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Abstract— The tracking of facial activities from video is an  point tracker are susceptible to the inevitable errors due
important and challenging problem. Nowadays, many compute  to noise or occlusion. Recently, extensive work has been
vision techniques have been proposed to characterize thedal focused on the model-based facial feature tracking which

activities in the following three levels (from local to glotal): tilized the facial sh traint h fi h
First, in the bottom level, the facial feature tracking focuses U'!1%€ € Tacial shape consfraints, such as active shape

on detecting and tracking the prominent local landmarks sur ~ model (ASM) [9], active appearance model (AAM) [8] and
rounding facial components (e.g. mouth, eyebrow, etc); Send, elastic bunch graph matching (EBGM) [29].

the facial action units (AUs) characterize the specific behaors In the literature, the facial expression recognition syste
of these local facial components (e.g. mouth open, eyebrow 5.6 ygually focused on either the recognition of the sixdgipi
raiser, etc); Finally, facial expression, which is a represntation . .

of the subjects’ emotion (e.g. Surprise, Happy, Anger, etj;, ~EXPressions [6], [11], [31], [7], [22] or th? recognition thfe
controls the global muscular movement of the whole face. Mos AUs [16], [10], [4], [1], [2], [26], [27] . Since the temporal
of the existing methods focus on one or two levels of facial facial evolvement brings more information of the expres-

activities, and track (or recognize) them separately. sion/AUs, most attention has been given to the temporal
In this paper, we propose o exploit the relationships among  5564ch which try to recognize the expression/AUs in the

multi-level facial activities and track the facial activities in the id | | . i ¢
three levels simultaneously. Specifically, we propose a di&d video sequence. In general, an expression recogniiogrsys

stochastic framework based on the Dynamic Bayesian network COnNsists of two key stages: First, various facial features a
(DBN) to explicitly represent the facial evolvements in diferent ~ extracted to represent the facial gestures or facial mox&ne

levels, their interactions and their observations. By modéngthe  e.g. dense optical flow are used in [16], [10] to detect the di-
relationships among the three level facial activities, th@roposed o ¢ion and magnitude of the facial movements: Bartleet et a
method can improve the tracking (or recognition) performance .
in all three levels. [1] convolves the whole face image by a set of Gabor wavelet
kernels, and the resulting Gabor wavelet magnitude are used
|. INTRODUCTION as facial features. Given the extracted facial features, th
Facial activity, which is the major source of informationexpression/AUs are identified by recognition engines, sisch
for understanding emotional state and intention, has dravihe Neutral Networks [10], [4], [23], Hidden Markov Models
growing attention in industry and academia. In recent yearfl6], Adaboost classifier [1], [2] and Bayesian networks [7]
plenty of the computer vision techniques have been devdB1], [26], [27].
oped to track or recognize the facial activities in threelsv The facial feature tracking, AU recognition and expression
In the bottom level, we can capture a detailed face shape bgcognition represent the facial activity in three levelad
tracking the facial feature points, which are the prominerthey are interdependent problems. For example, the facial
landmarks surrounding facial components. But sometimes vieature tracking can be used in the feature extraction stage
are only interested in the higher level information, such ai& expression recognition, and the expression recognition
some meaningful facial behaviors, e.g. mouth open, eyebrawsult can provide a prior shape information in the model-
raiser. etc. Based on the psychological studies of Ekmartesed facial feature tracking. However, most current gyste
facial action coding system (FACS) [12], we can use thenly track the facial activities in one or two levels, and
facial action units (AUs) resulting from the local facial mu track them separately, ignoring their interactions. Initoldl,
cular movements to characterize these facial behavioteeln the computer vision measurements in each level are always
top level, facial expression analysis attempt to recogsize uncertain and ambiguous. They are uncertain because of the
basic facial expressions, i.e., happy, surprise, sadfess, presence of noise, occlusion, and of the imperfect nature
disgust and anger [12]. These basic expressions reprégentof the vision algorithm. They are ambiguous because they
global facial muscular movement. only measure certain aspects of the visual activity, e.g.
Accurate localization and tracking local facial featurehe facial feature tracking usually depends on local search
points is important in the applications such as animatioand it is prone to drift, on the other hand, the expression
and human-machine interaction. In general, the facialfeat recognition depends on global features but lose some sgletail
tracking techniques can be classified into model-free antherefore, one expects to better infer the facial actisibg
model-based algorithms. The model-free algorithms ondy usystematically combining the measurements from multiple
the general purpose point trackers [24], [5]. However, theources.



The idea of combining tracking with other problem had$3. Smultaneous Tracking with Multiple Dynamics

been attempted before, such as simultaneous face trackingrhe apove tracking model only have one single dynamics
and.recognition [33], and integrating face tracking witHed (P(X:|X,_1)), and this dynamics is fixed for the whole
coding[21]. Most recently, Fadi et al [11] proposed a Sisequence. However, face usually exhibits complex and rich
multgneous faC'?' action tracking and expression recmynit gynamic behaviors. So the better modeling of dynamics can
algorithm. In their algorithm, they track the deformatioh 0 provide a powerful cue in the presence of measurement
a 3D face mesh. By uu_hzmg_the dynamic of the expressiofoise. Most recently, Fadi et. al [11] proposed to model
and modeling the relationships between the expression afi facial dynamics for different expressions. Their idea ¢
the 3D face mesh, the tracking performance is improvege interpreted as the graphical model in 1(b). (Note that,
However, since their model is subject-dependent, they neggk model in [11] actually uses second order dynamics, i.e.
to train the model for each subject. Furthermore, they onliyere is a link fromX,_» to X,. To represent the basic
model six basic expressions which is a very small subset @fea of that paper, we only show this simplified first-order
human expressions. o dynamic model).X, is the “facial action” which denotes
We propose a unified probabilistic framework based Oghe movements of facial feature poinfs, represents the six
the dynamic Bayesian network to explicitly model the rep,sic expressions, anfdl is the image measurement.
lationships among the three level facial activities andrthe Thjs facial tracking model is similar to the Switching
dyr_1amics. This frameworl_< can also be seen as an informaFiq)_qhear Dynamics System (SLDS) [19], where the high level
fusion process that comblne_ the measurements from multindgate controls the underlying dynamic system. Specifically
levels. Finally, the expression, AU and facial features arg,e dynamics of the facial feature “switches” according to
recovered simultaneously through a probabilistic infeeen he expression, i.e. the dynamics fro¥h_; to X, depends
Zhang et al. use a DBN for expression recognition [31lon the current expressiol,. Correspondingly, we can see
But they perform facial feature tracking and expressioghat x, has bothX, ; and E, as its parents in 1(b) and its
recognition sequentially, i.e. the extracted facial feaia the  qynamic iSP(X,|X_1, ).
input to expression recognition system. In our simultaiseou " through this modelX; and E; can be tracked simultane-
tracking and recognition model, we explicitly model theously and their posterior probability is:
interactions between facial feature tracking and expoessi X, B P(LIX POXAXs 1 E
recognition, i.e. the detected expression (or AUs) can also (Xe, Bel o) o PUelXe) - [y, | g, P(XelXio1, B
improve the facial feature tracking result. Furthermore, i P(Bil Be—1) - P(Xem1, Bi-a] le-1) @
stead of setting the model parameters manually, we 1ea[f (1] they propose to use particle filtering to estimats th
the DBN parameters automatically from large face databas&osterior probability
which includes various expressions and subjects. The above two models track only one or two levels of the
[I. OVERVIEW OF THE FACIAL TRACKING MODELS facial activities. And note that, although the algorithnjid]
From the tracking point of view, our method is antrack the facial feature and the expression simultanepusly

extension to the traditional tracking model (e.g., Kalmathey only have the measurement for facial features. The
Filter), which only model one facial dynamics, and thefXPression doesn’t have direct measurement and its state is

simultaneous tracking model in [11] which models multipleeStimated from the lower facial feature level.
facial dynamics. [1l. DBN M ODEL FORMULTI-LEVEL FACIAL TRACKING
A. Tracking with Single Dynamics Dynamic Bayesian Network (DBN) [18] is a directed

The graphical model representation of the traditionakirac graphical model, which models the temporal evolution of a
ing algorithm is shown in Fig.1(a)X; is the current hidden Set of random variables. Compared with the tracking models
state we want to track, is the current image measurementin section I, DBN is more general and can capture complex
(Hereafter, the shaded nodes denote the measurement nd@afionships among the variables.
and the unshaded nodes represent the hidden nodes). Th¥/e propose to use the DBN model in Figure 1(c) to track
directed links represent the conditional probabilities, the the three levels of facial activities simultaneously. The
link from X, to I, represents the likelihoo®(I;|X,) and node in the top level represents the current expressioty,

the link from X,_; to X, represents the first order dynamicsand LA, represent the AUs related to the upper-face and
P(X| X¢_1). the AUs related to the lower-face, respectivelyX; and

For online tracking, we want to estimate the posteriof..X; node denotes the facial feature points on the upper-face
probability based on the previous posterior probability anand the facial feature points on the upper-face respegtivel

the current measurement: UAM,, LAM,, UXM, and LX M, represent the corre-
P(X:|It) p([t|Xt)/ P(X| X 1)P(Xi-1|l+—1) (1) sponding measurements of AUs and facial feature points.
Xi1 We will describe the computer vision techniques to obtain

1., is the measurement sequence from frame 4 tbboth these measurements in section IV. Note that, although there
X, and I, are continuous and all the condition probabilitiess no strong relationship (directly link) between the upper
are linear Gaussian, this model is a Linear Dynamic Systeface AU and the lower-face AU, it doesn’t mean that they are
(LDS). independent. Actually, based on the “d-separation” priyper



(a) The traditional facial feature (b) The simultaneous tracking (c) The DBN model for simultaneous facial feature trackimgl a
tracking model model in [11] expression recognition

Fig. 1. Compare DBN with other facial tracking models.

[20], they are still dependent with each other through theurprise, anger, fear, neutral and “others”. The “othetates

hidden noder,. . denotes all the expressions that cannot be explained by the
Given the measurement sequences, the posterior of thgsic expressions

three level facial activities are estimated through therinf ' .

ence in DBN (section V). And the optimal states are tracked The CPD of the expressiof(E;|E;—1) can be repre-

by maximizing this posterior: sented as & x 8 transition matrixT" whose entriesl ./
Ef,UA}, LA} UX}, LX} = argmax denotes the pr_obabili_ty of the transition from e?(pressjchu
By ,UAy, LAy, UX¢,LXy e’. Although this matrix can be learned from training data, we

P(E4, UAg, LAy, UXy, LX{|UAM. ‘ : A ; .
(Be, UA, LA, UXe, LX:| l't’LAM“’UXMl't’LXMl'f% have found that a general near-diagonal matrix works well fo

Compared with the traditional tracking model with singlea" the sequences. We set the diagonal elements to be close to
dynamics 1(a), our model can capture the relationships ne., and the rest percentage are equally distributed fer oth
mong different levels and recover the facial feature paints ~ €Xpressions. This matrix actually gives a higher probbili
expressions simultaneously. Compared with simultaneol@ the current expression if it is same as the previous one.
tracking model in 1(b), our model considers both the global 2) AU Level: Our modeling of expression level is similar
and local expressions, and fuse the information (measurié the simultaneous tracking model in section II-B. However
ments) from multiple levels to improve the robustness ofhe six typical expressions only describe the global facial
tracking and recognition. activities, and they are only a small set of the complex

Furthermore, since our model structure in each time slid@ce expressions. For example, the “surprise” implies a
forms a simple tree, the model learning and inference camdely opened mouth and a raise of the eyebrows. But in
be performed efficiently and accurately. For model learningpplications, the subject may open mouth widely without
since the model structure is manually set, we only negdising eyebrows. In this case, the model in section 1I-B wil
to learn the model parameters, i.e. conditional probgbilittncounter problems, because this expression is not intlude
distributions (CPDs) of the nodes. We will shown in Sectioh the six basic expressions, and there is no facial feature
lIl-B that the CPD of each node can be learned separateflynamics defined for this expression.
and the closed-form solution exists to learn these paramete It is generally believed that the expressions can be de-
Thus, the model learning is straightforward and stable. F&cribed linguistically using culture and ethnically inéep
inference, we will shown in Section V that tracking can belent AUs. Such AUs were developed by Ekman and Friesen

solved efficiently as an filtering problem in DBN. in their FACS [12], where each AU is coded based on the
o local facial muscle involvements. For example, AU27 (mouth
A. DBN Model Parameterization stretch) describes a widely open mouth, and AU4 (brow

Given the DBN model in Fig.1(c), we need to defindowerer) makes the eyebrows lower and pushed together. In
the states for each node and the conditional probabilif1], they exploit some primary AUs which are highly related
distribution (CPD) associated with each node. The CPIb the six basic facial expressions. Here we model 11 AUs
defines conditional probability of each node given its peenfrom these primary AUs. They are listed in Figure 2. (We
P(X|pa(X)). Hereafter,pa(X) is defined as the set of only use a subset of AUs because of the limitation of the
parent nodes of nod& . In this section, we will define the training data. In Section. IlI-B. we use the Cohn-Kanade
CPD of each node, and the method to learn the parametelatabase [13] to train our model. These 11 AUs and their
of each CPD is discussed in section IlI-B combination cover81% of the data. Each of other AUs only

1) Expression Level: In the top expression level, we want appears in a few frames, which make it impossible to learn
to model the six basic expressiong; is a discrete node a probabilistic model.)
which has 8 possible states: happiness, sadness, disgusBased on our DBN model in figure 1(c), we first group



the AUs into “upper-face AUs (UA)", including AU1, AU2, 8 mouth points. Similarly[/ X denotes differences of the 6
AU4, AU6 and “lower-face AUs (LA)", including AU12, eye brow points.
AU15, AU17, AU23, AU24, AU25 and AU27. The two AU

groups capture the local facial behaviors of upper-face and A A.

low-face respectively.
©) <>

AU1 AU2 AUB AU12 AU15

af A ld B8 =) J L

Inner Brow Raiser |Outer Brow Raiser| Brower Lowerer| Cheek Raiser | Lip Corner Puller Lip Corner Depressor /
AU17 AU23 AU24 AU25 AU27
. am -
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Chin Raiser Lip Tightener Lip Pressor Lips part Mouth Stretch

Fig. 3. The facial feature points round mouth and eyebrows.

Fig. 2. The list of AUs. Given the local AU, the CPD of facial feature points can be

represented as a Gaussian distribution, e.g., for lonaa:fa
Each single AU has two discrete values: 0 and 1 which P(LX|LA;: = k) = N(LX4: jux, ) 4)
represents “presence” and “absence” respectively. Howeve
if we directly stack these binary AUs into a vector and modelwith the mean shape vectpr, and covariance matriXy.
the state of the nod& A (or L A) with this vector, there will Based on the conditional independence embedded in the BN,
be too many possible states. For example, for the lower fawee could learnu;, andX; locally as shown in section I1I-B

AU, there will be27 possible states, but most of them rarely Finally, the measurement nodes of the feature points
occur in daily life, i.e. have too few examples in the tragin represent their observations from computer vision teafesq
' See section V). The facial feature measurements are the

data to learn their probabilities. In this work, we select ontinuous vectors which have the same dimension as their
few most frequent AU combinations as typical AUs, and usparents. And CPD of measurement is modeled as a linear
the typical AUs as the states of AU node. Specificallyl ~ Gaussian distribution [17], e.g., for lower-face:

has 8 states including AU25, AU25+AU12, AU25+AU27, )

AU12, AU17/AU1S5, Aug23/AU24, ‘neutral’ and “others”and  © (X MelEXe = Le) = NLXM W o ju, 30) - (9)
UA has 6 states includeing AU6, AU6+AU4, AU1+AU2, with the mean shape vectpr,, regression matri¥y, and
AU1+AU4, “neutral” and “others”. (“+” means two AUs covariance matrix;. These parameters can be learned from
happen together, “/” means either of the two AUs happendfe training data.

Here, the “others” state denotes all the AU combinations tha )

cannot be explained as typical AUs. B. DBN Model Learning

As shown in figure 1(c), the AU nodd @ or U A) has Given the definition of the CPDs, we need to learn the
two parents: the previous AU and the current expressioparameters of the CPDs from training data. In this learning
For instance, the CPD of the lower-face AU is presentegrocess, we manually labeled the expression, the AU, and
as P(LA:|LA;:_1, E;), i.e., the first order dynamics of the the facial features in the training sequences. These labels
lower-face AU is dependent on the current expresdign the ground-truth states of the hidden nodes. The states of
More specifically, there is & x 8 transition matrix of LA  measurement nodes are also obtained by applying various
and a6 x 6 transition matrix ofU A for each expression.  computer vision technigues in the training sequences (See

Finally, the measurement nodesAM and UAM) for section IV). Then we have the complete data for all the
the AUs represent their observations obtained through somedes. Based on the conditional independence embedded in
computer vision techniques (See section IV). The AU meahe BN, we could learn each CPD locally.
surement has the same discrete states as its correspondinghe Cohn and Kanade’'s DFAT-504 database [13] is used
AU. So, the conditional probabilit’(LAM|LA) is modeled as training data. All the image sequences are coded into
as a conditional probability table (CPT) which is8ax 8 AUs frame by frame to learn the dynamics of AUs. We also
matrix. Similarly, the CPT oP(UAM|U A) is a6x6 matrix. ~manually label the facial feature points for each frame.

And these conditional probabilities represent the measure In the AU level, Table | shows the learned transition
ment uncertainty with the computer vision techniques. matrices of LA in the expression “happy” and “surprise”.

3) Facial Feature Level: In this work, we focus on For clarity, only a few representative elements of the whole
the 14 facial features around the mouth and eyebrows (8sx 8 matrix are shown. First, because of the temporal
shown in Fig.3 ), which have significant movement undesmoothness, we can see that the self-transitions (diagonal
different expressions. Because the eyebrow and mouth shaglements) have higher probabilities. The other transition
in neutral face is different for different subject, to elmte can represent the specific dynamics for each expression.
the neutral shape variance we subtract the neutral shape fré&or instance, in “happy” expression, neutral face has high
current shape, and model the shape differeficeé.is a 16 probability to transfer to AU12 (lip corner puller), and ARI1
dimensional vector which denotes the x,y differences of thieas high probability to transfer to AU25+AU12; in “surprise



Neutral | 25 25+12 12
Meutral | 0.5235 | 0.0157 | 0.0830 |0.3717

IV. MEASUREMENTEXTRACTION

25 00002 | 03633 | 0.6356 | 0.0002 The measurement nodes in our model provide evidence
25+12 | 0.0000 | 0.0000 | 0.9975 | 0.0024 to infer the states of the hidden nodes. Here, we employ
12 0.0000 [ 00000 | 0.1773 | 0.8227

various computer vision techniques to acquire various mea-

@ surements. First, we perform face and eye detection on the

Teutral | 25 25+12 | 25+27 | 12 . c e i
Weural | 06022 | 02341 (00000 | 01023 00057 face. Given the eye centers, the face region is normalized,
25 0.0000 | 04347 |0.0000 | 05651 | 0.0000 and passed through a bank of Gabor filters, and then the
25+12 | 0.0010 | 0.0010 | 0.4971 ) 0.4971 | 0.0010 classification result for each AU is obtained by the Adaboost
Z5+Z7 | 0.0000 | 00000 | 0.0000 | 09999 | 0.000D lassifier similar to 121, Th lassificat It aive
5 ST00s Tooooe To335 (ooos [ oeaas classifier similar to [2]. These classi ication result gives
®) AU measurementsl(AM and U AM) which represent the
deformation of the local region.
TABLE |

For the facial feature measurements, we first use the
detection method [28] to obtain the facial feature points
on the neutral face (the subject is asked to pose neutral
expression in the first frame). Then the feature points are
tracked using the state-of-the-art facial feature tragk8t,
which is based on Gabor wavelet matching and active shape
model (ASM). Finally, the shape difference is obtained by
comparing the tracked points with the neutral shape. This
expression, the neutral face has high probability to temsfdifference gives the facial feature measuremeht¥ {/ and
to AU25 (lip apart), and then AU25 is most likely to furtherUX M) to our model.
transfer to AU25+AU27 (mouth stretch). The extracted measurements are not very accurate due to

In the facial feature level, Figure 4 shows 200 sampleifie noise of the image and the limitation of the computer
drawn from the learned CPDs of the lower-face faciavision technique itself. For example, because the facial
features: P(LX,|LA;). (The LX, in our model is shape feature tracking is based on local search, its performaiite w
difference. For clarity, we show the distribution 6fx, by —decrease during fast movement or video continuity. More
adding a constant neutral shapg®(L X, + C|LA,), whereC specifically, the Gabor wavelet we used for tracking can
is a constant neutral shape.) We can see that the local fackgtimate the feature displacement accurately up to halfeof t

feature distributions for different AUs are different. Bhu Wwavelength [29], which is 8 pixel in our experiment. Thus, if
the AU actua”y can provide a prior probabi"ty of the |Oca|the facial feature point movement between two consecutive

(A) THE TRANSITION MATRIX OF LA IN “HAPPY” EXPRESSION (EACH
ENTRY a;,j REPRESENTSP(LA; = i|LA;_1 = j, Bt = happy);
(B)THE TRANSITION MATRIX OF LA IN “SURPRISE EXPRESSION

(EACH ENTRY a; j REPRESENTS
P(LA¢ =i|LA¢—1 = j, By = surprise)

shape. frames is large than 8 pixel, the tracking error will increas
significantly. We expect to improve the robustness by com-
- . ‘ bining all the measurements in our model, and inferring the

states of the hidden nodes simultaneously.

V. DBN INFERENCE: SIMULTANEOUS FACIAL FEATURE
TRACKING AND EXPRESSIONRECOGNITION

Given the DBN model, we want to maximize the posterior
probability of the hidden nodes as Equation 3. In our
problem, the posterior probability of the expression, AUs
and facial features can be computed from the their posterior
of the previous frame:

P(E;,UAy, LA, UXy, LX,|UAM.t, LAMy.., UX M., LX M.;)
o P(UAM,|UA;)P(LAM,|LA,)P(UXM,|UX,)P(LXM,;|LX;)

(8) P(LX|LA = AU25) (b) P(LX|LA = AU25+ AU12)

. “ ‘ PUXUA)P(LXALA) [5  ya o pa, o P(EE ~ 1)
-40 0 1 P(UAt|UAt71, Et)P(LAt|LAt71, Et)
20 0 1 P(Ey—1,UA4—1, LA 1[UAMy.4—1, LAM .1, UX M.y —1, LXMi:4—1)

(6)
This filtering problem in DBN can be solved by “Interface
algorithm” [18] efficiently.

V1. EXPERIMENTS
A. A Demo Experiment

To demonstrate the effectiveness of our method, we first
conduct a demo experiment on a 15-second video sequence
with various expressions. To make the experiment more
Fig. 4. The CPDs of low-face facial features challenging, we capture the video in low-frame rate (6 fps),
so that the expression and facial feature point positioms ca

50
50 -50 0 50

() P(LX|LA = AU25+AU27)  (d) P(LX|LA = AU23/AU24)



Neutral | AU25 | AU25+12 | AU25+27 | AUL2 | Recognition

change significantly in two consecutive frames. We shown Rate
both the tracking and expression recognition result inideta  [Newtral |20 |z 0 1 7%
. . AU2S 0 4 0 0 1 20%

_1) Facial Feature Tracklng:_ We compare our I_DBN quel FGIEISERR) 5 20 0 o 5%
with the state-of-the-art facial feature tracker introgdidn AT25+27 | 0 0 0 16 0 94%

Total Recogmtion Rate:  67%

(@)

section IV. The average tracking error (mean square error)
for the 14 facial feature points in each frame is shown in

- ATT2S 254172 235427 2 onitl
Figure 5. The dashed line shows the error of the facial featur evial | AUZS | AUZSHLZ | ACRIZT | AVLZ | Repe o
tracker, and the solid line is the error of our DBN model. [ Newtal 130 |1 19 : -
We can see that their performances are very close in most [Atzs+iz o 3 30 0 0 91%
frames, except the sequence after frame 72. We shown the [ AU25+27 | 0 3 ! — Rleimiﬁmgm_ 8(3
72nd and 73rd frame in the figure, and the feature points (b)‘ - —
from the baseline system and the DBN model are shown TABLE |

as white and black shapes respectively. We can see that the
facial feature tracker fails because it is based on locathea

and it cannot track the fast mouth open action in the 73r
frame. The result of the DBN model is better since the strong
lower-face AU measurement (AU27+AU25) is detected, and

it gives a prior probability of the mouth shape. The average - o-ced fromi5% to 69%. Actually, the measurement of
error over the whole sequence is 2.73 pixels for baseling upper face AU is not accurate (only h&&% recognition
tracker and 2.56 pixels for DBN model. (The average error g te). However, in our learned DBN model, we found that
eight mouth points is reduced significantly from 2.98 pixel§he learned CF;D ot/ AM is close to uniforrh distribution.

THE AU RECOGNITION RESULT (A) THE CONFUSION MATRIX OF
&DABOOSTCLASSIFIER. (B)THE CONFUSION MATRIX OFDBN MODEL.

to 2.43 pixels.) Thus, this noisy measurement will not influence other nodes
too much. And the states of UA can be inferred from other
& : g g y ; ‘ accurate nodes.

]
2

Finally, the expression of each frame is recognized from
all the measurements through DBN inference. Figure 6 shows
the probability of happy and surprise as a function of time.
The expression recognition rate§$% for this sequence.

e
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Tracking Error (pfkel difference per point)
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Fig. 5. The tracking error of 14 facial feature points. Thetu line Frame #14 Frame #35 Frame#59 Frame=74

shows the error of the facial feature tracker, and the saoliel is the error
of the DBN model.

wa— Hm P E Vo .
2) AU and Expression Recognition: We also compare our elﬂ ﬁ Q‘j ﬁ‘“ﬂ ﬁ "“ﬂ

model with the Adaboost AU classifier i_ntroduced in sectioq:ig 6. The probability of “happy” and “surprise” for eactaine. The

IV. For the lower-face AU, the confusion matrices of thedashed line shows the probability of “happy” and the solit Ishows the

Adaboost AU classifier and the DBN model are shown irprobability of “surprise”.

Table Il (Only several large elements of tRex 8 matrix are

shown). The Adaboost classifier has the recognition rate of

67%. By combining the mouth shape information from theB. Result on the Cohn-Kanade Database

facial feature level, DBN model increases the recognition The above demo experiment shows how our DBN model

rate t083%. As we can see from the confusion matricessimultaneously improves the tracking and recognition per-

the DBN model can better distinguish neutral, AU25 andormances. Here we conduct experiment on large dataset.

AU25+12. We test our method on Cohn and Kanade’s DFAT-504
Meanwhile, the upper face AU recognition rate is alsalatabase (C-K database) [13], which includes totally 486



Upper-face Lower-face eye points| mouth points all points Expression
AU (UA) AU (LA) (UX) (LX) P P
Proposed Method 70.34% 68.88% 2.00 pixels 1.81 pixels 1.89 pixels 60.85%
AU baseline [1] 69.74% 66.41% - - - -
Feature point track{ . . .
ing baseline [28] - - 1.98 pixels 1.99 pixels 1.99 pixels -
TABLE Il

COMPARISON WITH STARFOF-THE-ART AU RECOGNITION AND FACIAL FEATURE TRACKING SYSTEMS ONC-K
DATABASE. (NOTICE THAT ONLY THE PROPOSED METHOD CAN TRACK DIFFERENT FA@IL ACTIVITIES, I.E. FACIAL
FEATURE POINTS AU AND EXPRESSION SIMULTANEOUSLY.)

sequences from 97 subjects covering different races, agés,77% recognition rate , witt80.52% TPR and5.35% FPR.
and genders. C-K database has been widely used for eval-The above experiments are focused on classify the bi-
uating AU recognition system. Kapoor et al. [14] obtainedhary state (presence/absence) of each AU. However, some
81.2% recognition rate on 6 AUs of this database using SVMAU can be combined to represent different expressions,
However, they have to manually label facial feature points.g. AU25+AU27 and AU25+AU12 in Figure 4 represent
for alignment. Bartlett et al. [1] proposed a fully autonthte different mouth expressions. Our method is focused on
AU recognition system, which first uses face detector angcognizing these AU combinations. As discussed before,
Gabor filters to extract features and then uses Adaboost fear model classify each frame into one of six upper-face AU
AU classification. They report overall average recognitio@ombinations and one of eight lower-face AU combinations.
rate 0f93.6% on 18 AUs, with a true-positive rate (TPR) of For this challenging multi-class classification probleime t
70.39% and false positive rate (FPR) 2f59%. Yan et al.[26] baseline system achieves classification rates@74% for

use a DBN model to capture the spatio-temporal relatiosshippper-face AU and6.41% for lower-face AU.

among AUs. This model achievé8.33% recognition rate To evaluate our facial feature tracking result, we also
on 14 AUs, with a TPR oB6.3% and FPR of5.5%. By  compare with the state-of-the-art facial feature tracai,[
taking the head pose and facial features as the input to DBRhich achieves average tracking error (mean square erfror) o
model [25], they further improve the TPR &3.3%. 1.98 pixels for eye feature points and 1.98 pixels for mouth

Some approaches were also proposed to recognize tieature points.
global expression in the C-K database. Zhao et al. [32] We summarize the results of our proposed methods and
proposed to represent the facial expression using a set the baseline systems in Table Ill. We can see that our model
Local Binary Patterns (LBPs), and achieved good recogniticcan improve both the AU recognition and facial feature
accuracy 0f96.26% on six basic expressions. Kumano etiracking results, except the tracking result of eye points.
al. [15] represented the facial expression with the vaetabl Comparing to eye points, the tracking result of mouth points
intensity template, which described the intensities ofaudl is improved. Notice that we can observe the same effect in
of points in the vicinity of facial parts. Their method canthe demo experiment in Section.VI-A.1. The reason is that
achieve high recognition rate for a small number of usergnouth points undergoes much larger movements than eye
But for the experiment on 59 subjects in C-K database, thsoints. Therefore the local-based tracker can be improved
over-all recognition rate was abou®%. more with our dynamic model.

The previous experiments on C-K database only focus on Besides more accurate facial feature tracking and AU
AU recognition, or global expression recognition, or donthe recognition, our model can recognize 8 global expressions
separately. In our hierarchical model, we track the faciakith recognition rate 060.85%. This result is not as good
features, recognize AU, and recognize global expressias the results of state-of-the-art global expression meitiog
simultaneously. methods.e.g. [15],[32] and [30]. However, notice that we

For comparison, we implemented Bartlett et al.’s methodidn’t use any measurement specifically for global expres-
[1] as our baseline AU recognition system. In the experimersion. Its state is directly inferred from AU and facial fetu
reported on their website [3], they test on 313 frames of pedReasurement, and from their relationships.

AU (i.e., highest magnitude of the target expression) and
313 frames of neutral expression. Using leave-one-subject
out cross validation, the over all recognition rat®3s6%. In

our experiments, we test on 5070 frames from 463 sequencesn this paper, we proposed a hierarchical framework for
in C-K database, including peak AUs, neutral expressiorsmultaneous facial activity tracking and recognition. By
and weak AUs (low magnitude of target expression). We alsmonsidering the relationships among the facial activities
use the leave-one-subject-out cross validation to evalmat  different levels, the experiments show that it can improve
baseline system on 11 AUs, as shown in Figure 2. It achievésth the tracking and the recognition result.

VIl. CONCLUSION
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