted
= Dataset: PAIN
= Feature: Gabor features, landmark, LBP + PCA

Testing frames

Partial labels and
order

Estimated
intensities

Partial labels only

= Evaluation Criteria:
* Pearson correlation coefficient (PCC)
* Intra-class correlation (ICC)
* Mean absolute error (MAE)
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Experiments

= PAIN dataset

* Experiments under different annotation settings

* Partial labels: about 8.8% of the total number of frames
* Use of ordinal information is very helpful

Setting PCC ICC MAE

Full labels 0.5659 | 0.5045 | 0.8538
Partial labels + order | 0.5441 | 0.4955 | 0.9519
Partial labels only | 0.4766 | 0.4511 | 1.3895
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Experiments

= PAIN dataset

* Comparison with state-of-the-art

Method PCC ICC MAE
SVR[I0] | 0.4766 | 0.4511 | 1.3895
SVOR [4] | 0.5051 | 0.4240 | 2.9801

RVR[6] | 0.4823 | 04365 | 1.1122

Ours 0.5441 | 0.4955 | 0.9519
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Part 3: Classification and Synthesis
under Large Intra-class Variation

= Challenge: .
* Same underlying dynamic pattern can ”
manifest significant intra-class variation

= Applications:

* Human action recognition } W ﬁ
* Human motion synthesis ;

* Speech recognition

* Language translation ’ﬂ fi ¢ ,

= OQur Solution:

* Hidden Semi-Markov Model
* Bayesian Hierarchical Modeling




Methods

* Hidden Markov Model (HMM)

T
P(X,Z(6) = P(Z1) | [ P(Z] 20 1) || P(X4|Z1)
t=2 t=1
initial  transition emission
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Methods

* Hidden Semi-Markov Model (HSMM)

C

S SRR

T T

P(X,Z,D|0) = P(Z)P(D1]Zy) HP(Zt|Zt—1,Dt—l)P(Dt|Dt—1,Zt) HP(Xt|Zt)
t=2 t=1

initial transition duration emission
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Methods

= Bayesian Hierarchical Dynamic Model (HDM)

P(X.Z.,D.fla) = P(X.Z.D|§)P(8|a)
likelihood prior
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Methods

= Learning: estimating hyperparameter a
* Overall objective

o = argmax log P(X|«)
= argmaxlog/ZP(X,Z,D|9)P(9|a)d9 Intractable
“ 07D

* Approximate objective

o = arg maxlog [a,rg ma,xz P(X, Z,D\H)P(@]a)}
o' 0 7D

* An alternating strategy = Optimization methods:

0 = argmeaxlog P(X|0) +log P(Ala) ——+ MAP-EM

o = arg max log P(6%|a) > ML
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Methods

= Bayesian Inference: predictive likelihood
P(X|D,a7) = /9 ™ P(X,Z,DJ6)P(0]D, o )df

Z.D

ZP (X,Z,D|6V), 0 ~ PO|D, o)

IIMh

* Advantage: reduce overfitting and improve generalization
* Posterior inference: 9 ~ P(0|D, o)

* Method: Gibbs Sampling
* Classification: y* = argm?xP(X|D, arl)

26 /51



Experiments: Action Recognition

= Overview:

Training

Action 3

Testi 5 - , ; :
g b Label !
Query i

@ @ Uncertalnty

= Dataset: MSR-Action3D, UTD-MHAD, G3D, Penn

= Feature: Joint position and motion in 3D or 2D
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Experiments: Action Recognition

" Individual dataset: comparison with different baselines

Model | MSRA | UTD | G3D | Penn | Avg.
HMM 67.8 82.8 | 68.1 | 82.3 | 753
HSMM 66.3 82.3 | 77.5 | 789 | 76.3

Ours 86.1 | 92.8 | 92.0 | 934 | 91.1
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Experiments: Action Recognition

" Individual dataset: comparison with different state-of-the-art

MSRA UTD
Method Acc. Method Acc.
AS[Y] 83.5 Fusion[ ] 79.1
AL[12] | 882 DMM[I] | 84.2
MTI5] 92.0 CNNJ 3] 85.8
Ours 86.1 Ours 92.8
G3D Penn
Method Acc. Method Acc.
LRBM[7] | 90.5 || Actemes[!1] | 86.5
R3DG[11] | 91.1 AOG(H] 84.8
CNN[13] | 94.2 JDD[] 93.2
Ours 02.0 Ours 93.4
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Experiments: Action Recognition

= Cross dataset classification accuracy

* A: MSR
* B: UTD
* C:G3D

Train | Test | HMM | HSMM | R3DG | DLSTM | Ours

B.C A 62.59 65.31 76.19 70.75 89.21

AC B 66.25 61.88 86.25 85.00 75.00

AB C 30.94 42.45 51.08 38.85 61.15

Average 53.26 56.55 71.17 64.87 75.12
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Methods: Adversarial Learning

= Adversarial Learning: a better criterion for data synthesis

C > 7
i [

7

T

s

Real data

P(X|6) ?‘z
Generator

T

L

T

b

* Overall objective

0

Synthetic data Discriminator

min max —Ep,...cx) H(X]|})] + Epxg) [ H (X]|P)]




Methods: Adversarial Inference

= Bayesian adversarial inference 0, ¢ ~ P(0,4|D™, oy, aq)
* Sample both generator 8 and discriminator ¢

/Discriminator\ / Generator \

o & M

N Y, /




Methods: Adversarial Inference

= Bayesian adversarial inference 0,6 ~ P(0,¢|DT, ay, aq)
* Sample generator 6 conditioned on ¢

/ Generator \

| @) | - ronn e

o [T exp{~H(X7[0)}P(6lay)

\ J \ J
likelihood prior

/

L

= |nference method: Stochastic Gradient

Hamiltonian Monte Carlo (SGHMC)



Methods: Adversarial Inference

= Bayesian adversarial inference 6,6 ~ P(0,¢|D", oy, ag)
* Sample discriminator ¢ conditioned on 6

b )

iscriminator ¢ ~P(o|DF, oy, g, 0)
m | o [[ exp{~H (X[ [6)}
_ i a Like-
| I:GXP{H(X;W)} lihood
J —
® @ ©- pe
5 y (¢]va)

@ @ prior

= |nference method: Stochastic Gradient
Hamiltonian Monte Carlo (SGHMC)
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Methods

= Bayesian adversarial inference: data synthesis
* Overall synthesis target:

X ~ P(X|D", ) = f P(X|0)P(0|D*, a)db
7]

* Steps:  Posterior sampling
{0m, dm} ~ P(0,9|D, a)
Generate new data using all the {6,,,}

{Dz’a Zz} ~ P(Da Z|9m)
X; ~ P(X|D¢,Z¢,9m)




Experiments: Motion Synthesis

= Dataset

* CMU Motion capture
* Berkeley Motion capture

" Feature: Joint angles

= Qualitative Results
Real data Synthetic data
1 1




Experiments: Motion Synthesis

= Quantitative Results
* Metric: BLEU score: fidelity
1 —_—

095 | 0.98
0.96
0.9 -
0.94
0.83 \ ——HSMM % 0.92
\ \ —cmo ] ——

(9]
i C-RININ-GAN é 0.88
== 0urs 0.86
0.7 Real
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0.65 082
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]
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Experiments: Motion Synthesis

= Quantitative Results

Inception score: diversity

MMD: distribution-level similarity

Method CMU Berkeley Method CMU Berkeley
HSMM 1.86+0.07 | 4.994-0.27 HSMM 5.46+0.62 432.2540.78
CRBM[ 4] 2.65+£0.09 | 5.24+0.39 CRBM[ 4] 7.434+0.97 55.3940.75
TSBN[6] 2.58+0.04 | 2.57+0.14 TSBNI6] 12.744+0.10 | 110.55+0.64
C-RNN-GAN[Y] | 1.95£0.03 | 4.56£0.37 C-RNN-GANI[9] | 10.58+0.35 83.25+0.96
Ours 2.860.10 | 6.49+0.23 Ours 2.41+0.35 48.70+0.11
Real 2.96 8.79 Random 176.27+0.05 | 1089.91+0.10
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Part 4: Modeling Complex
Dynamics

= Challenge:
* Structural dependency

* Long-term temporal dependency
* Uncertainty and large variations

= Application:
= Action recognition

= Our solution: Bayesian Graph Convolution LSTM
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Methods

= Overall framework:
Training

data r{?

Bayesian GC-LSTM

2\

[ GCU H LSTM

[ Classifier ]

J

" =
Testing
data

\

[ Discriminator

1




Methods

GC LSTM

X

?a‘“
g




Methods

= GC-LSTM

* Graph convolution: generalize convolution to arbitrary graph
structured data

K
U+ — G(Z FkH(”W,ED 4 bg))

k=1 I

Fy
_|_
N XN
Graph kernel Data Kernel parameters

N: number of nodes
D: dimension of each node
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ir = 0o(WyiXe + WoiZi 1+ b;)
fr =Wy Xe + Wy Zi_1 + by)

M et h O d S or = 0(WayoXt + WyoZi—1 + by)
gt = d(Wag Xy + WogZi 1 + by)
a=lOc1+i1Og

= GC-LSTM Zy = 01 ® d(cy)

* Long short-term memory (LSTM) network:
modeling long-term temporal dynamics

[ J ® [ J Temporal link: = = >
I ] p ut Static link: ~—>
Activation: @

Multiplication: ®

Addition: *)

Hidden . o o
e (22 (z)  ©-
o @ @ @




Methods

= Bayesian GC-LSTM
* Extend GC-LSTM to a probabilistic model: 6~P(6|ay)
* Infer the posterior distribution of parameters

log P(0|D, ap) = log P(yT|X™,0) + log P(8|ag) + C
| o 1

|

Y
likelihood prior

Training Bayesian GC-LSTM Classifier V)
[P'(zfr X 9)]

data X+




Methods

= Bayesian GC-LSTM

* Adversarial Prior: use additional discriminator to regularize parameters

* Intuition: promote a feature representation to be invariant of subject

log P(0|D, ¢, aig) = log P(y"|X™, 0) + log P(6ag) + log Pp(G(X™;0)[¢) + C

data Xt P(yt|X+, 6

— ()
[ GCU H LSTM Y

Discriminator
Pp(G(X;0)|¢)

Training Bayesian GC-LSTM [ Classifier ]\
)




Methods

= Bayesian Inference

P/ | X", D,a)= | P |X',0)P(0|D,a)db

=

M
1
~ o7 > PX,0,),0,, ~ P(O|D, o)
m=1

e Classification:

M
1
*: T P leem
Y argrr;%}XMZ (y'1X", Om)

m=1
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Experiments

= Ablation study

Effect of graph convolution

Configuration | # of edges | Accuracy
No graph N/A 85.3
Mean-field 0 82.5
Local graph 19 87.5
Global graph 10 81.8
Joint graph 29 92.3

Effect of Bayesian inference

Perturbation | Clean | OnlyR | Only N | R+ N
ML 86.2 62.8 71.7 65.1 R: random rotation
MAP 85.2 78.1 86.1 77.9 N: random noise
Bayesian 87.4 78.8 86.9 82.8
Bayesian + AP | 92.3 86.0 87.9 86.1
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Experiments

= Comparison with state-of-the-art

MSR Action3D SYSU
Method Accuracy Method Accuracy
SC[10] 88.3 D-Skeleton [V] 75.5
HBRNN [6] 94.5 ST-LSTM [ 3] 76.5
Composition [ 1] 93.0 DPRL [20)] 76.9
ST-LSTM [ 1] 94.8 SR-TSL [ 1] 80.7
Ours 94.6 Ours 81.7
UuTD MHAD
Method Accuracy
Sensor Fusion [ ] 79.1
DMM-LBP [ ] 84.2
3DHoT-MBC [26] 84.4
SOS-CNN [¥] 87.0
Ours 92.3
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Experiments

= Generalization across different datasets

Train MSR | UTD
Test UTD | MSR
R3DG [15] 66.5 | 599 | 63.2
DLSTM [19] | 66.8 | 50.0 | 58.4
Ours 828 | 70.2 | 76.5

Avg.
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Thesis Summary

" Localization of dynamic pattern

* Propose a method that combines robust estimation and dynamic model
for localization

= Dynamic pattern regression under insufficient annotation
* Incorporate ordinal information as addition constraints for model learning
* Develop an optimization algorithm for parameter estimation

= Dynamic pattern classification and synthesis under large intra-
class variation

* Propose a Bayesian hierarchical model
* Develop two Bayesian inference algorithms

= Modeling complex dynamics
* Propose a Bayesian neural network model
* Develop a Bayesian inference algorithm
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Thank You!
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