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Abstract
This paper proposes a new Probabilistic Graphi-

cal Model (PGM) to incorporate the scene, event ob-
ject interaction and the event temporal contexts into
Dynamic Bayesian Networks (DBNs) for event recog-
nition in surveillance videos. We first construct the
event DBNs for modeling the events from their own
appearance and kinematic observations, and then ex-
tend the DBN to incorporate the contexts for boosting
event recognition performance. Unlike the existing con-
text methods, our model incorporates various contexts
into one unified model. Experiments on natural scene
surveillance videos show that the contexts can effec-
tively improve the event recognition performance even
with great challenges like large intra-class variations
and low image resolution.

1 Introduction

The topic of modeling and recognizing events in
video surveillance system has attracted growing interest
from both academia and industry [12]. Various graph-
ical, syntactic, and description-based approaches [16]
have been introduced for modeling and understand-
ing events. Among those approaches, the time-sliced
graphical models, i.e. Hidden Markov Models (HMMs)
and Dynamic Bayesian Networks (DBNs), have be-
come popular tools.

However, surveillance video event recognition still
faces difficulties even with the well-built models for de-
scribing the events. The first difficulty arises from the
tremendous intra-class variations in events. The same
category of events can have huge variations in their ob-
servations such as the visual appearance, speed of mo-
tion, viewpoints and temporal variability. Also, the low
resolution of event targets also affects event recognition.
To compensate such challenges, we propose to incor-
porate contextual knowledge to our DBN models with
a Probabilistic Graphical Model (PGM) [6] to aid the
event classification task.

Context in recognition problems can be regarded as
extra information that is not the recognition task it-
self, but it can support the task. Context knowledge
has become very important to help object and action
recognition problems. A comprehensive review on con-
text based object recognition is given in [2]. In object
recognition tasks, PGM has shown its power for inte-
grating contexts such as scenes [14], co-occurrence ob-
jects [13], and materials [5]. As to action recognition,
contexts are integrated both as features and as models.
Works such as [7, 17] integrate contexts with spatial
or spatial-temporal features. On the other hand, many
works [4, 9, 18, 1] incorporate contexts to model the
interactions between actions, objects, scene and poses.

Different from approaches integrating contexts into
static models, we propose a PGM model that incorpo-
rates various contexts into the dynamic DBN model for
event recognition. Inspired by a number of recognition
frameworks that exploit the scene context [14, 10, 9, 11]
and the object-action interaction context [4, 9, 18] in
different applications, we apply both the scene context
and the event-object interaction context into our model.
Moreover, we proposed the usage of the event temporal
context, which describes the semantic relationships of
events over time.

In summary, the novelty of this paper includes the
following: (1) it proposes a PGM model that incorpo-
rates the scene, event-object interaction and the event
temporal contexts with the baseline DBN event model.
(2) it proposes the event temporal context which de-
scribes the semantic relationships of events over time.

2 Baseline DBN Event Model
As shown in Figure 1, our baseline DBN model for

event recognition consists two layers. The top layer in-
cludes two hidden nodes GM and SA respectively. The
GM node represents the global motion state, and the
SA node represents the shape and appearance state. The
bottom layer consists of two measurement nodes OGM
and OSA. The OGM node denotes the kinematic fea-



tures extracted from the global motion measurements.
The OSA node denotes the HoG and HoF image fea-
tures extracted from the appearance measurements.

Besides the nodes, there are two types of links in
the model: intra-slice links and inter-slice links. The
intra-slice links couple different states to encode their
dependencies. And the inter-slice links represent the
temporal evolution and capture the dynamic relation-
ships between states at different times. The proposed
DBN event model is essentially a coupled HMM.
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Figure 1: The baseline DBN model for event recogni-
tion.

For the parameter learning of DBN models, because
of the presence of the hidden nodes (GM and SA), the
Expectation Maximization (EM) method is employed to
estimate the parameters from the training data. We can
obtain parameters of K models for the K events to be
recognized. Here, we denote the learned K models to
be Θ̂1, Θ̂2, ..., Θ̂K .

In DBN inference, suppose the evidence of the test-
ing sequence to be ET . For the cth model where c ∈
[1,K], we need to infer the likelihood of an event given
the evidence ET , i.e., P (ET |Θ̂c). These likelihoods are
evaluated by the forward propagation of dynamic junc-
tion tree.

3 Context for Event Recognition
The context is often defined as the surroundings,

circumstances, environment, background or settings
which help determine, specify, or clarify the meaning
of an event. We proposed to use three contexts for
event recognition in surveillance videos: scene con-
text, event-object interaction, and the temporal context.
These contexts are combined into one unified model to
improve the baseline DBN for event recognition.

• Scene Context
Events in surveillance videos are frequently con-
strained by properties of scenes and demonstrate
high correlation with scene categories. E.g. events
in parking lot are different from events in play-
ground. Knowledge of the scene can provide a
prior probability of the events.

• Event-object Interaction
Static objects provide clues for events. E.g. person
“walking” on sidewalk, and person “getting out of
vehicle” aside vehicle shown in Fig. 2a.

• Temporal Context
Event occurrence is also constrained by the nat-
ural temporal causalities of executing events. E.g.
event “unloading” follows event “getting out of ve-
hicle”, while event “walking” precedes event “get-
ting into vehicle”, as shown in Fig. 2b.
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(b)

Figure 2: Events with contexts.

3.1 Context Model Formulation

We systematically incorporated the three contexts
into one unified model, and use this model to infer the
posterior probability of events in different conditions.
The model graph is shown in Fig. 3.
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Figure 3: PGM model combining the scene, temporal
and object interaction contexts. (a) model without hyper
parameter; (b) model with hyper parameter.

As shown in Figure 3, event nodes E (both En−1

and En) have K discrete values where K stands for the
K different categories of events. The subscripts n − 1
and n on E nodes stands for the events at two different
times, where En−1 stands for the previous event, and
En stands for the current event. The link between En−1

and En captures the temporal dependency, i.e. the tem-
poral context. The S node stands for the scene. The link
between S and En captures the influence of the scene
context on event. The On nodes stands for the contex-
tual object for current event clip. The link between En

and On captures the event and object interaction con-
text. During testing, all these four nodes En, En−1, S
and On are latent, with their corresponding measure-
ment nodes OEn, DEn−1, DS and DOn to indicate
their states.

The circular OEn node is a continuous vector rep-
resenting the appearance observation for the current
event; the link from En (with a node value c ∈ [1,K])
to OEn is captured by the probability P (OEn|En = c),



which we take from the output of the DBN model,
i.e., P (ET |Θ̂c). This allows naturally incorporating
the baseline DBN model into the context model. The
remaining three measurement nodes DEn−1, DS and
DOn are discrete nodes resulted from the classifier de-
tections of the corresponding contexts. The parameters
of the context model in Fig. 3(a) are estimated using the
maximum likelihood method.

In Fig.3(b), a conjugate prior is further added to the
node En to handle the cases of limited training sam-
ples for learning the event transitions P (En|En−1, S)
in different scenes. Hence, the parameter learning of
this model is performed in a MAP process with the con-
jugate priors added as in Fig.3(b).

3.2 Event Recognition with Context Model
In the usual case where all three contexts are avail-

able, we would need to infer the marginal probability
P (En|OEn, DOn, DS,DEn−1). Its factorization can
be written as

P (En|OEn, DOn, DS,DEn−1) ∝ P (OEn|En) ·∑
On

{P (On|En)P (DOn|On)} ·
∑

S,En−1

{P (En|S,En−1) ·

P (S)P (DS|S)P (En−1)P (DEn−1|En−1)} (1)

In practice, such inference can be solved with variable
elimination [6]. The classification finds the class label
c∗ that maximizes the the posterior probability as

c∗ = argmax
c

P (En = c|OEn, DOn, DS,DEn−1)

(2)
Moreover, we observe that, when measurements for

certain contexts are missing, the inference using the
model in Fig. 3 would naturally degrade to the model
combining the baseline DBN with only existing con-
text(s). This can be proved by marginalizing the joint
probability distribution over the missing context mea-
surements.

4 Experiments
We use two surveillance datasets to verify our pro-

posed methods. The first dataset is the VIRAT aerial
dataset (ApHill) [12]. We choose to recognize eight
events from this dataset. They are: Loading a Vehicle
(LAV), Unloading a Vehicle (UAV), Opening a Trunk
(OAT), Closing a Trunk (CAT), Getting into a Vehicle
(GIV), Getting out of a Vehicle (GOV), Entering a Fa-
cility (EAF), Exiting a Facility (XAF). Computed tracks
with event category labels are used for both training and
testing with five fold cross validations.

The other dataset is the VIRAT public 1.0
dataset [12]. There are in total six types of events

which form a subset of selected events in VIRAT aerial
dataset. The events are LAV, UAV, OAT, CAT, GIV and
GOV respectively. Currently, the event category labels
of the VIRAT public 1.0 testing dataset are not released.
Therefore, in our experiments, we only use its training
dataset with five fold cross validations.

These two datasets are very challenging compared
to other event/activity/action datasets like KTH [15],
Weizmann [3], and HOHA [8]. The two datasets are
collected in real natural scenes with low resolution
surveillance videos. Also, they focus on complex events
which include the interactions between persons and ve-
hicles. These complex events are more difficult to rec-
ognize than the simple events like walking or running.

4.1 DBN with Object Interaction Context

In this experiment, we show that event recognition
is improved by object context using our context model.
The VIRAT aerial dataset is used, and vehicle is chosen
as the object that person interacts with, where the ve-
hicle detector receives 62.43% recall rate and 33.87%
false alarm rate on this dataset. The event recognition
performance on each event is given as area under ROC
curve shown in Table 1.

Table 1: ROC area comparison for event recognition
with object context in VIRAT aerial dataset.

Events Baseline DBN DBN with Vehicle Context
LAV 0.5510 0.5686
UAV 0.7419 0.7050
OAT 0.4763 0.6003
CAT 0.6225 0.7190
GIV 0.6300 0.7386
GOV 0.6844 0.6939
EAF 0.7685 0.7561
XAF 0.7251 0.7389

Average 0.6499 0.6900

With vehicle context, the event recognition perfor-
mance in VIRAT aerial dataset improves on six of the
eight events, with a 4% improvement on average area of
ROC curves. Beside the ROC curves, we also evaluate
the overall recognition rate on these eight events. The
recognition rate improves from 32.34% to 37.13% with
the help of vehicle context.

4.2 DBN with Scene and Temporal Context

The training dataset in VIRAT public 1.0 dataset
contains three different scenes of parking lots. There
are respectively 5, 28 and 19 video sequences in each
scene. The event sequences in each of these videos are
closely related temporally. Thus, we use such dataset
to verify both the scene and the temporal context. We
apply the scene context, the temporal context and their



combinations. For scene context, our global scene clas-
sifier reaches 95.74% recognition rate on recognizing
these three scenes. The area under ROC curve perfor-
mance comparisons are shown in Table 2.

In Table 2, the global scene context can slightly im-
prove the DBN overall performance by over 1%. The
temporal context, which describes the event tempo-
ral relationships, can improve the DBN overall perfor-
mance by close to 4%. If we incorporate both con-
texts with the DBN model, we can receive above 6%
improvement over the baseline DBN on average area
of ROC curves. In addition, we evaluated the over-
all recognition rate on these six events. With the help
of both contexts, the recognition rate improves from
26.09% to 35.64%.

Table 2: ROC area comparison with scene and temporal
contexts in VIRAT public 1.0 dataset.

DBN +
DBN + DBN + Temporal +

Events DBN Scene Temporal Scene
LAV 0.5501 0.5819 0.5876 0.6507
UAV 0.6192 0.6715 0.4757 0.4760
OAT 0.6157 0.4618 0.7186 0.7291
CAT 0.5911 0.6559 0.7446 0.7409
GIV 0.5416 0.5420 0.5207 0.5674
GOV 0.5364 0.6486 0.6316 0.6601

Average 0.5757 0.5936 0.6131 0.6374

4.3 DBN with Three Contexts Combined

We show the results of utilizing the event-object in-
teraction context, the scene context, and the tempo-
ral context simultaneously in classifying the test se-
quences. We set the VIRAT aerial data set happened
in the fourth scene, and then combine the VIRAT aerial
data set with the VIRAT public 1.0 dataset. With the
combined dataset, the task becomes even more chal-
lenging with more variations brought in. In Fig. 4, we
present the overall recognition rates with five fold cross
validations. An overall 9% improvement can be real-
ized utilizing all contexts.
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Figure 4: Event recognition accuracy with different
combined contexts on combined data.

5 Conclusion
In this work, we focus on event recognition in

surveillance videos. The events in surveillance videos
are challenging due to large intra-class variation, low
image resolution, error and missed tracking etc. To
handle such challenges, we propose a probabilistic con-
text model that systemically combines a baseline DBN
event model with three types of contexts: the object,
scene and event temporal contexts. Experiments on real
surveillance videos show that the contexts can effec-
tively improve the event recognition performance.
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