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Abstract— The tracking of facial activities from video is an
important and challenging problem. Nowadays, many computer
vision techniques have been proposed to characterize the facial
activities in the following three levels (from local to global):
First, in the bottom level, the facial feature tracking focuses
on detecting and tracking the prominent local landmarks sur-
rounding facial components (e.g. mouth, eyebrow, etc); Second,
the facial action units (AUs) characterize the specific behaviors
of these local facial components (e.g. mouth open, eyebrow
raiser, etc); Finally, facial expression, which is a representation
of the subjects’ emotion (e.g. Surprise, Happy, Anger, etc.),
controls the global muscular movement of the whole face. Most
of the existing methods focus on one or two levels of facial
activities, and track (or recognize) them separately.

In this paper, we propose to exploit the relationships among
multi-level facial activities and track the facial activit ies in the
three levels simultaneously. Specifically, we propose a unified
stochastic framework based on the Dynamic Bayesian network
(DBN) to explicitly represent the facial evolvements in different
levels, their interactions and their observations. By modeling the
relationships among the three level facial activities, theproposed
method can improve the tracking (or recognition) performance
in all three levels.

I. I NTRODUCTION

Facial activity, which is the major source of information
for understanding emotional state and intention, has drawn
growing attention in industry and academia. In recent years,
plenty of the computer vision techniques have been devel-
oped to track or recognize the facial activities in three levels.
In the bottom level, we can capture a detailed face shape by
tracking the facial feature points, which are the prominent
landmarks surrounding facial components. But sometimes we
are only interested in the higher level information, such as
some meaningful facial behaviors, e.g. mouth open, eyebrow
raiser. etc. Based on the psychological studies of Ekman’s
facial action coding system (FACS) [12], we can use the
facial action units (AUs) resulting from the local facial mus-
cular movements to characterize these facial behaviors. Inthe
top level, facial expression analysis attempt to recognizesix
basic facial expressions, i.e., happy, surprise, sadness,fear,
disgust and anger [12]. These basic expressions represent the
global facial muscular movement.

Accurate localization and tracking local facial feature
points is important in the applications such as animation
and human-machine interaction. In general, the facial feature
tracking techniques can be classified into model-free and
model-based algorithms. The model-free algorithms only use
the general purpose point trackers [24], [5]. However, the

point tracker are susceptible to the inevitable errors due
to noise or occlusion. Recently, extensive work has been
focused on the model-based facial feature tracking which
utilized the facial shape constraints, such as active shape
model (ASM) [9], active appearance model (AAM) [8] and
elastic bunch graph matching (EBGM) [29].

In the literature, the facial expression recognition systems
are usually focused on either the recognition of the six typical
expressions [6], [11], [31], [7], [22] or the recognition ofthe
AUs [16], [10], [4], [1], [2], [26], [27] . Since the temporal
facial evolvement brings more information of the expres-
sion/AUs, most attention has been given to the temporal
approach which try to recognize the expression/AUs in the
video sequence. In general, an expression recognition system
consists of two key stages: First, various facial features are
extracted to represent the facial gestures or facial movements,
e.g. dense optical flow are used in [16], [10] to detect the di-
rection and magnitude of the facial movements; Bartleet et al.
[1] convolves the whole face image by a set of Gabor wavelet
kernels, and the resulting Gabor wavelet magnitude are used
as facial features. Given the extracted facial features, the
expression/AUs are identified by recognition engines, suchas
the Neutral Networks [10], [4], [23], Hidden Markov Models
[16], Adaboost classifier [1], [2] and Bayesian networks [7],
[31], [26], [27].

The facial feature tracking, AU recognition and expression
recognition represent the facial activity in three levels,and
they are interdependent problems. For example, the facial
feature tracking can be used in the feature extraction stage
in expression recognition, and the expression recognition
result can provide a prior shape information in the model-
based facial feature tracking. However, most current systems
only track the facial activities in one or two levels, and
track them separately, ignoring their interactions. In addition,
the computer vision measurements in each level are always
uncertain and ambiguous. They are uncertain because of the
presence of noise, occlusion, and of the imperfect nature
of the vision algorithm. They are ambiguous because they
only measure certain aspects of the visual activity, e.g.
the facial feature tracking usually depends on local search
and it is prone to drift, on the other hand, the expression
recognition depends on global features but lose some details.
Therefore, one expects to better infer the facial activities by
systematically combining the measurements from multiple
sources.



The idea of combining tracking with other problem has
been attempted before, such as simultaneous face tracking
and recognition [33], and integrating face tracking with video
coding[21]. Most recently, Fadi et al [11] proposed a si-
multaneous facial action tracking and expression recognition
algorithm. In their algorithm, they track the deformation of
a 3D face mesh. By utilizing the dynamic of the expression
and modeling the relationships between the expression and
the 3D face mesh, the tracking performance is improved.
However, since their model is subject-dependent, they need
to train the model for each subject. Furthermore, they only
model six basic expressions which is a very small subset of
human expressions.

We propose a unified probabilistic framework based on
the dynamic Bayesian network to explicitly model the re-
lationships among the three level facial activities and their
dynamics. This framework can also be seen as an information
fusion process that combine the measurements from multiple
levels. Finally, the expression, AU and facial features are
recovered simultaneously through a probabilistic inference.

Zhang et al. use a DBN for expression recognition [31].
But they perform facial feature tracking and expression
recognition sequentially, i.e. the extracted facial feature is the
input to expression recognition system. In our simultaneous
tracking and recognition model, we explicitly model the
interactions between facial feature tracking and expression
recognition, i.e. the detected expression (or AUs) can also
improve the facial feature tracking result. Furthermore, in-
stead of setting the model parameters manually, we learn
the DBN parameters automatically from large face database,
which includes various expressions and subjects.

II. OVERVIEW OF THE FACIAL TRACKING MODELS

From the tracking point of view, our method is an
extension to the traditional tracking model (e.g., Kalman
Filter), which only model one facial dynamics, and the
simultaneous tracking model in [11] which models multiple
facial dynamics.

A. Tracking with Single Dynamics

The graphical model representation of the traditional track-
ing algorithm is shown in Fig.1(a).Xt is the current hidden
state we want to track,It is the current image measurement.
(Hereafter, the shaded nodes denote the measurement nodes
and the unshaded nodes represent the hidden nodes). The
directed links represent the conditional probabilities, i.e. the
link from Xt to It represents the likelihoodP (It|Xt) and
the link fromXt−1 to Xt represents the first order dynamics
P (Xt|Xt−1).

For online tracking, we want to estimate the posterior
probability based on the previous posterior probability and
the current measurement:

P (Xt|I1:t) ∝ P (It|Xt)

∫
Xt−1

P (Xt|Xt−1)P (Xt−1|I1:t−1) (1)

I1:t is the measurement sequence from frame 1 tot. If both
Xt andIt are continuous and all the condition probabilities
are linear Gaussian, this model is a Linear Dynamic System
(LDS).

B. Simultaneous Tracking with Multiple Dynamics

The above tracking model only have one single dynamics
(P (Xt|Xt−1)), and this dynamics is fixed for the whole
sequence. However, face usually exhibits complex and rich
dynamic behaviors. So the better modeling of dynamics can
provide a powerful cue in the presence of measurement
noise. Most recently, Fadi et. al [11] proposed to model
the facial dynamics for different expressions. Their idea can
be interpreted as the graphical model in 1(b). (Note that,
the model in [11] actually uses second order dynamics, i.e.
there is a link fromXt−2 to Xt. To represent the basic
idea of that paper, we only show this simplified first-order
dynamic model).Xt is the “facial action” which denotes
the movements of facial feature points,Et represents the six
basic expressions, andIt is the image measurement.

This facial tracking model is similar to the Switching
Linear Dynamics System (SLDS) [19], where the high level
state controls the underlying dynamic system. Specifically,
the dynamics of the facial feature “switches” according to
the expression, i.e. the dynamics fromXt−1 to Xt depends
on the current expressionEt. Correspondingly, we can see
thatXt has bothXt−1 andEt as its parents in 1(b) and its
dynamic isP (Xt|Xt−1, Et).

Through this model,Xt andEt can be tracked simultane-
ously, and their posterior probability is:

P (Xt, Et|I1:t) ∝ P (It|Xt) ·
∫
Xt−1,Et−1

P (Xt|Xt−1, Et)

· P (Et|Et−1) · P (Xt−1, Et−1|I1:t−1)
(2)

In [11], they propose to use particle filtering to estimate this
posterior probability.

The above two models track only one or two levels of the
facial activities. And note that, although the algorithm in[11]
track the facial feature and the expression simultaneously,
they only have the measurement for facial features. The
expression doesn’t have direct measurement and its state is
estimated from the lower facial feature level.

III. DBN M ODEL FORMULTI -LEVEL FACIAL TRACKING

Dynamic Bayesian Network (DBN) [18] is a directed
graphical model, which models the temporal evolution of a
set of random variables. Compared with the tracking models
in section II, DBN is more general and can capture complex
relationships among the variables.

We propose to use the DBN model in Figure 1(c) to track
the three levels of facial activities simultaneously. TheEt

node in the top level represents the current expression;UAt

and LAt represent the AUs related to the upper-face and
the AUs related to the lower-face, respectively;UXt and
LXt node denotes the facial feature points on the upper-face
and the facial feature points on the upper-face respectively.
UAMt, LAMt, UXMt and LXMt represent the corre-
sponding measurements of AUs and facial feature points.
We will describe the computer vision techniques to obtain
these measurements in section IV. Note that, although there
is no strong relationship (directly link) between the upper-
face AU and the lower-face AU, it doesn’t mean that they are
independent. Actually, based on the “d-separation” property



(a) The traditional facial feature
tracking model

(b) The simultaneous tracking
model in [11]

(c) The DBN model for simultaneous facial feature tracking and
expression recognition

Fig. 1. Compare DBN with other facial tracking models.

[20], they are still dependent with each other through the
hidden nodeEt.

Given the measurement sequences, the posterior of the
three level facial activities are estimated through the infer-
ence in DBN (section V). And the optimal states are tracked
by maximizing this posterior:

E∗

t , UA∗

t , LA
∗

t , UX∗

t , LX
∗

t = argmax
Et,UAt,LAt,UXt,LXt

P (Et, UAt, LAt, UXt, LXt|UAM1:t, LAM1:t, UXM1:t, LXM1:t)
(3)

Compared with the traditional tracking model with single
dynamics 1(a), our model can capture the relationships a-
mong different levels and recover the facial feature pointsand
expressions simultaneously. Compared with simultaneous
tracking model in 1(b), our model considers both the global
and local expressions, and fuse the information (measure-
ments) from multiple levels to improve the robustness of
tracking and recognition.

Furthermore, since our model structure in each time slice
forms a simple tree, the model learning and inference can
be performed efficiently and accurately. For model learning,
since the model structure is manually set, we only need
to learn the model parameters, i.e. conditional probability
distributions (CPDs) of the nodes. We will shown in Section
III-B that the CPD of each node can be learned separately
and the closed-form solution exists to learn these parameters.
Thus, the model learning is straightforward and stable. For
inference, we will shown in Section V that tracking can be
solved efficiently as an filtering problem in DBN.

A. DBN Model Parameterization

Given the DBN model in Fig.1(c), we need to define
the states for each node and the conditional probability
distribution (CPD) associated with each node. The CPD
defines conditional probability of each node given its parents
P (X |pa(X)). Hereafter,pa(X) is defined as the set of
parent nodes of nodeX . In this section, we will define the
CPD of each node, and the method to learn the parameters
of each CPD is discussed in section III-B

1) Expression Level: In the top expression level, we want
to model the six basic expressions.Et is a discrete node
which has 8 possible states: happiness, sadness, disgust,

surprise, anger, fear, neutral and “others”. The “others” state
denotes all the expressions that cannot be explained by the
basic expressions.

The CPD of the expressionP (Et|Et−1) can be repre-
sented as a8 × 8 transition matrixT whose entriesTe,e′

denotes the probability of the transition from expressione to
e′. Although this matrix can be learned from training data, we
have found that a general near-diagonal matrix works well for
all the sequences. We set the diagonal elements to be close to
one, and the rest percentage are equally distributed for other
expressions. This matrix actually gives a higher probability
to the current expression if it is same as the previous one.

2) AU Level: Our modeling of expression level is similar
to the simultaneous tracking model in section II-B. However,
the six typical expressions only describe the global facial
activities, and they are only a small set of the complex
face expressions. For example, the “surprise” implies a
widely opened mouth and a raise of the eyebrows. But in
applications, the subject may open mouth widely without
raising eyebrows. In this case, the model in section II-B will
encounter problems, because this expression is not included
in the six basic expressions, and there is no facial feature
dynamics defined for this expression.

It is generally believed that the expressions can be de-
scribed linguistically using culture and ethnically indepen-
dent AUs. Such AUs were developed by Ekman and Friesen
in their FACS [12], where each AU is coded based on the
local facial muscle involvements. For example, AU27 (mouth
stretch) describes a widely open mouth, and AU4 (brow
lowerer) makes the eyebrows lower and pushed together. In
[31], they exploit some primary AUs which are highly related
to the six basic facial expressions. Here we model 11 AUs
from these primary AUs. They are listed in Figure 2. (We
only use a subset of AUs because of the limitation of the
training data. In Section. III-B. we use the Cohn-Kanade
database [13] to train our model. These 11 AUs and their
combination covers91% of the data. Each of other AUs only
appears in a few frames, which make it impossible to learn
a probabilistic model.)

Based on our DBN model in figure 1(c), we first group



the AUs into “upper-face AUs (UA)”, including AU1, AU2,
AU4, AU6 and “lower-face AUs (LA)”, including AU12,
AU15, AU17, AU23, AU24, AU25 and AU27. The two AU
groups capture the local facial behaviors of upper-face and
low-face respectively.

Fig. 2. The list of AUs.

Each single AU has two discrete values: 0 and 1 which
represents “presence” and “absence” respectively. However,
if we directly stack these binary AUs into a vector and model
the state of the nodeUA (or LA) with this vector, there will
be too many possible states. For example, for the lower face
AU, there will be27 possible states, but most of them rarely
occur in daily life, i.e. have too few examples in the training
data to learn their probabilities. In this work, we select a
few most frequent AU combinations as typical AUs, and use
the typical AUs as the states of AU node. Specifically,LA

has 8 states including AU25, AU25+AU12, AU25+AU27,
AU12, AU17/AU15, AU23/AU24, “neutral” and “others” and
UA has 6 states includeing AU6, AU6+AU4, AU1+AU2,
AU1+AU4, “neutral” and “others”. (“+” means two AUs
happen together, “/” means either of the two AUs happens.)
Here, the “others” state denotes all the AU combinations that
cannot be explained as typical AUs.

As shown in figure 1(c), the AU node (LA or UA) has
two parents: the previous AU and the current expression.
For instance, the CPD of the lower-face AU is presented
asP (LAt|LAt−1, Et), i.e., the first order dynamics of the
lower-face AU is dependent on the current expressionEt.
More specifically, there is a8 × 8 transition matrix ofLA
and a6× 6 transition matrix ofUA for each expression.

Finally, the measurement nodes (LAM and UAM ) for
the AUs represent their observations obtained through some
computer vision techniques (See section IV). The AU mea-
surement has the same discrete states as its corresponding
AU. So, the conditional probabilityP (LAM |LA) is modeled
as a conditional probability table (CPT) which is a8 × 8
matrix. Similarly, the CPT ofP (UAM |UA) is a6×6 matrix.
And these conditional probabilities represent the measure-
ment uncertainty with the computer vision techniques.

3) Facial Feature Level: In this work, we focus on
the 14 facial features around the mouth and eyebrows (as
shown in Fig.3 ), which have significant movement under
different expressions. Because the eyebrow and mouth shape
in neutral face is different for different subject, to eliminate
the neutral shape variance we subtract the neutral shape from
current shape, and model the shape difference.LX is a 16
dimensional vector which denotes the x,y differences of the

8 mouth points. Similarly,UX denotes differences of the 6
eye brow points.

Fig. 3. The facial feature points round mouth and eyebrows.

Given the local AU, the CPD of facial feature points can be
represented as a Gaussian distribution, e.g., for lower-face:

P (LXt|LAt = k) = N(LXt;µk,Σk) (4)

with the mean shape vectorµk and covariance matrixΣk.
Based on the conditional independence embedded in the BN,
we could learnµk andΣk locally as shown in section III-B

Finally, the measurement nodes of the feature points
represent their observations from computer vision techniques
(See section IV). The facial feature measurements are the
continuous vectors which have the same dimension as their
parents. And CPD of measurement is modeled as a linear
Gaussian distribution [17], e.g., for lower-face:

P (LXMt|LXt = lx) = N(LXMt;WL · lx+ µL,ΣL) (5)

with the mean shape vectorµL, regression matrixWL, and
covariance matrixΣL. These parameters can be learned from
the training data.

B. DBN Model Learning

Given the definition of the CPDs, we need to learn the
parameters of the CPDs from training data. In this learning
process, we manually labeled the expression, the AU, and
the facial features in the training sequences. These labelsare
the ground-truth states of the hidden nodes. The states of
measurement nodes are also obtained by applying various
computer vision techniques in the training sequences (See
section IV). Then we have the complete data for all the
nodes. Based on the conditional independence embedded in
the BN, we could learn each CPD locally.

The Cohn and Kanade’s DFAT-504 database [13] is used
as training data. All the image sequences are coded into
AUs frame by frame to learn the dynamics of AUs. We also
manually label the facial feature points for each frame.

In the AU level, Table I shows the learned transition
matrices ofLA in the expression “happy” and “surprise”.
For clarity, only a few representative elements of the whole
8 × 8 matrix are shown. First, because of the temporal
smoothness, we can see that the self-transitions (diagonal
elements) have higher probabilities. The other transitions
can represent the specific dynamics for each expression.
For instance, in “happy” expression, neutral face has high
probability to transfer to AU12 (lip corner puller), and AU12
has high probability to transfer to AU25+AU12; in “surprise”



(a)

(b)

TABLE I

(A) THE TRANSITION MATRIX OF LA IN “ HAPPY” EXPRESSION. (EACH

ENTRY ai,j REPRESENTSP (LAt = i|LAt−1 = j, Et = happy);

(B)THE TRANSITION MATRIX OF LA IN “ SURPRISE” EXPRESSION.

(EACH ENTRY ai,j REPRESENTS

P (LAt = i|LAt−1 = j, Et = surprise)

expression, the neutral face has high probability to transfer
to AU25 (lip apart), and then AU25 is most likely to further
transfer to AU25+AU27 (mouth stretch).

In the facial feature level, Figure 4 shows 200 samples
drawn from the learned CPDs of the lower-face facial
features:P (LXt|LAt). (The LXt in our model is shape
difference. For clarity, we show the distribution ofLXt by
adding a constant neutral shape:P (LXt+C|LAt), whereC
is a constant neutral shape.) We can see that the local facial
feature distributions for different AUs are different. Thus,
the AU actually can provide a prior probability of the local
shape.

(a) P (LX|LA = AU25) (b) P (LX|LA = AU25+AU12)

(c) P (LX|LA = AU25+AU27) (d) P (LX|LA = AU23/AU24)

Fig. 4. The CPDs of low-face facial features

IV. M EASUREMENTEXTRACTION

The measurement nodes in our model provide evidence
to infer the states of the hidden nodes. Here, we employ
various computer vision techniques to acquire various mea-
surements. First, we perform face and eye detection on the
face. Given the eye centers, the face region is normalized,
and passed through a bank of Gabor filters, and then the
classification result for each AU is obtained by the Adaboost
classifier similar to [2]. These classification result givesthe
AU measurements (LAM andUAM ) which represent the
deformation of the local region.

For the facial feature measurements, we first use the
detection method [28] to obtain the facial feature points
on the neutral face (the subject is asked to pose neutral
expression in the first frame). Then the feature points are
tracked using the state-of-the-art facial feature tracker[28],
which is based on Gabor wavelet matching and active shape
model (ASM). Finally, the shape difference is obtained by
comparing the tracked points with the neutral shape. This
difference gives the facial feature measurements (LXM and
UXM ) to our model.

The extracted measurements are not very accurate due to
the noise of the image and the limitation of the computer
vision technique itself. For example, because the facial
feature tracking is based on local search, its performance will
decrease during fast movement or video continuity. More
specifically, the Gabor wavelet we used for tracking can
estimate the feature displacement accurately up to half of the
wavelength [29], which is 8 pixel in our experiment. Thus, if
the facial feature point movement between two consecutive
frames is large than 8 pixel, the tracking error will increase
significantly. We expect to improve the robustness by com-
bining all the measurements in our model, and inferring the
states of the hidden nodes simultaneously.

V. DBN I NFERENCE: SIMULTANEOUS FACIAL FEATURE

TRACKING AND EXPRESSIONRECOGNITION

Given the DBN model, we want to maximize the posterior
probability of the hidden nodes as Equation 3. In our
problem, the posterior probability of the expression, AUs
and facial features can be computed from the their posterior
of the previous frame:

P (Et, UAt, LAt, UXt, LXt|UAM1:t, LAM1:t, UXM1:t, LXM1:t)
∝ P (UAMt|UAt)P (LAMt|LAt)P (UXMt|UXt)P (LXMt|LXt)
P (UXt|UAt)P (LXt|LAt)

∫
Et−1,UAt−1,LAt−1

P (Et|Et − 1)

P (UAt|UAt−1, Et)P (LAt|LAt−1, Et)
P (Et−1, UAt−1, LAt−1|UAM1:t−1, LAM1:t−1, UXM1:t−1, LXM1:t−1)

(6)
This filtering problem in DBN can be solved by “Interface
algorithm” [18] efficiently.

VI. EXPERIMENTS

A. A Demo Experiment

To demonstrate the effectiveness of our method, we first
conduct a demo experiment on a 15-second video sequence
with various expressions. To make the experiment more
challenging, we capture the video in low-frame rate (6 fps),
so that the expression and facial feature point positions can



change significantly in two consecutive frames. We shown
both the tracking and expression recognition result in detail.

1) Facial Feature Tracking: We compare our DBN model
with the state-of-the-art facial feature tracker introduced in
section IV. The average tracking error (mean square error)
for the 14 facial feature points in each frame is shown in
Figure 5. The dashed line shows the error of the facial feature
tracker, and the solid line is the error of our DBN model.
We can see that their performances are very close in most
frames, except the sequence after frame 72. We shown the
72nd and 73rd frame in the figure, and the feature points
from the baseline system and the DBN model are shown
as white and black shapes respectively. We can see that the
facial feature tracker fails because it is based on local search,
and it cannot track the fast mouth open action in the 73rd
frame. The result of the DBN model is better since the strong
lower-face AU measurement (AU27+AU25) is detected, and
it gives a prior probability of the mouth shape. The average
error over the whole sequence is 2.73 pixels for baseline
tracker and 2.56 pixels for DBN model. (The average error of
eight mouth points is reduced significantly from 2.98 pixels
to 2.43 pixels.)

Fig. 5. The tracking error of 14 facial feature points. The dashed line
shows the error of the facial feature tracker, and the solid line is the error
of the DBN model.

2) AU and Expression Recognition: We also compare our
model with the Adaboost AU classifier introduced in section
IV. For the lower-face AU, the confusion matrices of the
Adaboost AU classifier and the DBN model are shown in
Table II (Only several large elements of the8× 8 matrix are
shown). The Adaboost classifier has the recognition rate of
67%. By combining the mouth shape information from the
facial feature level, DBN model increases the recognition
rate to 83%. As we can see from the confusion matrices,
the DBN model can better distinguish neutral, AU25 and
AU25+12.

Meanwhile, the upper face AU recognition rate is also

(a)

(b)

TABLE II

THE AU RECOGNITION RESULT. (A) THE CONFUSION MATRIX OF

ADABOOSTCLASSIFIER. (B)THE CONFUSION MATRIX OFDBN MODEL.

increased from45% to 69%. Actually, the measurement of
the upper face AU is not accurate (only has45% recognition
rate). However, in our learned DBN model, we found that
the learned CPD ofUAM is close to uniform distribution.
Thus, this noisy measurement will not influence other nodes
too much. And the states of UA can be inferred from other
accurate nodes.

Finally, the expression of each frame is recognized from
all the measurements through DBN inference. Figure 6 shows
the probability of happy and surprise as a function of time.
The expression recognition rate is81% for this sequence.

Fig. 6. The probability of “happy” and “surprise” for each frame. The
dashed line shows the probability of “happy” and the solid line shows the
probability of “surprise”.

B. Result on the Cohn-Kanade Database

The above demo experiment shows how our DBN model
simultaneously improves the tracking and recognition per-
formances. Here we conduct experiment on large dataset.

We test our method on Cohn and Kanade’s DFAT-504
database (C-K database) [13], which includes totally 486



Upper-face
AU (UA)

Lower-face
AU (LA)

eye points
(UX)

mouth points
(LX)

all points Expression

Proposed Method 70.34% 68.88% 2.00 pixels 1.81 pixels 1.89 pixels 60.85%

AU baseline [1] 69.74% 66.41% – – – –
Feature point track-
ing baseline [28]

– – 1.98 pixels 1.99 pixels 1.99 pixels –

TABLE III

COMPARISON WITH START-OF-THE-ART AU RECOGNITION AND FACIAL FEATURE TRACKING SYSTEMS ONC-K
DATABASE. (NOTICE THAT ONLY THE PROPOSED METHOD CAN TRACK DIFFERENT FACIAL ACTIVITIES , I .E. FACIAL

FEATURE POINTS, AU AND EXPRESSION, SIMULTANEOUSLY.)

sequences from 97 subjects covering different races, ages,
and genders. C-K database has been widely used for eval-
uating AU recognition system. Kapoor et al. [14] obtained
81.2% recognition rate on 6 AUs of this database using SVM.
However, they have to manually label facial feature points
for alignment. Bartlett et al. [1] proposed a fully automated
AU recognition system, which first uses face detector and
Gabor filters to extract features and then uses Adaboost for
AU classification. They report overall average recognition
rate of93.6% on 18 AUs, with a true-positive rate (TPR) of
70.39% and false positive rate (FPR) of2.59%. Yan et al.[26]
use a DBN model to capture the spatio-temporal relationships
among AUs. This model achieves93.33% recognition rate
on 14 AUs, with a TPR of86.3% and FPR of5.5%. By
taking the head pose and facial features as the input to DBN
model [25], they further improve the TPR to88.3%.

Some approaches were also proposed to recognize the
global expression in the C-K database. Zhao et al. [32]
proposed to represent the facial expression using a set of
Local Binary Patterns (LBPs), and achieved good recognition
accuracy of96.26% on six basic expressions. Kumano et
al. [15] represented the facial expression with the variable-
intensity template, which described the intensities of a cloud
of points in the vicinity of facial parts. Their method can
achieve high recognition rate for a small number of users.
But for the experiment on 59 subjects in C-K database, the
over-all recognition rate was about70%.

The previous experiments on C-K database only focus on
AU recognition, or global expression recognition, or do them
separately. In our hierarchical model, we track the facial
features, recognize AU, and recognize global expression
simultaneously.

For comparison, we implemented Bartlett et al.’s method
[1] as our baseline AU recognition system. In the experiment
reported on their website [3], they test on 313 frames of peak
AU (i.e., highest magnitude of the target expression) and
313 frames of neutral expression. Using leave-one-subject-
out cross validation, the over all recognition rate is93.6%. In
our experiments, we test on 5070 frames from 463 sequences
in C-K database, including peak AUs, neutral expressions
and weak AUs (low magnitude of target expression). We also
use the leave-one-subject-out cross validation to evaluate our
baseline system on 11 AUs, as shown in Figure 2. It achieves

91.77% recognition rate , with80.52% TPR and5.35% FPR.
The above experiments are focused on classify the bi-

nary state (presence/absence) of each AU. However, some
AU can be combined to represent different expressions,
e.g. AU25+AU27 and AU25+AU12 in Figure 4 represent
different mouth expressions. Our method is focused on
recognizing these AU combinations. As discussed before,
our model classify each frame into one of six upper-face AU
combinations and one of eight lower-face AU combinations.
For this challenging multi-class classification problem, the
baseline system achieves classification rate of69.74% for
upper-face AU and66.41% for lower-face AU.

To evaluate our facial feature tracking result, we also
compare with the state-of-the-art facial feature tracker [28],
which achieves average tracking error (mean square error) of
1.98 pixels for eye feature points and 1.98 pixels for mouth
feature points.

We summarize the results of our proposed methods and
the baseline systems in Table III. We can see that our model
can improve both the AU recognition and facial feature
tracking results, except the tracking result of eye points.
Comparing to eye points, the tracking result of mouth points
is improved. Notice that we can observe the same effect in
the demo experiment in Section.VI-A.1. The reason is that
mouth points undergoes much larger movements than eye
points. Therefore the local-based tracker can be improved
more with our dynamic model.

Besides more accurate facial feature tracking and AU
recognition, our model can recognize 8 global expressions
with recognition rate of60.85%. This result is not as good
as the results of state-of-the-art global expression recognition
methods.e.g. [15],[32] and [30]. However, notice that we
didn’t use any measurement specifically for global expres-
sion. Its state is directly inferred from AU and facial feature
measurement, and from their relationships.

VII. C ONCLUSION

In this paper, we proposed a hierarchical framework for
simultaneous facial activity tracking and recognition. By
considering the relationships among the facial activitiesin
different levels, the experiments show that it can improve
both the tracking and the recognition result.
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