

Electrical, Computer, and Systems Engineering at Rensselaer

Dynamic Data Modeling, Recognition, and Synthesis

Rui Zhao

Thesis Defense Advisor: Professor Qiang Ji

Contents

- Introduction
- Related Work
- Dynamic Data Modeling & Analysis
 - Temporal localization
 - Insufficient annotations
 - Large intra-class variations
 - Complex dynamics
- Summary

Overview

Major Tasks

Analyze Dynamic Data

Modeling

• Provide a mathematical description of the dynamic process

Analysis

- Prediction: Forecast future values of dynamic data
- Regression: Estimate a target value given dynamic data
- Classification: Divide dynamic data into different categories
- Synthesis: Generate new dynamic data

Challenges

- Insufficient annotation
- Uncertainty in data and model
- Intra-class variation
- Complex dynamics

Related Work

Part 1: Dynamic Pattern Localization

Problem: Temporally localize the dynamic pattern in a time series by determining its starting and ending time

- Applications:
 - Brain computer interface (BCI)
 - Speech recognition
 - Event recognition
- Our Solution:
 - Combine dynamic model (HMM) with robust estimation (RANSAC)

 Step 1: Divide complete sequences into overlapping subsequences

Step 2: Randomly select a subsequence from each complete sequence to train HMM

Step 3: Vote for the learned HMM using remaining subsequences

- Step 1: Divide complete sequences into overlapping subsequences
- Step 2: Randomly select a subsequence from each complete sequence to train HMM
- Step 3: Vote for the learned HMM using remaining subsequences
- Step 4: Go back to Step 2 and repeat for enough times $S = \frac{\ln(1-p)}{\ln(1-(1-\epsilon)^K)}$
- Step 5: Find the HMM with the highest vote and use it to identify the inlier subsequences
- Step 6: Retrain the HMM using inlier subsequences
- Step 7: Identify inlier subsequences and merge to get signals of interest

Electrocorticographic (ECoG) data

Data collection

transform

•

Experiment protocol

Preprocessing & Feature Extraction: Spectrum filter (70-170Hz) + Hilbert

Data Statistics

- 4 subjects
- Each has 10 trials, each of length 800
- Average hit time

Subject	А	В	С	D	Average
Duration (s)	1.43	1.80	1.48	0.92	1.41

Classification Results:

Subject	A	В	С	D	Average (CI95)
Manual	32.5	65.4	74.5	42.5	53.7(42.9, 64.2)
ACA	63.0	58.1	58.8	41.8	55.4(44.5,65.8)
SC	63.8	60.6	80.4	38.8	60.9(49.9,70.9)
Ours	63.8	67.3	100	50.0	70.3 (59.5,79.2)

Part 2: Dynamic Regression under Insufficient Annotation

- Problem: Given sequential data $x_1, \dots x_T$, we want to compute a regression function $y_t = f(x_t)$, for some target value y_t
- Challenge:
 - Only part of the sequential data are annotated
- Applications:
 - Facial expression intensity estimation
 - Sensor fault detection
 - Part-of-speech tagging
- Our solution: Incorporate temporal information as additional constraints

Problem Statement

Goal: Given input set with partial labels,

$$\mathbf{X} = \{\mathbf{x}_i \in \mathbb{R}^d | i = 1, ..., |\mathbf{X}|\}$$
$$\mathbf{Y} = \{y_i \in \mathbb{R} | i \in \mathbf{V}\}$$
$$\mathbf{V} \subseteq \{1, ..., |\mathbf{X}|\}$$

find a regression function from **x** to *y*

$$f : \mathbb{R}^d \mapsto \mathbb{R} \quad y = f(\mathbf{x}; \theta)$$

 $\mathbf{V} = \{1,5\} \quad \mathbf{E} = \{(1,2), (1,3), (1,4), (1,5), (2,3)\} \\ (2,4), (2,5), (3,4), (3,5), (4,5)\}$

Ordinal Support Vector Regression (OSVR)

- Regression model $f(\mathbf{x}; \theta) = \mathbf{w}^T \mathbf{x} + b$ with parameters $\theta = \{\mathbf{w}, b\}$
- Dataset with weak labels: $\mathcal{D} = {\mathbf{X}_n, \mathbf{Y}_n, \mathbf{V}_n, \mathbf{E}_n}, n = 1, ..., N$
- Optimization problem

Optimization method: alternating direction method of multipliers (ADMM)

Experiments: Facial Expression Intensity Estimation

Overview

- Dataset: PAIN
- Feature: Gabor features, landmark, LBP + PCA
- Evaluation Criteria:
 - Pearson correlation coefficient (PCC)
 - Intra-class correlation (ICC)
 - Mean absolute error (MAE)

PAIN dataset

- Experiments under different annotation settings
- Partial labels: about 8.8% of the total number of frames
- Use of ordinal information is very helpful

Setting	PCC	ICC	MAE
Full labels	0.5659	0.5045	0.8538
Partial labels + order	0.5441	0.4955	0.9519
Partial labels only	0.4766	0.4511	1.3895

PAIN dataset

Comparison with state-of-the-art

Method	PCC	ICC	MAE
SVR [10]	0.4766	0.4511	1.3895
SVOR [4]	0.5051	0.4240	2.9801
RVR[6]	0.4823	0.4365	1.1122
Ours	0.5441	0.4955	0.9519

Part 3: Classification and Synthesis under Large Intra-class Variation

Challenge:

- Same underlying dynamic pattern can manifest significant intra-class variation
- Applications:
 - Human action recognition
 - Human motion synthesis
 - Speech recognition
 - Language translation
- Our Solution:
 - Hidden Semi-Markov Model
 - Bayesian Hierarchical Modeling

Hidden Markov Model (HMM)

Hidden Semi-Markov Model (HSMM)

Bayesian Hierarchical Dynamic Model (HDM)

$$\begin{split} P(\mathbf{X},\mathbf{Z},\mathbf{D},\theta|\alpha) &= P(\mathbf{X},\mathbf{Z},\mathbf{D}|\theta)P(\theta|\alpha)\\ & \text{likelihood prior} \end{split}$$

- Learning: estimating hyperparameter α
 - Overall objective

$$\alpha^* = \arg \max_{\alpha} \log P(\mathbf{X}|\alpha)$$

= $\arg \max_{\alpha} \log \int_{\theta} \sum_{\mathbf{Z}, \mathbf{D}} P(\mathbf{X}, \mathbf{Z}, \mathbf{D}|\theta) P(\theta|\alpha) d\theta$ Intractable

Approximate objective

$$\alpha^* = \arg\max_{\alpha} \log \left[\arg\max_{\theta} \sum_{\mathbf{Z}, \mathbf{D}} P(\mathbf{X}, \mathbf{Z}, \mathbf{D} | \theta) P(\theta | \alpha) \right]$$

An alternating strategy

$$\theta^* = \arg \max_{\theta} \log P(\mathbf{X}|\theta) + \log P(\theta|\alpha) \longrightarrow \mathsf{MAP-EM}$$
$$\alpha^* = \arg \max_{\alpha} \log P(\theta^*|\alpha) \longrightarrow \mathsf{ML}$$

Bayesian Inference: predictive likelihood

$$\begin{split} P(\mathbf{X}|\mathcal{D}, \alpha_i^*) &= \int_{\theta} \sum_{\mathbf{Z}, \mathbf{D}} P(\mathbf{X}, \mathbf{Z}, \mathbf{D}|\theta) P(\theta|\mathcal{D}, \alpha_i^*) d\theta \\ &\approx \frac{1}{L} \sum_{l=1}^{L} \sum_{\mathbf{Z}, \mathbf{D}} P(\mathbf{X}, \mathbf{Z}, \mathbf{D}|\theta^{(l)}), \theta^{(l)} \sim P(\theta|\mathcal{D}, \alpha_i^*) d\theta \end{split}$$

- Advantage: reduce overfitting and improve generalization
- Posterior inference: $\theta^{(l)} \sim P(\theta | \mathcal{D}, \alpha_i^*)$
 - Method: Gibbs Sampling
- Classification: $y^* = \arg \max_i P(\mathbf{X}|\mathcal{D}, \alpha_i^*)$

• Overview:

- Dataset: MSR-Action3D, UTD-MHAD, G3D, Penn
- Feature: Joint position and motion in 3D or 2D

Individual dataset: comparison with different baselines

Model	MSRA	UTD	G3D	Penn	Avg.
HMM	67.8	82.8	68.1	82.3	75.3
HSMM	66.3	82.3	77.5	78.9	76.3
Ours	86.1	92.8	92.0	93.4	91.1

Individual dataset: comparison with different state-of-the-art

MSRA	L	UTD	
Method	Acc.	Method	Acc.
AS[9]	83.5	Fusion[3]	79.1
AL[12]	88.2	DMM[1]	84.2
MT[5]	92.0	CNN[13]	85.8
Ours	86.1	Ours	92.8
G3D		Penn	
G3D Method	Acc.	Penn Method	Acc.
G3D Method LRBM[7]	Acc. 90.5	Penn Method Actemes[14]	Acc. 86.5
G3D Method LRBM[7] R3DG[11]	Acc. 90.5 91.1	Penn Method Actemes[14] AOG[8]	Acc. 86.5 84.8
G3D Method LRBM[7] R3DG[11] CNN[13]	Acc. 90.5 91.1 94.2	Penn Method Actemes[14] AOG[8] JDD[2]	Acc. 86.5 84.8 93.2

Cross dataset classification accuracy

- A: MSR
- B: UTD
- C: G3D

Train	Test	HMM	HSMM	R3DG	DLSTM	Ours
B,C	А	62.59	65.31	76.19	70.75	89.21
A,C	В	66.25	61.88	86.25	85.00	75.00
A,B	С	30.94	42.45	51.08	38.85	61.15
Aver	age	53.26	56.55	71.17	64.87	75.12

Methods: Adversarial Learning

Adversarial Learning: a better criterion for data synthesis

• Overall objective

$$\min_{\theta} \max_{\phi} -\mathbb{E}_{P_{data}(\mathbf{X})}[H(\mathbf{X}|\phi)] + \mathbb{E}_{P(\mathbf{X}|\theta)}[H(\mathbf{X}|\phi)]$$

Methods: Adversarial Inference

- Bayesian adversarial inference $\theta, \phi \sim P(\theta, \phi | \mathcal{D}^+, \alpha_g, \alpha_d)$
 - Sample both generator θ and discriminator ϕ

Methods: Adversarial Inference

- Bayesian adversarial inference $\theta, \phi \sim P(\theta, \phi | \mathcal{D}^+, \alpha_g, \alpha_d)$
 - Sample generator θ conditioned on ϕ

Inference method: Stochastic Gradient
 Hamiltonian Monte Carlo (SGHMC)

Methods: Adversarial Inference

- Bayesian adversarial inference $\theta, \phi \sim P(\theta, \phi | \mathcal{D}^+, \alpha_q, \alpha_d)$
 - Sample discriminator ϕ conditioned on θ

Like-

lihood

- Bayesian adversarial inference: data synthesis
 - Overall synthesis target:

$$\mathbf{X} \sim P(\mathbf{X}|\mathcal{D}^+, \alpha) = \int_{\theta} P(\mathbf{X}|\theta) P(\theta|\mathcal{D}^+, \alpha) d\theta$$

• Steps: Posterior sampling

 $\{\theta_m, \phi_m\} \sim P(\theta, \phi | \mathcal{D}^+, \alpha)$

Generate new data using all the $\{\theta_m\}$

 $\{\mathbf{D}_i, \mathbf{Z}_i\} \sim P(\mathbf{D}, \mathbf{Z}|\theta_m)$ $\mathbf{X}_i \sim P(\mathbf{X}|\mathbf{D}_i, \mathbf{Z}_i, \theta_m)$

Experiments: Motion Synthesis

- Dataset
 - CMU Motion capture
 - Berkeley Motion capture
- Feature: Joint angles
- Qualitative Results

Experiments: Motion Synthesis

Quantitative Results

Experiments: Motion Synthesis

Quantitative Results

Inception score: diversity

	MMD:	distribution-	level	simi	larity
--	------	---------------	-------	------	--------

Method	CMU	Berkeley
HSMM	$1.86{\pm}0.07$	4.99 ± 0.27
CRBM[14]	2.65 ± 0.09	5.24 ± 0.39
TSBN[6]	$2.58{\pm}0.04$	2.57 ± 0.14
C-RNN-GAN[9]	1.95 ± 0.03	4.56 ± 0.37
Ours	2.86 ±0.10	6.49 ±0.23
Real	2.96	8.79

Method	CMU	Berkeley
HSMM	$5.46 {\pm} 0.62$	432.25±0.78
CRBM[14]	$7.43 {\pm} 0.97$	55.39±0.75
TSBN[6]	$12.74{\pm}0.10$	110.55 ± 0.64
C-RNN-GAN[9]	$10.58 {\pm} 0.35$	83.25±0.96
Ours	2.41 ±0.35	48.70 ±0.11
Random	176.27±0.05	1089.91±0.10

Part 4: Modeling Complex Dynamics

- Challenge:
 - Structural dependency
 - Long-term temporal dependency
 - Uncertainty and large variations
- Application:
 - Action recognition
- Our solution: Bayesian Graph Convolution LSTM

Overall framework:

GC-LSTM

- GC-LSTM
 - Graph convolution: generalize convolution to arbitrary graph structured data

$$H^{(l+1)} = \sigma \left(\sum_{k=1}^{K} F_k H^{(l)} W_k^{(l)} + b_k^{(l)}\right)$$

$$F_k \times H^{(l)} \times W_k^{(l)} D_l \times D_{l+1} + b_k^{(l)}$$

$$N \times N \times D_l \times D_l \times D_{l+1} + b_k^{(l)}$$
Graph kernel Data Kernel parameters

N: number of nodes D: dimension of each node

- GC-LSTM
 - Long short-term memory (LSTM) network: modeling long-term temporal dynamics

 $i_t = \sigma(W_{xi}X_t + W_{zi}Z_{t-1} + b_i)$ $f_t = \sigma(W_{xf}X_t + W_{zf}Z_{t-1} + b_f)$ $o_t = \sigma(W_{xo}X_t + W_{zo}Z_{t-1} + b_o)$ $g_t = \phi(W_{xg}X_t + W_{zg}Z_{t-1} + b_g)$ $c_t = f_t \odot c_{t-1} + i_t \odot g_t$ $Z_t = o_t \odot \phi(c_t)$

Bayesian GC-LSTM

- Extend GC-LSTM to a probabilistic model: $\theta \sim P(\theta | \alpha_{\theta})$
- Infer the posterior distribution of parameters

Bayesian GC-LSTM

- Adversarial Prior: use additional discriminator to regularize parameters
- Intuition: promote a feature representation to be invariant of subject

 $\log P(\theta|\mathcal{D}, \phi, \alpha_{\theta}) = \log P(y^+|\mathbf{X}^+, \theta) + \log P(\theta|\alpha_{\theta}) + \log P_D(G(\mathbf{X}^-; \theta)|\phi) + C$

Bayesian Inference

$$P(y'|\mathbf{X}', \mathcal{D}, \alpha) = \int_{\theta} P(y'|\mathbf{X}', \theta) P(\theta|\mathcal{D}, \alpha) d\theta$$
$$\approx \frac{1}{M} \sum_{m=1}^{M} P(y|\mathbf{X}', \theta_m), \theta_m \sim P(\theta|\mathcal{D}, \alpha)$$

Classification:

$$y^* = \arg\max_{y'} \frac{1}{M} \sum_{m=1}^M P(y'|\mathbf{X}', \theta_m)$$

Ablation study

Effect of graph convolution

Configuration	# of edges	Accuracy
No graph	N/A	85.3
Mean-field	0	82.5
Local graph	19	87.5
Global graph	10	81.8
Joint graph	29	92.3

Effect of Bayesian inference

Perturbation	Clean	Only R	Only N	R + N
ML	86.2	62.8	77.7	65.1
MAP	85.2	78.1	86.1	77.9
Bayesian	87.4	78.8	86.9	82.8
Bayesian + AP	92.3	86.0	87.9	86.1

R: random rotation N: random noise

Comparison with state-of-the-art

MSR Action3D

Method	Accuracy	
SC [10]	88.3	
HBRNN [6]	94.5	
Composition [12]	93.0	
ST-LSTM [13]	94.8	
Ours	94.6	

SYSU

Method	Accuracy	
D-Skeleton [9]	75.5	
ST-LSTM [13]	76.5	
DPRL [20]	76.9	
SR-TSL [18]	80.7	
Ours	81.7	

UTD MHAD

Method	Accuracy	
Sensor Fusion [3]	79.1	
DMM-LBP [1]	84.2	
3DHoT-MBC [26]	84.4	
SOS-CNN [8]	87.0	
Ours	92.3	

Generalization across different datasets

Train	MSR	UTD	Δνα
Test	UTD	MSR	Avg.
R3DG [15]	66.5	59.9	63.2
DLSTM [19]	66.8	50.0	58.4
Ours	82.8	70.2	76.5

Thesis Summary

- Localization of dynamic pattern
 - Propose a method that combines robust estimation and dynamic model for localization
- Dynamic pattern regression under insufficient annotation
 - Incorporate ordinal information as addition constraints for model learning
 - Develop an optimization algorithm for parameter estimation
- Dynamic pattern classification and synthesis under large intraclass variation
 - Propose a Bayesian hierarchical model
 - Develop two Bayesian inference algorithms
- Modeling complex dynamics
 - Propose a Bayesian neural network model
 - Develop a Bayesian inference algorithm

Thank You!

Related Publications:

- **Rui Zhao**, Quan Gan, Shangfei Wang and Qiang Ji, Facial Expression Intensity Estimation Using Ordinal Information, CVPR 2016.
- **Rui Zhao**, Md Ridwan Al Iqbal, Kristin Bennett and Qiang Ji, Wind Turbine Fault Prediction Using Soft Label SVM, ICPR 2016.
- **Rui Zhao**, Gerwin Schalk, Qiang Ji, Robust Signal Identification for Dynamic Pattern Classification, ICPR 2016.
- **Rui Zhao,** Qiang Ji, An Adversarial Hierarchical Hidden Markov Model for Human Pose Modeling and Generation, AAAI 2018.
- **Rui Zhao**, Gerwin Schalk, Qiang Ji, Temporal Pattern Localization using Mixed Integer Linear Programming, ICPR 2018.
- **Rui Zhao,** Qiang Ji, An Empirical Evaluation of Bayesian Inference Methods for Bayesian Neural Networks, NIPS Workshop 2018 (To appear)
- **Rui Zhao,** Wanru Xu, Hui Su, Qiang Ji, Bayesian Hierarchical Dynamic Model for Human Action Recognition (Under review)
- **Rui Zhao,** Hui Su, Qiang Ji, Bayesian Adversarial Human Motion Synthesis (Under review)
- **Rui Zhao,** Kang Wang, Hui Su, Qiang Ji, Bayesian Graph Convolution LSTM for Skeleton based Action Recognition (Under review)