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Abstract

This paper proposes a novel probabilistic approach
to utilize clip attributes as hidden knowledge for event
recognition. Event recognition in surveillance videos
is very challenging due to its large intra-class varia-
tions and relative low image resolution. The clip at-
tributes, that are available only during training, pro-
vide auxiliary hidden information about the variation
of the event appearance. Utilizing such hidden knowl-
edge can help better model the joint probability distri-
bution between event and its observations, and thus im-
prove the recognition performance. We propose a prob-
abilistic model to systematically incorporate the clip at-
tributes into the event recognition. Experiments on real
surveillance data show improved event recognition per-
formance with the use of the clip attributes.

1 Introduction

The event recognition for real-world surveillance ap-
plications has become an emerging topic [13]. Dit-
ferent from the traditional action recognition tasks
with KTH [16] or Weizmann [4] datasets consisting
of actions performed by single person in clean back-
grounds, or the tasks developed for movies [9] and
sports [12], the recognition of complex multi-object in-
teractive events in realistic scene surveillance videos is
facing great challenges.

A major challenge for event recognition in these sce-
narios lies on the large intra class variation. For in-
stance, the event “person getting out of vehicle” may
look very different, depending on if the event happens
on the side of vehicle facing the camera or happens
on the other side of the vehicle away from the cam-
era. Similarly, the event “person unloading a vehicle”
may also look different, depending on if the unload-
ing happens from the seats of vehicle or from the trunk.
Other realistic factors can also cause the event appear-
ance variation like the variation of target size, illumina-
tion change, and shadows, etc.

In order to handle such challenges, we propose to
exploit additional properties about video clips to help
better model the intra-event variations. For this, we
introduce clip attributes that provide further informa-
tion about the context under which an event happens.
Such information is called hidden knowledge [18, 17]
since they are only available during training. Hidden
knowledge can facilitate the training. Since the pro-
posed clip attributes can affect the image observation of
event, they can help better model the joint distribution
between event and observations, and thus improve event
recognition performance. In this paper, we propose to
construct a Bayesian network (BN) [6] to capture the
relationships between event label, its observations, and
the clip attributes.

The recent work by V. Vapnik in [18, 17] proposed
the “SVM+” where hidden information is used to pre-
dict the optimal slack variables in the support vector
machine (SVM) objective function. In these works, the
hidden information is additional features for predicting
the class labels. In contrast, the proposed clip attributes
capture the factors that contribute to intra-event varia-
tions.

Utilizing visual attributes to enhance the object and
action recognition has drawn great academic attentions
in recent years. In works [2, 8, 14, 20, 15], visual at-
tributes behave as an intermediate representation be-
tween low-level image features and high-level cate-
gories. In particular, Lampert et al [8] introduce a prob-
abilistic approach to infer the visual attributes, and then
classify new categories by zero-shot learning with the
inferred visual attributes. Research works in [19, 11, 7]
treat visual attributes as latent variables, and formulate
the classification problem using a latent SVM frame-
work [3]. Moreover, in [5], a multi-task learning ap-
proach is proposed to regularize the models for both
visual attributes and the object categories. However,
these proposed visual attributes reflect directly the natu-
ral properties of the classes/categories and the attributes
need to be estimated during testing. For this, different



types of attribute classification models are constructed
to estimate attribute values. In contrast, our proposed
clip attributes characterize the variation factors for event
appearance, and we utilize such clip attributes during
training only to help improve event modeling and sub-
sequent recognition.

In summary, our contributions are in two folds: 1)
we propose to use clip attributes to capture the factors
that contribute to the intra-class event variation ; 2) we
develop a BN model to probabilistically incorporate the
clip attributes to help improve event modeling.

2 Clip Attributes as Hidden Knowledge

The concept of hidden knowledge was first proposed
by [18, 17]. Different from Vapnik’s work, we pro-
pose to probabilistically capture and utilize the hidden
knowledge to benefit event recognition.

2.1 Hidden Knowledge in Probabilistic View

Hidden knowledge, or hidden information [18, 17],
is some additional information a given at the training
stage about training example x with class label c. Such
a information will not be available at the test stage.

From the probabilistic view, the training stage of a
classical pattern recognition problem can be described
as: given a set of training data pairs

(z1,¢1),.. ., (zN,en), z€X, ¢ €C

generated according to a fixed but unknown probabilis-
tic distribution P(X, ') with parameter set ¢, find an
estimate of QAS from the training data pairs that can max-
imize the joint likelihood P(X, C|¢).

With hidden knowledge, given the training triplets

(.’L’l,al,cl),...,(.TN7CLN,CN),.%‘1‘ c X,ai c A,Ci eC

generated from joint probabilistic distribution
P(X,A,C) with parameter set 6, we find its es-
timation # that can maximize the joint likelihood
P(X, A, C|f) instead.
During testing, the goal is to find the class label c¢*
that
= argméle(C\X;qAS)

with test example X and estimated parameter (ﬁ
With the model learned using hidden knowledge, we
marginalize over the hidden knowledge term A, i.e.,

¢’ = arg max Z P(C,A|X;0)
A
with test example X and estimated parameter 0. The

probability P(C, A|X;#) can be readily derived from
joint probability P(X, A, C|9).

2.2 Clip Attributes

Clip attribute is an extra description of video clips
that is only available during training. Unlike the at-
tributes proposed in [2, 8, 19, 11, 14, 5, 20, 15, 7], clip
attributes provide auxiliary information about the con-
text under which an event occurs. Specifically, for this
research, clip attributes identify some factors that con-
tribute to intra-class event variation. As shown in Fig-
ure 1, the clip attributes we consider include “occlusion
by vehicle”, “target in shadow”, “target at side of ve-
hicle”, “target at vehicle tail”, and “target size”. Each
such clip attribute is labeled with a discrete value “1”
or “0”, where “1” stands for “true” and “0” stands for
“false”. Depending on an attribute’s value, the same
event may look very different.

(c) (d)

(©)

(a)
Figure 1: Clip attribute examples. (a) “occlusion by
vehicle”; (b) ‘target in shadow”; (c) “target at side of
vehicle”; (d) “target at vehicle tail”’; (e) “target size”.

Unlike the features that are extracted on both training
and testing data for classification, such clip attributes
are only obtained during training. We utilize these clip
attributes to help better model the joint probability dis-
tribution between event and observations.

3 Probabilistically Modeling Clip At-
tributes as Hidden Knowledge

Suppose we have M types of clip attributes labeled
in total, and denote them as A; . s respectively. To cap-
ture the clip attributes, we need to model the joint prob-
ability P(X, A1, C), where X is the sample obser-
vation, and C' is the event label. In the following, we
use the Bayesian network (BN) [10]. A BN can effi-
ciently represent a joint probability distribution among
a set of variables, where the nodes denote random vari-
ables and the links denote the conditional dependencies
among variables.

(a) Model I
Figure 2: BNs incorporating attributes.

(b) Model I

In our BN models shown in Fig. 2, node C' is the
discrete root node representing the event label. Node
X denotes the observation vector whose elements can
be either discrete or continuous. In our implementation,



continuous feature vector is used as observation. The
binary nodes Aj, ..., Ay describes the corresponding
clip attribute A;.py.

For both Model I and Model II shown in Fig. 2a
and Fig. 2b respectively, event nodes C and attribute
nodes Aj,..., Ay are the parent nodes of node X.
In model II, node C is also the parent node for nodes
Aq,...,Ap. Comparatively, in Model I, all attribute
nodes Aq, ..., Ay are root nodes. These two models
are formed with different assumptions. For Model I,
we assume the attribute is class independent; while for
Model II, we assume attributes are class dependent.

For Model I, the joint probability can be factorized
as

P(X,As,...,Ap,C) = P(C)P(Ay)---
P(Ap)P(XI|C Ay, ..., Ay) )

through conditional independency assumptions of BNs.
And for Model II, the joint probability distribution is
P(X7A17"'5AM7AQHC) = P(C)P(A1|C)
P(Ap|C)P(X|C, Ay, ...  App) 2)
Suppose the estimated model parameter set is 0 (ei-
ther for Model I or Model II), the model inference for
event classification is to find the event label c*, i.e.,
= P(C,Ay,...,Ay|X;0
c argmgxz (C, Ay, ..., Ap|X;0)

Arom

= arg max Z P(XaAlaaAM7C|é)
O = e Ya ., P(X AL Ay, ClO)
3)

where we marginalize over random variables Aq,.. .,
Ap on probability P(C, Ay,..., Ay|X;6) through
Equation 3 using the joint probabilities obtained by
Equation 1 or 2 for Model I and Model II respectively.

4 Learning of Model Parameters

Given a set of IV training samples with observations
X = {z1,...,zn}, class labels C = {c1,...,cn},
and M clip attributes A,;, = {am1,...,anN} Where
m € [1, M], and supposing these N training samples
are i.i.d., we can learn the model parameters for Model
I and Model II with the maximum likelihood (ML) es-
timation. We define the log likelihood as

log P(X,A1,Aq,...,Ap, C|6)
N
:IOgHP(JCi,amazi,---,aMi7Ci|9) 4
i=1
The ML would then give the learned parameter 6
using Equation 5 with probability normalization con-
straints for discrete node parameters.

meaxlogP(X,Al,Ag,...,AM,C\Q) (5)

5 Experiments

We use the VIRAT public 1.0 data set [13] for ex-
periments. It is a realistic natural dataset for video
surveillance applications with large intra-class varia-
tions. There are six types of events to recognize in this
dataset. They are: Loading a Vehicle (LAV), Unload-
ing a Vehicle (UAV), Opening a Trunk (OAT), Clos-
ing a Trunk (CAT), Getting into a Vehicle (GIV), Get-
ting out of a Vehicle (GOV) respectively. The VIRAT
public dataset is very challenging compared to other
event/activity/action datasets like KTH [16], Weiz-
mann [4], HOHA [9] and UCF Sports [12] datasets. It
is a natural scene surveillance dataset with low image
resolutions on event targets. Also, the VIRAT public
dataset focuses on complex events which include the
interactions between persons and vehicles. These com-
plex events are more difficult to recognize than the sim-
ple events like walking or running.

Currently, the event category labels of the VIRAT
public 1.0 testing dataset are not released. Therefore, in
our experiments, we use its training dataset with cross
validations. There are in total 188 annotated event clips
in this training dataset. And we labeled 5 attributes for
each clip. These clip attributes are: “occlusion by ve-
hicle”, “target in shadow”, “target at side of vehicle”,
“target at vehicle tail”, and “target size” respectively.

In our models, we assume Gaussian distributions for
continuous observations. In such case, if we do not use
any attributes, our models would degrade to the Naive
Bayes (NB) model. Thus, we use NB as a baseline
model to be compared with. The histogram of oriented
gradients (HOG) features [1] extracted from bounding
boxes are used as observations.

5.1 Attributes and Their Combination

We first compare the performances for our mod-
els incorporating one best or combined attributes. In
this experiment, six-category event recognition is per-
formed and each event clip is classified into one of the
six categories. The random chance would be 16.77%.
We compare the recognition rate of baseline NB, Model
I with one best clip attribute “occlusion by vehicle”
(“Occlusion”), Model I with combined clip attributes,
Model II with one best clip attribute “Occlusion”, and
Model II with combined clip attributes. Results are
show in Fig. 3.

From Fig. 3, we see a single attribute “Occlusion”
greatly improves the recognition accuracy. For Model
I, incorporating this attribute would improve the perfor-
mance of NB by over 10%. The Model I with combined
clip attributes further improves the result to 36.17%.
We observe that Model II also improves results by in-
corporating attributes. But it performs not as well as



Model I. We think our labeled attributes are generally
class-independent, and assume such dependency would
cause biased estimations of distributions. However, we
believe Model II would be powerful to model class-
dependent attributes.
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Figure 3: Event recognition accuracy comparison.

For comparison, we also tried the RBF kernel SVM
and received 30.32% recognition rate.

5.2 Areas Under ROC Curve

We also compare the event recognition receiver op-
erating characteristic (ROC) curves for each event with
different models. In our ROC curve, the vertical axis
stands for the event recall rate, and the horizontal axis
stands for the event false alarm rate. Due to space limit,
we do not present the ROC curve figures but provide
the area under ROC curve, which is a more direct eval-
uation of ROC performance. With a larger area under
ROC curve, the model performance is better. Table 1
compares the areas under ROC curve for each event and
their average with different models. The combined at-
tributes are used for both Model I and Model II. We can
see both Model I and Model II outperform the NB and
SVM classifiers on average area under ROC curves.

Table 1: Area under ROC curve comparison
[ Events | NB | SVM | Model I | Model II |

LAV 0.634 | 0.610 | 0.735 0.675
UAV 0.491 | 0.614 | 0.624 0.568
OAT 0.593 | 0.574 | 0.518 0.591
CAT 0.654 | 0.495 0.617 0.670
GIV 0.560 | 0.631 0.539 0.512
GOV 0.595 | 0.679 | 0.644 0.631
Average || 0.588 | 0.600 | 0.613 0.608

6 Conclusion

In this work, we propose a probabilistic model to
incorporate clip attributes as hidden knowledge to im-
prove event recognition from surveillance videos. The
events in surveillance videos are usually challenging
due to large intra-class variations. The proposed clip at-
tributes can identify factors that contribute to event ap-
pearance variations. We propose to exploit such factors

to help better model the joint distribution between event
and observations. Experiments on realistic surveillance
videos demonstrate that the proposed model for incor-
porating clip attributes as hidden knowledge can effec-
tively improve the event recognition performance.
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