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Abstract

We present a general unified probabilistic decision-
theoretic model based on Influence Diagrams for si-
multaneously modeling both user stress recognition and
user assistance. Stress recognition is achieved through
dynamic probabilistic inference from the available sen-
sory data from multiple-modality sources. User assis-
tance is automatically achieved by balancing the ben-
efits of improving user performance and the costs of
performing user assistance. In addition, a non-invasive
real-time system is built to validate the proposed frame-
work. Utilizing the evidences from four modalities
(physical appearance features, physiological measures,
user performance and behavioral data), the system can
successfully recognize human stress and provide timely
and appropriate assistance in a task-specific environ-
ment.

Introduction
Human stress is a state of tension that is created when a per-
son responds to the demands and pressures that arise from
daily life. Due to the adverse effects of excessive stress, it
is important to monitor such an unhealthy state in a timely
manner and treat it properly.

The causes and manifesting features of human stress have
been extensively investigated in psychology, computer vi-
sion, physiology, behavioral science, ergonomics and human
factor engineering. In spite of the findings from diverse dis-
ciplines, it is still a rather challenging task to develop a prac-
tical human stress monitoring and assistance system. First,
the expression and symptoms of human stress are person-
dependent and context dependent. Second, the sensory ob-
servations are often ambiguous, uncertain, and incomplete.
Third, user’s stress states are dynamic and evolve over time.
Fourth, both stress recognition and user assistance must be
accomplished in a timely and appropriate manner. Finally,
lack of a clear criterion to access ground-truth stress creates
additional difficulty in validating various stress recognition
approaches and user assistance systems.

In this paper, we propose a general dynamic probabilis-
tic decision-theoretic model based on Influence Diagrams
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(IDs) (Howard & Matheson 1984) to unify stress recogni-
tion with user assistance. Such a model yields several ad-
vantages. First, it provides a coherent and fully unified hier-
archical probabilistic framework for representing and inte-
grating the uncertainties embracing human stress modeling
and user assistance determination at different levels of ab-
straction. Second, within the framework, the human stress
detection is cast as a standard probabilistic inference proce-
dure, while the user assistance is formulated as a decision-
making procedure. Third, it naturally incorporates the evo-
lution of human stress and accounts for the temporal aspect
of decision making with the dynamic structure. Thus, such a
model is an ideal candidate to accommodate the aforemen-
tioned challenges compared to other existing mathematical
tools.

We intend to make two contributions. First, we provide
a formal treatment of the theoretical foundations of stress
recognition and automatic user assistance determination.
Second, based on the framework, we develop a non-invasive
real-time system that monitors human stress and provide
user assistance in a task-specific laboratory environment.
The system employs the evidences from four modalities:
physical appearance, behavior, physiological measures, and
performance. In addition, we adopt research results from
psychological theories to validate the system. To the best of
our knowledge, this is the first human stress detection and
assistance system that combines the probabilistic approach
with evidences from the four discrete modalities.

Related Work
Human stress has been studied in a number of diverse dis-
ciplines. Psychologists define emotions, and in particular
stress, as valenced (positive or negative) reactions to situa-
tions consisting of events, actors, and objects (Ortony, Clore,
& Collins 1988). Computer scientists find that facial expres-
sions have a systematic, coherent, and meaningful struc-
ture that can be mapped to affective states (Beatty 1982;
Breazeal 1999). Physiologists demonstrate that high stress
level is accompanied with the symptoms of faster heart beat,
rapid breathing, increased sweating, cool skin, feelings of
nausea, tense muscles and alike. Ergonomic studies indicate
the Inverted-U relationship exists between stress and perfor-
mance of a task (Gardell 1982; Mindtools 2004).

Various approaches have been developed to recognize
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user stress. Physiological measures (EMG, ECG, respira-
tion, and skin conductivity) are exploited to detect stress
in a car driver (Healy & Picard 2000). A skin temperature
measuring system is developed for non-contact stress eval-
uation in (Kataokaet al. 1998). In (Raniet al. 2002), the
sympathetic and parasympathetic activities of the heart of a
human are used to determine human stress level via wavelet
decomposition and fuzzy logic techniques. (Rimini-Doering
et al. 2001) combines several physiological signals and vi-
sual features (eye closure, head movement) to monitor driver
drowsiness and stress in a driver simulator. The approaches
or systems differ from each other in either the evidence
modalities, or inference techniques, or both.

In addition to stress modeling, there is a rich collection
of research on affective states recognition (Hudlicka 2003;
Elliott, Rickel, & Friesen 1999; Kapoor, Picard, & Ivanov
2004). Especially in recent years, researchers have been in-
creasingly interested in applying AI probabilistic represen-
tation and reasoning approaches to model user affect. The
techniques are concerned with graphical models like HMM,
Bayesian Network (BN) and Influence Diagram (ID). (Pi-
card 1997) uses an HMM to model the transitions among
three affective states: interest, joy and distress. HMMs, how-
ever, lack the capability of representing dependencies and
semantices at different levels of abstraction for affect mod-
eling. A dynamic BN is proposed in (Li & Ji 2004) to rec-
ognize user affect and provide user assistance. However, the
user assistance function is triggered by some pre-determined
thresholds since a BN does not possess an explicit represen-
tation for decision making (user assistance). (Conati 2002)
proposes a dynamic decision network to monitor a user’s
emotions and engagement during the interaction with edu-
cational games. However, their work uses only bodily ex-
pression related features and also lack of validation.

Overall, our framework differs from the cited ones in that
it employs the dynamic inference and sequential decision
making techniques to unify stress recognition with user as-
sistance, utilizes evidences from multiple modalities, and is
validated in a real-time system with psychology theories.

A Dynamic Influence Diagram Model
Influence Diagram has been widely used as a knowledge
representation model to facilitate decision-making and prob-
abilistic inference under uncertainty. An ID contains random
nodes, decision nodes, utility nodes and the links that char-
acterize probabilistic relationships or time precedence be-
tween the nodes. A dynamic ID incorporates the evolution
of random variables and accounts for sequential decision-
makings with the temporal links between nodes. Figure 1
presents the dynamic ID for human stress modeling.

The diagram consists of two portions. The upper portion,
from the top to “stress” node, depicts the elements that can
alter human stress. These elements include the workload, the
environmental context, specific character of the user such as
his/her trait, and importance of the goal that he/she is pur-
suing. This portion is calledpredictive portion. On the other
hand, the lower portion of the diagram, from the “stress”
node to leaf nodes, depicts the observable features that re-
veal stress. These features include the quantifiable measures

on the user’s physical appearance, physiology, behaviors,
and performance. This portion is calleddiagnostic portion.
The hybrid structure enables the ID to combine the predic-
tive factors and observable evidences in stress inference.

In the diagnostic portion, to model correlations among ev-
idences from the same modality, an intermediate node is in-
troduced for each type of evidence. For instance, a “phys-
ical” node is introduced to link “stress” and the observable
visual features. The intuition is that the user stress influences
his/her physical status; in turn, his/her physical status influ-
ences the observable features such as eyelid movement, head
movement, facial expression and others. For the same rea-
son, three other nodes “physiological”, “behavior” and “per-
formance” are added as well as their children nodes. These
variables, represented as the intermediate nodes, are hidden.
The bottomEi nodes denote the observable evidences to re-
flect the states of their parents, e.g.,E1 can be the eye clo-
sure speed and blinking frequency, which are two evidences.
The hierarchical structure in the diagnostic portion success-
fully integrates multiple-modality evidences.

In addition to modeling and recognizing human stress, an-
other main function of this framework is to provide timely
and appropriate assistances to relieve stress. Two types of
decision nodes are embedded in the model to achieve this
goal. The first type is the assistance node associated with the
stress node. Assistance actions may have different degrees of
intrusiveness to a user. For example, in one extreme, the as-
sistance can be null if the user is at a decent stress level; in
the other extreme, the user may be interrupted and forced to
quit if he is in a very high stress level. How to design those
assistances should depend on the applications. Another type
of decision node is the sensory action node (Si node in Fig-
ure 1). It controls whether to activate a sensor for collecting
evidences.

Corresponding to the decision nodes, there are three types
of utility nodes. The utility node (Ua) associated with the
assistance node denotes the physical and interruption cost of
performing that assistance. We would assign higher costs to
assistances that require more resources and time, or inter-
rupt user more. The utility node (Usa) associated with both
stress and assistance node indicates the benefit (penalty) of
taking appropriate (inappropriate) assistance. For example,
if a user is in a high stress level, the appropriate assistance
may be to reduce workload level while the inappropriate as-
sistance is to let the user continue his work or increase the
workload. Thus the former should be assigned a high utility
while the latter should be given a low negative utility. The
utility node (Ui) associated with a sensory node denotes the
cost of operating the sensor for evidence collection.

The temporal links in the ID capture the dynamics among
variables and model sequential decision makings. The inter-
slice arc from the stress at time t-1 to that at time t depicts
how the stress self-evolves along time. More arcs can be
added for the context, workload, trait and goal nodes be-
cause they may also change over time. We do not encode
these arcs in the current model without loss of generality.
The intra-slice arc from the assistance node at time t-1 to the
stress at time t indicates the assistance applied in the previ-
ous step may change the stress level in the current step.
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Figure 1:A dynamic Influence Diagram model for recognizing human stress and providing user assistance. For simplicity, we show the
dynamic ID at time t but only draw the ”stress” and ”assistance” nodes at time t-1. Ellipses denote chance nodes, rectangles denote decision
nodes, and diamonds denote utility nodes. Remark that there should be links from eachSi node to assistance node to indicate time precedence.
And also a link from an assistance node at time t-1 to that at time t. We don’t draw it due to space limit.

Dynamic Stress Inference and User Assistance
Given the proposed dynamic ID, this section focuses on the
techniques for recognizing affective states and determining
user assistances.

User

Stress


Active sensing: determine

optimal sensor set S*


Collect Evidence E*


Stress Recognition:

compute p


t


User Assistance:

decide  d


t

*


t=t+1


Figure 2:The flowchart for stress recognition and user assistance

Main Procedures
Figure 2 streamlines the main procedures in applying the dy-
namic ID to stress recognition and user assistance. At each
time stept, the agent performs three procedures – active
sensing, stress recognition, and user assistance. Specifically,
the system decides an optimal sensory action set to collect
evidences with an active sensing strategy. The collected ev-
idences are then propagated through the model and the pos-
terior probabilities of user stresspt is computed with the dy-
namic inference technique. In the meanwhile, the system de-
termines the optimal assistanced?

t that maximizes the over-
all expected utility. After the assistance is performed, the
user stress level may change and new evidences need to be
collected. Thus the system goes to the next step and repeats
the three procedures.

Stress Recognition
One function of the dynamic ID is to recognize user stress.
The system estimates the user stress level at each time stept
from the evidences collected from the selected sensors with
the dynamic inference technique. We first introduce the no-
tations and then define the problem. We shall use the first

character of a node name to refer to the node, i.e.w refer-
ring to workload. In addition, we subscript a variable by
a stept to refer to the variable at timet, i.e. st for stress
node at timet. Under these notations, the ID model spec-
ifies two probabilistic relations: the stress transition model
p(st|st−1, wt, ct, tt, gt, d

∗
t−1) (d∗t−1 denotes the optimal as-

sistance at timet − 1) and the evidence generation model
p(zt|st) wherezt is the set of evidences observed at step
t. The inference at stept is to calculate the probability
p(st|z1:t, d

∗
1:t−1) wherez1:t is the set of all available evi-

dencesz1:t = {zk, k = 1, . . . , t} up to timet. In caset = 0,
p(st|z1:t) degenerates to the priorp(s0).

From a Bayesian point of view, the task is to recursively
computep(st|z1:t, d

∗
1:t−1) from p(st−1|z1:t−1, d

∗
1:t−2). The

task can be accomplished at two stages: prediction using the
predictive portion of the ID and correction using the diag-
nostic portion. In the prediction stage, the prior probability
p(st|z1:t−1, d

∗
1:t−1) of user stress at stept is calculated by

the Chapman-Kolmogorov equation:

p(st|z1:t−1, d
∗
1:t−1) =∑

st−1,wt,ct,tt,gt
p(wt)p(ct)p(tt)p(gt)

p(st−1|z1:t−1, d
∗
1:t−2)p(st|st−1, wt, ct, tt, gt, d

∗
t−1)

(1)

In the correction stage, the evidence setzt is used to up-
date the priorp(st|z1:t−1, d

∗
1:t−1) by Bayes’ rule:

p(st|z1:t, d
∗
1:t−1) = p(zt|st)p(st|z1:t−1,d∗1:t−1)

p(zt|z1:t−1,d∗1:t−1)

= p(zt|st)p(st|z1:t−1,d∗1:t−1)∑
st

p(zt|st)p(st|z1:t−1,d∗1:t−1)

(2)

User Assistance Determination
Another important function of the dynamic ID is to provide
appropriate and timely user assistance. The ID combines
probabilistic reasoning with utilities to decide the optimal
assistance that maximizes the overall expected utility, which
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is defined as the optimal trade-off between the cost and ben-
efit of the assistance. The cost of an assistance may include
operational cost, interruption cost, and the cost of delaying
or not providing the assistance. The benefit of an assistance
is characterized by its potential to return the user to a decent
stress level.

Given an assistance (decision)d, the expected utilityEUd

can be computed as:

EUdt =
∑

s
p(st|z1:t, d

∗
1:t−1)gUsa(st, dt)

+gUa(dt) +
∑

i
gUi(Si)

(3)

where the sum is taken over every possible values of the
stress state,gU is the utility function of a utility nodeU . The
quantityEUd balances the benefit/cost of taking appropri-
ate/inappropriate assistance (the first term), the operational
cost (the second term) of performing assistance, and the op-
erational cost (the third term) of using selected sensors.

The optimal assistanced?
t is the one that maximizesEUd

among all available assistances.

d∗t = argmax
d

EUdt (4)

Thend?
t is applied to the user and may change his stress

level probabilistically as specified in the model.

Model Implementation
We developed a real time human stress monitoring and as-
sistance system to validate the proposed model.

Methodology
One fundamental difficulty in validating a stress monitor-
ing system is lack of ground-truth stress. Some experiments
have shown that even user self-reports are erroneous and
unreliable. Fortunately, the existing results from psycho-
logical studies show that occupational stress is affected by
two job characteristics: demand and control (Karasek 1979;
Searle, Bright, & Bochner 1999). Demand refers to the
amount of attention and effort required to carry out one’s job.
We will interchangeably usedemandandworkload. Control
primarily refers to the decision-making freedom presented
in a job. It is predicted and confirmed that a user becomes
more stressful when workload is higher or when control is
lower (Searle, Bright, & Bochner 1999). Thus in our system,
we vary workload to change a subject’s stress level. We will
thus use workload to represent user stress level, instead of
the (unavailable) ground-truth stress.

System Description
The system is shown in Figure 3. In experiments, a user
sits in front of a computer screen and responds to the pre-
sented tasks. Three cameras are used to monitor user in real
time, where one wide-angle camera focuses on the face and
two narrow-angle cameras focus on the eyes. The captured
videos are used to extract visual evidences. Meanwhile an
emotional mouse is used to collect physiological evidences.
The hardware specification can be found in (Ji, Zhu, & Lan
2004).

In order to alter user stress level, the environment is de-
signed to be task-specific. The user is required to respond to

asynchronously generated two types of tasks: a math task is
about an addition/subtraction arithmetic of two two-digit in-
tegers, and an auditory 2-back task is to determine whether
the current letter (t) is equal to or different from the letter
that was two back (t - 2). Each experiment session consists
of eight 10-minute blocks, where each block consists of six-
teen intervals of 36s. In each block, the tasks are presented
at the speed of 1s, 2s, or 4s. The workload is quantified as
the number of tasks in an interval.

Emotional 


Mouse 


Visual Sensor 


Pressure


Sensor

Photo Sensor


Temperature


Sensor

GSR Sensor


Figure 3:The real-time system

Three types of assistances are designed in the system.
Type one is “no assistance”, which means the system doesn’t
interrupt the user with any action. Type two is to decrease
task presenting rate in an interval. And type three is to play
music and display funny pictures in the screen, instead of
presenting any tasks. From type one to type three, the intru-
siveness to user increases.

Feature Extraction

We collected 16 measures under four categories. All these
measures are obtained non-intrusively and in real-time. 8
measures are extracted from the real-time videos: Blinking
Frequency (BF), Average Eye Closure Speed (AECS), Per-
centage of Saccadic Eye Movement (PerSac), Gaze Spatial
Distribution (GazeDis), Percentage of Large Pupil Dilation
(PerLPD), Pupil Ratio Variation (PRV), Head Movement
(HeadMove), and Mouth Openness (MouthOpen). The de-
tailed description of the visual extracting methods can be
found in (Ji, Zhu, & Lan 2004).

In addition, the eMouse collects 3 physiological measures
– heart rate, skin temperature and Galvanic skin response
(GSR). For behavioral data, we monitor a user’s interaction
activities with the computer – the mouse pressure from fin-
gers (MousePre) each time the user clicks the eMouse. For
performance data, we collect math/audio error rate (Math-
Err, AudioErr) and math/audio response time (MathRes, Au-
dioRes) which are extracted from a log-file that keeps track
of user’s responses to the tasks.

Experiment Results
The system has been tested with five subjects of different
ages, genders and races. Each subject attends two experi-
ment sessions (16 blocks, around 160 minutes). The data
from one session is used for learning with the EM learn-
ing algorithm(Lauritzen 1995), while the data from another
session is used for testing.
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Stress versus Individual Measures
To study the relation between individual measures and
stress, we carry out two types of well-known statistic tech-
niques: ANOVA (Analysis of Variance) test and correlation
analysis.

Measures Subject A Subject B Subject C Subject D Subject E

HeartRate .0001 .0026 .0040 .0041 .0026

GSR .0019 .2289* .0324 .1426* .0089

MousePre .0000 .0013 .0009 .0000 .3813*

AECS .0062 .0001 .0557* .0054 .0001

BF .0000 .0000 .0070 .0368 .0036

GazeDis .0000 .0036 .0723* .0947* .0002

PerSac .0000 .0002 .0318 .0597* .0204

PerLPD .0000 .0204 .0747* .0427 .0001

PRV .0002 .0001 .0510* .0162 .0163

MouthOpen .0036 .0163 .1440* .0114 .0594*

HeadMove .0000 .0094 .1841* .0959* .0000

MathError .0004 .0009 .0377 .0625* .0000

MathResp .0000 .0000 .0141 .4025* .0000

AudioError .0846* .0918* .3285* .3319* .0376

AudioResp .1684* .1979* .0000 .0000 .0087

Table 1:Summary of sensitivity results with ANOVA test. The
data denote the p-values. The values with * denote that the measure
is not sensitive to stress changes for the corresponding subject.

ANOVA is used to determine if the means of each individ-
ual measure differ when the measure is grouped by different
stress levels. In the test, the stress is divided into four levels.
Table 1 displays the ANOVA test results for five subjects.
The data in each cell indicates the p-value. If the p-value is
less than 0.05, it is believed the test result is statistically sig-
nificant, which means the measure is sensitive to stress. The
table shows most measures are sensitive to stress. However,
for different subjects, the same measure may have different
degrees of sensitivity to stress. For example, AECS is sensi-
tive to stress for subject A,B,D, and E, while it is insensitive
for subject C. Also, some measures, e.g., AudioError, are
almost not sensitive for all the subjects.

In correlation analysis, the correlation coefficients be-
tween each individual measure and stress are computed over
time. It reveals how a measure varies as the stress under-
goes changes. The coefficients demonstrate that most mea-
sures are closely correlated to the stress. As stress increases,
a participant blinks less frequently, closes the eyes faster, di-
lates the pupils more often, focuses the eye gaze more on the
screen, moves the head and opens the mouth less frequently,
and clicks the mouse button harder. In the meantime, the
heart rate increases, and GSR decreases.

Stress Recognition
To test whether the system can recognize user stress, in three
test sessions, we purposely set the assistance as “null (no as-
sistance)”; thus the subjects are not interrupted by the sys-
tem. Figure 4 illustrates the results for three subjects, A, B,
and C. In each chart, the solid curve denotes workload. As
discussed earlier, we interpret workload as an indication of
the external stress placed on the subjects. The dashed curve
denotes the inferred stress levels. For subject A, the work-
loads are first gradually increased and then gradually de-

creased. The inferred stress shows the similar pattern. For
subject B, the workloads are very high in the middle of
the experimental period while they are low in the begin-
ning and end. The inferred stress levels follow the similar
trend. For subject C, the workload curve is more compli-
cated. Basically, when the workloads are high(low), the in-
ferred stress levels are also high(low). However, we notice
that even though the workloads are same in the time period
1-18 and 41-48, the inferred stress levels are different, which
may be explained by the “delay effect” caused by high work-
loads in the time period of 19-40. Overall, the experimental
results suggest that our system can successfully monitor hu-
man stress in the task-specific environment.

Optimal Assistance
One primary function of the ID model is to provide timely
and appropriate user assistance. Timely assistance means
that the assistance is provided at time that the user is in
an extreme stress level. Appropriate assistance optimizes the
trade-off between the benefits of bringing the user to a de-
cent stress level versus the costs of performing assistances
and interrupting the user.

10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

Workload
Inferred Stress

Figure 5:Timely and appropriate user assistance. Cross sign de-
notes type two assistance (decreasing task presenting speed); di-
amond sign denotes type three assistance (play music, etc); and
default assistance is “no assistance”.

Figure 5 shows the experimental result for subject D. The
cross and diamond sign denote the assistance of type two
and type three respectively. The default assistance is “no as-
sistance”. The fist assistance is taken around step 32, when
the inferred stress level is around 0.75. This assistance is
to decrease the task presenting speed. Thereafter, the user
stress level decreases and maintains around 0.4. The sec-
ond assistance is automatically taken around the time step
58, when the inferred stress level exceeds 0.8 due to the ex-
terior high workload. The assistance is to play music and
display funny pictures in the screen, thus the workload is
zero during the time period of 57-60. With this assistance,
the inferred stress level drops to around 0.3. The third as-
sistance is taken around the time step 70, when the stress
level goes up again to above 0.7. After the assistance, the
stress level drops to around 0.4 again. In summary, since the
system can automatically provide timely and appropriate as-
sistances, the user stress levels don’t go to very high and thus
the user is able to maintain in a positive state. On the con-
trary, in Figure 4, the user stress level can be as high as 0.9
since no assistance is provided.
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Figure 4:Inferred stress level versus workload: (a) subject A, (b) subject B, and (c) subject C. Each time slice denotes an interval of 36
seconds. The solid curve denotes workload, whose values are normalized to the range of [0 1] while the dashed curve denotes the inferred
stress. We interpret workload as an indication of the external stress placed on the subjects, regarded as “ground-truth” stress.

Conclusion and Future Work
We presented a dynamic ID framework for achieving two
goals: (1) stress recognition by dynamic probabilistic infer-
ence given the multi-modality evidences including physical
appearance features, physiological measures, user perfor-
mance and observed behaviors, and (2) automated user as-
sistance by balancing the benefits of improving user produc-
tivity and the costs of performing possible user assistances.
We built a real-time human stress monitoring and assistance
system to validate the model correctness and effectiveness.
The experiments show that this system can successfully rec-
ognize human stress and provide timely and efficient assis-
tances. Our future work is to extend the current framework
to affective state recognition in addition to stress modelling.
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