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Abstract
The purpose of this paper is to develop an approach

to learn dynamic Bayesian network (DBN) discrimina-
tively for human activity recognition. DBN is a gener-
ative model widely used for modeling temporal events
in human activity recognition. The parameters of the
DBN models are usually learned through maximizing
likelihood or expected likelihood. However, activity is
often recognized through identifying the activity class
with the highest posterior probability. Hence, there is
discrepancy between the learning and classification cri-
teria. In this paper, we focus on developing a discrim-
inative parameter learning approach for hybrid DBNs
that has a consistent criterion during training and test-
ing. Our approach is applicable to parameter learning
with both complete data and incomplete data, and em-
pirical studies show the proposed discriminative learn-
ing approach outperforms the maximum likelihood or
EM algorithm in activity recognition tasks.

1 Introduction
The dynamic Bayesian networks (DBNs) [16, 7] re-

ceived increasing attention in human action and activity
recognition during recent years. DBNs gain their ad-
vantage through explicitly modeling both the spatial and
temporal dependencies among different entities in hu-
man activity. In the training process, most of these ap-
proaches learn one representative DBN model for each
activity through maximum likelihood (ML) estimation,
or expectation maximization (EM) if with incomplete
data. During testing stage, the activity is recognized
through picking the model with the highest likelihood
given the image observations, or equivalently, with the
highest posterior probability given prior on activities. In
this manner, we can see a clear discrepancy between the
learning objective and the classification criterion. The
parameters learned by ML or EM algorithm, though
capturing the data dependency well, may not maximize
the classification accuracy.

The solution to reduce the discrepancy between the

training and testing objective is to learn the genera-
tive DBN models discriminatively. The learning proce-
dure maximizes the conditional likelihood instead of the
joint likelihood and ensure a consistent criterion during
learning and testing. Previous researches have shown
that, for classification tasks, discriminative learning of-
ten works better than generative learning even for a gen-
erative model. A. Ng and M. Jordan [10] have provided
a theoretical and empirical comparison of generative
learning and discriminative learning for Bayesian net-
work classifiers.

One difficulty associated with discriminative learn-
ing is that, the conditional likelihood function, unlike
the general likelihood function, is not decomposable
over the structure. Thus, no analytical solution is avail-
able to determine the parameters. Researchers [3, 2,
12, 15, 14, 4] tried to solve this problem with numeric
optimization. These discriminative learning approaches
mainly focus on discrete and static Bayesian networks.
However, in human activity recognition, we often in-
volve continuous attributes and dynamic Bayesian net-
works, so these approaches are not directly applicable.
In recent literature, on one hand, although the infer-
ence and generative learning of the hybrid DBN [8, 9]
have been widely investigated, there are no discrimi-
native approaches, to the best of our knowledge, pro-
posed in the literature for learning the parameters of
hybrid DBNs with both discrete and continuous vari-
ables. On the other hand, though there are approaches
[5, 11] proposed for discriminatively learning HMMs
(which can be viewed as a simple case of the DBNs) in
speech recognition domain, its generalization to more
complex DBN has not been investigated before. In this
paper, considering the general requirements for model-
ing and recognizing activities, we propose a discrimi-
native parameter learning approach for general hybrid
DBN under a gradient-based framework.

In summary, we focus on developing algorithm to
learn hybrid DBN models discriminatively for human
activity recognition. In the learning process, through
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Figure 1. Activity DBN model

maximizing the conditional likelihood, we can reduce
the discrepancy between the learning and testing crite-
ria. Under a gradient-search framework, our approach
can handle DBN model with hybrid variables, and work
well for the case of incomplete data.

2 Activity Modeling with DBNs
We introduce a DBN model for human activity

recognition. The model consists of two levels: the fea-
ture level and the state level. While the feature level en-
codes the observations from the images, the state level
abstracts the basic states of the activity.

The features used for activity recognition include the
kinematic and appearance features. The kinematic fea-
tures OV are evaluated based on the estimated bound-
ing box position and moving velocity. The appearance
features OA are selected from a feature pool consisting
of the HOG (histogram of oriented gradient) and HOF
(histogram of optical flow) feature.

The DBN structure of our activity model is shown in
Fig. 1. The clear nodes represent two physical states:
motion state (V ), and appearance state (A). The shaded
nodes denote observations. Besides the nodes, there are
two types of links in the model: intra-slice links and
inter-slice links. The intra-slice links from V to A de-
notes the possible causality between the subject’s mo-
tion and appearance. The inter-slice links show the tem-
poral evolution and capture the dynamic relationships
between states at different times.

With this model, we construct one DBN model for
each activity and perform activity recognition by find-
ing the model with the highest likelihood, or finding the
model with the highest posterior probability given prior
on activity classes. Both of them can be evaluated by
the forward propagation of dynamic junction tree.

3 DBN Parameter Learning
In this section, we introduce a discriminative learn-

ing approach to learn the DBN models for all activity
models together, which can reduce the discrepancy be-
tween the training and testing objective.

3.1 Discriminative Learning Formulation
The goal of classification is to predict the class la-

bel c given the evidence E. Under the Bayesian deci-

sion framework, the optimal prediction for data E is the
class that maximizes P (c|E). In activity recognition, as
we can evaluate the likelihood P (E|c) for each activity
c, we can compute the posterior probability based on
Bayesian theorem.

P (c|E) =
P (E|c)P (c)∑
c′ P (E|c′)P (c′)

(1)

As DBN usually captures the joint distribution of se-
quence of variables, it is typically learned by maximiz-
ing the log likelihood of all training sequences:

Θ̂ = argmax
Θ

P (E|Θ) = argmax
Θ

∑
n

logP (En|Θ)

Here E = (E1, . . . , EN ) denotes N training sequences.
For activity recognition, with generative learning, we

learn the parameters Θ̂c of each activity model c inde-
pendently through maximize its likelihood:

Θ̂c = argmax
Θ

P (Ec|Θ) = argmax
Θ

∑
E∈Ec

logP (E|Θ)

where Ec denotes the training sequences for activity c.
In this way, we can ensure to obtain a representa-

tive model for each activity, but it can not guarantee the
best performance in classification, since the objective
function of the maximum likelihood learning is not con-
sistent with our prediction criterion P (c|E). Hence, a
better objective function for learning DBNs for activity
recognition would be the conditional log likelihood:

CLL(C|E) =
N∑

n=1

logP (cn|En) =
∑
c

∑
E∈Ec

logP (c|E)

where C = (c1, c2, . . . , cN ) denote the activity labels
of all N training sequences.

Maximizing the conditional likelihood is not triv-
ial since the CLL objective is non-convex in general.
However, we can optimize it locally through gradient
search. The limited memory BFGS with Armijo line
search [1] is employed to perform the optimization.

A key step for the optimization is to evaluate the gra-
dient of the CLL. In general, for sample (E, c), the
gradient of CLL with respect to model parameter Θ is

∂logP (c|E)

∂Θ
=

∂ log[P (E|c)P (c)]

∂Θ
− ∂ logP (E)

∂Θ

=
∂ logP (E|c)

∂Θ
− ∂ logP (E)

∂Θ
(2)

Please note that the second term of Eqn. 2 can be eval-
uated as the expectation of the first term, as in Eqn. 3.

∂ logP (E)

∂Θ
=

∑
c

P (c|E)
∂ logP (E|c)

∂Θ
(3)



Now we consider this gradient with respect to the pa-
rameter Θc′ of a specific activity model c′. With Eqn. 3
and the fact

∂ logP (E|c)
∂Θc′

= 0 if c′ ̸= c

we can get

∂logP (c|E)

∂Θc′
=

{
(1− P (c|E))∂logP (E|c)

∂Θc
if c′ = c

−P (c′|E)∂logP (E|c′)
∂Θc′

if c′ ̸= c

As P (c|E) can be evaluated with Eqn. 1, we mainly
focus on computing ∂ logP (E|c)/∂Θc when evalu-
ating the derivative of the CLL. Please note that
∂ logP (E|c)/∂Θc is just the derivative of the log like-
lihood of DBN model c with respect to Θc.

3.2 Discriminative Learning for Hybrid DBN
For learning the parameter of hybrid DBN with dis-

crete parent and continuous Gaussian child nodes (DP-
CC), we have the following parameters.

• Discrete parents - continuous child (DP-CC)
The local conditional probability distribution
is parameterized with conditional Gaussian
p(xt,i|πt,i = j) ∼ N(µij ,Σij), so we focus on
learning the parameters (µij ,Σij). To ensure the
covariance matrix be positive semidefinite, we
reparameterize Σij as Aij = Σ

− 1
2

ij .

In the case of complete data, computing the deriva-
tive ∂ logP (E|c)/∂Θc is relatively easy since P (E|c)
is completely decomposable based on the DBN struc-
ture. We compute this gradient as 1.

∂ logP (E|c)
∂µij

=
∑
t

[
A2

ij(xt,i − µij)
]

∂ logP (E|c)
∂Aij

=
∑
t

[
A−1

ij −Aij(xt,i − µij)(xt,i − µij)
T
]

3.3 Incomplete Data
When the training data is incomplete, P (E|c) is not

decomposable, so evaluating the derivative of CLL be-
comes difficult. One natural choice is the EM algo-
rithm, with the objective function substituted by the
CLL. However, in this case, in M step of EM, there is
no analytical solution for estimating the parameter and
we still need to go through the optimization procedure
for the “completed” case. To avoid this double-looped
optimization procedure, an efficient way is needed to
directly compute the gradient of CLL with incomplete

1A−1
ij denotes the pseudo inverse of Aij

data. We resort this to the existing exact inference al-
gorithms in the hybrid model. In the following parts,
we show the derivative ∂ logP (E|c)/∂θ for the DP-CC
case different from the solved discrete parent and dis-
crete child nodes (DP-DC) case [2].

In DP-CC case, the derivatives ∂ logP (E|c)/∂µij

and ∂ logP (E|c)/∂Aij can be computed as follows

∂ logP (E|c)
∂µij

= −
∑
t

P (πt,i = j|E)A2
ijµij

+A2
ij

∑
t

Ep(xt,i,πt,i=j|E){xt,i}

∂ logP (E|c)
∂Aij

= −
∑
t

P (πt,i = j|E)A−1
ij

−Aij

∑
t

Ep(xt,i,πt,i=j|E){(xt,i − µij)(xt,i − µij)
T }

here
Ep(xt,i,πt,i=j|E){xt,i}
= P (πt,i = j|E)Ep(xt,i|πt,i=j,E){xt,i}
Ep(xt,i,πt,i=j|E){(xt,i − µij)(xt,i − µij)

T } = P (πt,i

= j|E)Ep(xt,i|πt,i=j,E){(xt,i − µij)(xt,i − µij)
T }

where
Ep(xt,i|πt,i=j,E){(xt,i − µij)(xt,i − µij)

T }
= cov[xt,i] + (E[xt,i]− µij)(E[xt,i]− µij)

T

Since P (πt,i = j|E), E[xt,i], cov[xt,i]
2 can be ob-

tained through the inference in the hybrid dynamic
Bayesian network [9], we can compute the derivative
∂logP (E|c)/∂µij and ∂logP (E|c)/∂Σij . Further,
based on discussions in section 3.1, we can obtain the
gradient of the CLL with respect to µij and Σij .

4 Experiments
We apply the discriminative learning algorithm on

the KTH human activity dataset [13]. KTH dataset has
6 human activities: walking, jogging, running, boxing,
hand waving and hand clapping. Each activity is per-
formed by 25 subjects (performers) in four different en-
vironments. For each subject, there are 24 videos in
total with 3 to 4 activity sequences in each video.

4.1 Discriminative vs. Generative Learning
We first focus on comparing the generative learn-

ing approach with the discriminative learning approach
with different training size. The generative learning ap-
proach we used is the EM algorithm. For discrimina-
tive learning, as our approach can only guarantee a local

2For simplicity, we denote Ep(xt,i,πt,i=j|E)[xt,i] as E[xt,i],
Ep(xt,i,πt,i=j|E){(xt,i−E[xt,i])(xt,i−E[xt,i])

T } as cov[xt,i]



optimum of the conditional log likelihood, one critical
issue is the initialization of the model parameters. In
all our experiments, we use the result of the generative
learning as the initialization for discriminative learning.

Figure 2. Discriminative learning vs. gen-
erative learning on KTH dataset
We first compare the training error of these two ap-

proaches based on the results in Fig. 2. Since adding
more training subjects will introduce more variations
to training data, both approaches have slightly higher
training errors when subject number is larger. But it
is obvious the discriminatively learned DBN performs
consistently better than generatively learned DBN.

We also compare the testing error of the discrimina-
tively learned model with generatively learned model.
When the number of training sequences is large, the
discriminatively learned models perform obviously bet-
ter than the generatively learned models. More specifi-
cally, given sequences of 16 and 20 subjects for training,
the error rates of discriminative learning are 4.5% and
2.5% lower than the generatively learning respectively.
However, when the number of training subjects be-
come smaller, discriminative learning suffers more from
overfitting than generative learning. We can see that
the classification error of the discriminatively learned
model is 4.4% higher than generatively learned model
given the sequences from 4 subjects for training.
4.2 Comparison with Other Approaches

We compare our approach with the state-of-art ap-
proaches on KTH dataset. As in the works of Yuan et
al. [17] and Laptev et al. [6], we use the same training,
validation and testing split of data with models trained
on sequences of 16 subjects. We compare our results
in Table 1. While the performance of our generatively
learned DBN is about 4% worse than the state-of-art ap-
proaches, the discriminative learning DBN can achieve
comparable results to the state-of-art approaches.

Table 1. Comparison with previous work.
Recognition rate

Our method - Generative 88.0%
Our method - Discriminative 92.5%

Yuan et al. [17] 93.3%
Laptev et al. [6] 91.8%

5 Conclusion
In this paper, we propose a discriminative parameter

learning method for hybrid dynamic Bayesian network
in human activity recognition. Compared to the gen-
erative learning approaches, our approach has a more
consistent objective in the training stage with the classi-
fication criterion, which can guarantee a better classifi-
cation performance on the training set. Moreover, based
on our experiments on the real data from KTH activity
dataset, we demonstrate the advantage of discriminative
learning over generative learning.
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