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Introduction

 Computer vision is about developing algorithms
to automatically process images or videos to
reconstruct, interpret and understand a 3D scene
from its 2D images in terms of the geometric,
spatial, and dynamic properties of the scene
objects.

* Tasks of computer vision include object
detection, object recognition, motion estimation,
and 3D reconstruction.



Model-based Computer Vision

Computer vision traditionally has been model/theory
driven. Various models have been developed

— Projection models
— Photometric models
— Motion models

Domain knowledge about target objects

These models and domain knowledge have contributed to
the success of computer vision in many areas before 2012.

These successes, however, tend to be incremental because

— The models are either too simple to adequately model real world
conditions or too complex to scale up.
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Learning-based Computer Vision

* The latest developments in deep learning (since
2012) has led to significant improvements for some
computer vision tasks, including object detection
and object recognition.

* Object recognition with deep learning has, in fact,
outperformed humans on benchmark datasets.

e Common belief: Bigdata+ deep learning +GPUs will solve
Computer Vision problems and that no models/theories and

domain knowledge are needed !
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Learning-based Computer Vision

e Data Inefficient

— Needs big data and their annotations

* Latest developments involve ever larger models, e.g.,the
largest vision transformer has 2 billion parameters and is
trained with 3 billion images.

* These models are not feasible for many real world
applications, and they are unsustainable theoretically,
economically, and environmentally.

* Poor generalization
— Do not perform well on novel data or across domains

* Lack of interpretability and performance
guarantee

— Black box and cannot accurately quantify its

performance ]



Model-based v. Learning-based

Model-based Learning-based
— Data-driven
— Model and theory-driven — Scale up well
— Can exploit prior knowledge — Perform extremely well

on within-data set
— Data inefficient
— Uninterpretable
— Cannot scale up well — Cannot exploit prior

— Explainable
— Data efficient

— Require strong assumptions knowledge



Knowledge-Augmented Computer Vision

* The long term success of computer vision requires a union of prior
knowledge and data !

* Propose a hybrid vision model that combines mode-based
computer vision with deep learning based computer vision to
leverage their respective strengths and to ground the deep visual
learning in the well-established prior knowledge

* Through the hybrid vision model, prior knowledge and data work
synergistically to produce computer vision algorithms that are

 data efficient- knowledge is transferred to the model, hence reducing dependencies
on data

* robust- prior knowledge reduces solution space and hence improve robustness
e generalizable-prior knowledge is generic, applicable to different domains, and
* interpretable-prior knowledge is based on human-derived theories and studies



Knowledge Augmented Computer Vision

Prior knowledge
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Proposed Research

* Knowledge identification-identify prior knowledge
from different sources

 Knowledge integration-integrate knowledge with
image data for visual understanding



Prior Knowledge

= Computer vision models- formal theories/principles that
control the generation of the 2D images of 3D scenes.

* Target knowledge- theories or studies from different
disciplines that govern the behaviors and properties of
the target objects
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Computer Vision Models

e Photometric models

— lllumination models: Lambertian, BDRF, and Sphere
Harmonic I(c,r) = pL - N(x,y,2)

— Rendering equation
L,(z, ) =Le(m,1}'))+/ fr(z, @, 0)L;(z, ") (@ - n)dw
Q

* Projection models
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Target Knowledge

* Laws, theories, or studies from different disciplines that
govern the properties and behaviors of the target objects.
It varies with target domain.

* Human body is governed by theories and studies from
— Anthropometric studies
— Body anatomy
— Body Biomechanics

— Physics- kinematics and dynamics
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Knowledge Integration

Knowledge integration is to integrate the prior knowledge into
the deep learning to ground the deep learning models in the
well-established prior knowledge.

Knowledge integration is challenging

— Knowledge exists in different formats

* Compute vision models and physics are often represented as mathematical
equations (polynomial equations, ODE, integral equations, algebraic equations) ;
precise and exact.

* Target knowledge such as semantic relationships/dependencies may be expressed
as constraints, graph, or logic rules; qualitative and inexact.

— Knowledge is often incomplete, unambiguous, and uncertain



Knowledge Integration (cont’d)

Knowledge integration in different levels

 Decision level
* Training level
 Architecture level

e Data level



Decision Level Integration

A model-based vision algorithm and a learning based
vision algorithm produce separate independent
predictions.

Their predictions are combined through a joint top-
down and bottom-up inference.

The combined prediction is expected to outperform the
prediction by each algorithm alone.

The same vision model can apply to different learning
models as it is implemented independently.



Decision Level Integration

Model-based Vision

-~ Prediction Level Integration
through Bayes’ Rule
. : : : Prediction
Prior X Likelihood « Posterio Y

nput Bottom-up
data ,
X Estimates Yy

Learning-based Vision



Training Level Integration

* Weakly/self supervised learning

— Produce weak labels by the model-based vision
algorithms and pre-train the deep models using
the weak labels

* Model regularization

— Incorporate the knowledge into the loss function
as regularization terms



Weakly/self-supervised Learning

1. Pre-train the model via self-supervised/weakly
supervised learning

Trainin
Predictions
Loss

4--- Backward — Forward Calculate
Update

2. Fine tune the pre-trained model on target dataset using
small amount of training samples .




Model Regularization

Convert target knowledge into constraints on the
target variablesy

— Variable constraints
* Inequality or equality constraints on target variables y

ay,+b>c and ay,+b=c or more generally, nonlinear
constraints, i.e., f(y _k, a) >or=c

* Implicit equality constraints ¢ (y,0) =0
— f() can be an algebraic, differential or integral equation.

— Probability constraints on p(y)

plyy =a)>p orp(y,=a)>p(y; =) orp(y)



Model Regularization (cont’d)

* Construct regularization terms for the constraints
— Inequality and equality variable constraints

ay, +b>c = | (y)= min(0, ay, +b—c)| or|ay, +b+&—c|

AN

— Equation constraints margin variable

fly,)=0 = L(y)=[f(y,0)]

— Probability constraints
Py, =)z = |, (y)=[min(0, p(y, =a)—-p)| orE,,I(y"y))

— Total loss function
L(y,X,0)=1(y,X,0) + 41, (y) + AL (y) + 4,1, (¥)



Architecture Level Integration

* Incorporate the prior knowledge into the
architecture of the deep model by introducing
additional layers, nodes, module, pathway or
a new activation function.

An encoder and decoder deep model

X—ra—b z—r' —

Neural encoder Physics-based/numerical decoder



Architecture Level Integration

Knowledge Encoding

Architecture Level Integration

Input Z a Predictions Training
data X ' @ @ 4---- P(Y|2) Loss
p(Y) Y*=argmaxyp(Y|Z)
<q--- Backward — Forward Calculate
Update

For structured prediction, replace the softmax layer with a graphical model layer
that captures the dependencies among the target variables.



Data Level Integration

Data level integration converts the prior
knowledge into synthetic data to augment
real data for joint training the deep model.

* Synthetic data generation via simulators

* Synthetic data generation via knowledge
datalization
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Data Generation via Simulators

Encode the knowledge into the simulators and
produce synthetic data by simulation

— A physics engine can be created to capture
kinematic and dynamic laws to predict target’s 3D
physical properties, including locations and velocity.

— A graphic engine can be built to encode computer

vision projection and illumination models to render
Images

Physics Engine Graphic Engine

_ Simulated Image
D?,rnamm.s & :D Projection and :D Data (2D data)
Kinematics Illumnation

Laws Models
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Data Generation via Knowledge Datalization

For target knowledge represented as equations or constraints, e.g. f(y,o)=0
oray+b>c

Convert the knowledge into pseudo-data via sampling to represent the
knowledge

Employ Monto Carlo sampling technique (Metropolis sampling) to
efficiently explore the target space to acquire samples y that satisfy the
knowledge.

— Uniformly sample the target space using the proposal distribution
71— 1

| | 1 | 1 || (n) _YU}”?
f (n)| (n—1) (1) o . Y A
P(y |}' y oy ) o (2ma?)P/2 -1 Z (2702) D/ exp{ 952 }

i=1

— If the sample is consistent with the knowledge, accept it with a probability p.
Otherwise, reject it.

— Repeat until enough samples are collected
1) x4

— Output target samples Y;,Y5,...,Yy < Sl i 7
1) .r'f i .r':: i _r"[ < 1 and .r: = E -
-f'ir: | r'll_:.'-'-' I

4) T1-Ta-T3 <
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Computer Vision Applications

* 3D Human body shape and pose
reconstruction from monocular video

— Body knowledge

* 3D reconstruction from single image

— Projection and illumination models
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Learning-based 3D Body Reconstruction using
Deformable Mesh Model

Input: I Regression Model: (@, B, f’) = f(I,W) Output
» o Iterative error %9
feedback = l
g Pose 6 . Mesh: t AN Skeleton:
ResNets0 | = «?ﬂ p | Shape B M@B N\ Pup=IM@PR
é Camera C JC
MoCap data
* Training requires 3D annotations 8, f# and 2D landmark annotations P, # }ﬂ: (\ &
W* = argmin Ly,0i(P2p; P2p) + L3p(0,5;6,B) )G\ ‘ﬁ?x )Y ﬁ? ) éf
* Issues with learning-based methods W t , U

* Collecting the MoCap data is expensive; MoCap data has limited diversity in demographlcs and poses, and they
generalize poorly to unseen poses and demographics
* Most existing methods are frame-based and hence static, and cannot exploit the body motion.

* Usage of the generic body knowledge to replace MoCap data as supervision
* There exist well-established studies on human bodies from different disciplines
* Body motion must obey the biomedical laws .
* Exploit both static and dynamic body knowledge
* Body knowledge is generic, applicable to different subjects under different body poses, shapes, and motions.



Generic Body Knowledge

Anthropometry:
Scientific study of human body
measurements and proportions

*  Human body consists of body parts

connected by body joints.

*  Body parts lengths follow relative

body proportions.

Body biomechanics:
The study of body movement
mechanisms.

* Body joints have different DOFs
and range of motion.

* Neighboring body joints depend
on each other;.
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Body geometry:

Geometric configuration of body joints

The shoulders, neck, and spine joints
are coplanar, and the hips and pelvis
joints are collinear.

Body joints are symmetric

Body physics:

Study of physics in body

movements.

* Non-penetrating
constraint : different body
parts can not penetrate
each other.

Body dynamics :

Body joint torques and
their motions must
obey Newton second
law or Euler—Lagrange
equation

T .2_.:"‘--3_. :

sl




Generic Body Knowledge Encoding via
Regularization Terms

Knowledge

Anthropometry : impose 20
body parts proportions [; from
literature .

Body geometry: impose joints
0,1,2,3 to be coplanar and
joints 4,5,6 to be colinear

Body biomechanics: Restrict
the joint DoF and it’s range of

motion ((pmini <pmax) from
literature .

Body non-penetrating
constraint: Detect colliding
mesh triangle pairs C;
penalize the penetration
through signed distance
field ¢( - ).

Regularization constraints

20 4
1 L, =1
Lonth = %Z( L. )
i=1 L

Lgeometry = Lcoplanar + Lgeometry £coplanar Lcolinear
_ [(Pgy X Py3) - Py _ |Pgs X Pgs|
IPo1 X Pos]l|Po |l IP4 |l Pss |
23
A~ N 2 P;; denotes a 3D
Lpiomechanic = Z(max{q)i — Pimax> Pimin — Pi» 0}) bone between
i=1 joint i and j.

Lnon—penetrate = { z ”_’Pft(vs) : ns”2 + 2 ”_'Pfs(vt) : nt”Z}
(fs,ft)EC \VsE fs V€ ft
fs, [+ are the
colliding
triangles in
detected

colliding set C.



Body Biomechanics Encoding via Architecture Design
-- Customize the architecture of Encoder-Decoder Network

Dynamics branch

Deformable mass model

T

Consider generic mass ° APpro?(imate body parts
distribution [1], with simple geometry to
augment the mass: compute the inertia:
Generalized position in world frame m(ﬁ) l(ﬁ )
qe = {6, B, T:} \ l /
lc_t(qt), Mt(qt; m, I), Ct(qt, q; m, I) Jacobian, Generalized mass, Generalized bias force
l Training loss:
Neural
Mesh Dynamics ODE L3p_recon =
. =0,BT — - - — /
@ 2 convolution regression Ao Ty Solver qe+1
. E 1
3D mesh sequence Ground reaction (il:l?tgi Refined 3D mesh sequence (qt+1 - qt+1)2
force, joint actuation m

q: = ME‘]Z,M: +1,—C;
Ge+1 = 4e + At{lt
9ev1 = q¢ +Atq,

[1] Full-body musculoskeletal model for muscle-driven simulation of human gait



3D Body Reconstruction and Joint Force
Estimation from Monocular Videos

Overall framework

Dynamics
branch

3

Reconstructed
3D Skeletons

Kinematic
branch

Input X;

Ay Ty

Ground reaction
force, joint actuation

3D mesh sequence

Mesh Dynamics
convolution regression
time . .
Kinematic
’ regression = =P

0, B, C;,T;

Body pose, shape, and
camera parameters

Training loss:

L3D—recon

!
qi+1

Refined 3D mesh sequence

Training loss:
LZD + Lanatomy + Lbiomechanics
+Lgeometry +Lphysics



Evaluation on Existing Benchmarks

Quantitative evaluation

Human3.6M MPI-INF-3DHP
(within- (across dataset)
dataset)
HMR 2D+MoCap 73.3 169.5
data

Our 2D+generic 78.5

Inpul Ours 5PN Inpul Churs SPIN

Conclusion

*  Our method does not need any 3D body annotations

Experiment Settings:

Within dataset: Train and test

on Human3.6m

Across dataset: train on Human3.6m a1
test on MPI-INF-3DHP .

Metric: mean per-joint position error in

Comparison with
SOTA data-driven
method, SPIN, on
unseen scenarios.
Failures of SPIN are
marked with red
circles.

*  Our methods achieves comparable within-dataset performance and outperforms SOTA method for across-dataset performance

* Our method generalizes better to unseen poses.



Real-time 3D Mesh and Skeleton Reconstruction




3D Shape Reconstruction from Single Image

Reconstruct 3D shape of an object from a single image

* Learning-based methods : 3D reconstruction is formulated as a
learning problem, whereby training data is used to learn the
mapping function.

— Given training data (I, Ny), -+, (I,,, N)
— [:input image features, N: surface normal

f,0)

Input Image Surface Normal

— Learn the mapping function f (I, ) to predict N from [
Does not
. : 2 generalize well
—argmin g 2717;1 ZJ'EN(i)”Ni o f(xf' 0) ”2 to different

objects or shapes.



3D Shape Reconstruction from Single Image

* Model based

— 3D shape reconstruction from a singe image (shape from X)
using computer vision models, including illumination and
projection models.

— Problems are ill-posed and need illumination direction

* Hybrid approach that augments the learning-based
approach with computer vision models.



lHlumination model

* Lambertian model
— Surface reflects light equally in all directions
— [: intensity of reflected light
— p: surface albedo
— L:incident light
— N: surface normal

I(c,v) = pL - N(X,y,Z)

Shape from shading method



Projection Model

Full perspective projection

y Image plane
_ _ ) Yer Zc)
[c] s.f 0 cof[*xc Mﬂ/uc o Zc
Alr|=10 S f T yc] :
y 0 Zc
Camera
1 . 0 0 1 . Ze center f

Assuming the object surface can be locally approximated by a
plane and the plane normal is orthogonal to any line
segments on the plane

Ve Image plane

c ﬁ—é N C; Cj
Aij|Ti| = |5 | N=0
Camera f “e 1 1
center




Combining Data and Vision Models

e Basicidea

— Augment the learning-based approach with illumination
and projection models through regularization

N{, -, Np, L*, p* —argmlnz Z |N; — f(xj, 9)” +AZ||1 — pL™N; ||2+ﬂz Z

i=1 jeN(i)

Ti

:
A1

Cj “
Tj ) Nl
1 2

i=1 jeN(i)

Data term

+ NZ + Nj+N;

smoothness term

X w— —F!—h\_l

CNN

IMLP

Lllummatlon model Projection model

ITI

—*  N(x,y,X)




Experimental Results

Performance on benchmark datasets

Error
pasthod MIT/Berkley Harvard
CNN 34.95 28.54
Our model 20.75 21.28
Comparison with related work
Error

Method MIT/Berkley Harvard
GVA [182] 32.09 33.23
SIES [6] 22.92 37.24
Our model 20.75 21.28




Conclusions

Introduce a hybrid vision model based on combining
model-based vision with learning based vision through
systematic integration of prior knowledge with data

Propose two sources of prior knowledge: target knowledge
and computer vision models

To handle the challenges with knowledge and data
integration, introduce four levels of data and knowledge
integration: decision-level, training-level, architecture
level, and data level.

Experiments demonstrate the hybrid model can
significantly improve deep model data efficiency (even
zero-shot), generalization performance, robustness, and
model interpretability.
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