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Abstract

Segmentation of video sequences requires the segmenta-
tions of consecutive frames to be consistent with each other.
We propose to use a three dimensional Conditional Ran-
dom Fields (CRF) to address this problem. A triple of con-
secutive image frames are treated as a small 3D volume to
be segmented. Our spatial-temporal CRF model combines
both local discriminative features and the conditional ho-
mogeneity of labeling variables in both the spatial and the
temporal domain. After training the model parameters with
a small set of training data, the optimal labeling is obtained
through a probabilistic inference by Sum-product loopy be-
lief propagation. We achieve accurate segmentation results
on the standard video sequences, which demonstrates the
promising capability of the proposed approach.

1. Introduction and the Related Work

Object segmentation of video sequences has many appli-
cations in security surveillance, video tracking, video com-
pression, etc. Given a sequence of image frames, the goal
is to segment the objects of interest (ROI) in each frame.
Object segmentation of image sequences is different from
segmentation of each frame independently. Assuming the
motion of the object of interest is smooth, the segmentations
of consecutive frames shall be consistent with each other. In
another sense, the temporal homogeneity of segmentation is
one constraint for video sequence segmentation.

Different approaches have been proposed to address the
problem of video sequence segmentation. Since the objects
of interest are often the moving objects in image frames,
motion information (e.g. the optical flow) has been suc-
cessfully used for video sequence segmentation [4] [3] [20].
However, accurate calculation of optical flow is not a triv-
ial problem, especially at the boundary of objects [13]. On
the other hand, pixel colors also provide useful informa-
tion and have been used for segmentation. It is possible to
use color features to find accurate segmentation along the

object boundary. But color segmentation does not exploit
the relationship between two consecutive image frames in a
video sequence. Segmentation based on only color cannot
guarantee the segmentations of two consecutive frames to
be consistent with each other. In addition, there are obvious
relationships among the labeling of spatially adjacent pixels
because the natural objects tend to have a smooth change of
features in the spatial domain. It is natural that adjacent pix-
els with similar features tend to belong to the same object.
Due to these reasons, it is necessary to exploit both the tem-
poral and spatial relationships to facilitate the segmentation
of video sequences.

Researchers have applied Markov Random Fields
(MRF) for segmenting video sequences. MRF is an undi-
rected graphical model. It provides a general method for
modeling the relationship of neighboring labeling random
variables. Standard MRF models the apriori homogeneity
assumption of labels in certain neighborhood systems. Ac-
cording to the Hammersley-Clifford theorem [8], a MRF
model can be easily defined by a set of potential func-
tions specified in cliques. For a detailed introduction to
MRF model, we refer to [16] [23]. MRF models have been
widely used in solving segmentation problems [6] [21] [19]
[1] [11] [33] [30]. Although MRF models have been suc-
cessfully applied in computer vision, they have some limi-
tations. Standard MRF segmentation models often assume
the conditional independent likelihood of the observed data,
given the label of a site (i.e. the single node in the MRF
model). This assumption is too restrictive because there
are often complex relationships among the data. Moreover,
standard MRF segmentation models enforce the homogene-
ity of the labeling variables (i.e. the Markovian property)
everywhere. However, the homogeneity of labeling vari-
ables may not be true for every place, especially in the re-
gions with strong discontinuity. Additional process such
as the line process [16] can deal with the discontinuity of
labeling variables. However, this makes the segmentation
process more complex.

Conditional Random Fields (CRF) [15] is another class



of undirected graphical model. It makes the Markovian as-
sumption of the labeling variables conditioned on the ob-
servation. It relaxes the normal conditional independence
assumption of the likelihood model in MRF models. CRF
model enforces the homogeneity of labeling variables con-
ditioned on the observation. It therefore can automatically
handle the discontinuity of labeling variables. Different
from the MRF model, the CRF model does not model the
probability density of the data. Therefore it is basically a
discriminative model that aims to distinguish different sites.
Due to the weak assumptions of CRF model and its dis-
criminative nature, CRF model allows arbitrary relationship
among data and may require less resources to train its pa-
rameters [15] [14]. For the problem of labeling sequence
data, CRF has also overcome the problem of label bias prob-
lem [15]. These advantages make CRF model more and
more popular in the computer vision world.

Several previous works have demonstrated the success-
fulness of CRF models in some computer vision fields. Laf-
ferty et al. [15] [26] [18] [12] apply CRF models for label-
ing sequence data. They have shown better performance
of CRF models than the Hidden Markov Model (HMM)
and Maximum Entropy Markov models (MEMMs), espe-
cially for language and text processing problem. Quattoni
and Kumar et al. [24] [14] [17] [32] present different CRF
models for solving object recognition problems. They also
extend the CRF models to incorporate the hidden layers and
nonlinear kernels. These extensions make the CRF models
more powerful. For example, the hidden layers can model
the parts in part-based models [24]. He et al. [9] [10] [2]
have used CRF models to deal with image segmentation on
individual images and demonstrated that the CRF models
generally outperform the MRF models.

CRF models have also been applied in video segmenta-
tion [5] [29] [31]. We notice that all of them have retained
certain generative models, which somewhat contradicts the
discriminative nature of the CRF models. All of them model
the likelihood of color and the likelihood of motion using
generative models. In general, it requires more training data
to learn the complex generative models that tend to explain
the distribution of the data. On the contrary, the discrim-
inative CRF model focuses on discriminating the data in-
stead of explaining their distribution. It may require less
data for training [15] [14]. Since the discriminative char-
acteristic of CRF model is one of its advantages, we are
interested in how to use pure discriminative CRF models to
solve video sequence segmentation problem. In Section 4,
we will show that we actually use very few data to train our
spatial-temporal CRF model. This demonstrates the advan-
tage of CRF models.

The CRF model is also used to solve the tracking prob-
lem in video sequences [25]. This approach first overseg-
ments the image frames into superpixels. A process of con-

strained Delaunay triangulation (CDT) is needed to parti-
tion the image into a set of triangles. A CRF model is then
constructed on these triangles. The superpixel based ap-
proach may have problems when the initial oversegmenta-
tion fails to accurately find the object boundary.

In this paper, we propose a pixel based spatial-temporal
CRF model to segment video sequences. We treat video se-
quences as a group of small volume data. We extend two di-
mensional CRF segmentation model to a three dimensional
(3D) CRF model, including both the spatial domain and the
temporal domain. Each small volume is then segmented
by the 3D CRF model. In the 3D CRF model, the pair-
wise neighborhood contains not only the adjacent pixels in
the spatial domain, but also the adjacent pixels in the tem-
poral domain. The homogeneity constraint of random la-
beling variables is enforced in both domains. In this way,
we build a pure discriminative segmentation model that en-
forces both spatial consistency and temporal consistency of
the labeling variables.

2. Overview of the Approach
Our goal is to segment the foreground objects from the

backgrounds in a video sequence. Firstly, we define our
notations. Let x := {xu, u ∈ V } be the observed image,
where V denotes all the sites (i.e. the pixels) in the image.
Let y = {yu ∈ Y, u ∈ V } be the corresponding set of
labeling random variables, where Y is the set of possible
labels at a single site. We assume Y = {−1,+1}, where
+1 represents the foreground and −1 represents the back-
ground. Let t denote the temporal index. Given a triple
of consecutive images xt−1, xt, xt+1, the goal is to find the
optimal labeling yt for the image frame xt.

We extend the Conditional Random Fields (CRF) [15] to
the spatial-temporal domain to model the sequence segmen-
tation problem. CRF model only assumes that the labeling
variables y follows the Markovian property, conditioned on
the observation. CRF model relaxes the normal assumption
in a MRF model by allowing arbitrary relationship among
the observed data. Moreover, the interaction potential of a
CRF model may depend on all the observation. It allows to
model data-adaptive potential functions that can deal with
discontinuity in the observed data. For example, if there is
a strong edge, it may not be necessary to impose the homo-
geneous constraint on neighboring labels.

For video sequence segmentation, the labeling random
variables shall be homogenous not only in the spatial neigh-
borhood, but also in the temporal neighborhood. In or-
der to incorporate the homogeneous constraint in the tem-
poral neighborhood, we add additional interaction poten-
tials in the temporal domain into the two dimensional CRF
segmentation model. The neighborhood of a site u in-
cludes not only those neighbors in the spatial domain, but
also those neighbors in the temporal domain. Figure 1 il-



Figure 1. The spatial neighborhood and the temporal neighbor-
hood in the spatial-temporal CRF model. The shaded circle rep-
resents the current site. The solid lines are the pairwise cliques in
the spatial domain. The dotted lines are the pairwise cliques in the
temporal domain.

lustrates the spatial-temporal neighborhood in our model.
For simplicity, only pairwise cliques in the spatial domain
and in the temporal domain are considered. We call this
extended model as Spatial-Temporal Conditional Random
Fields (STCRF). In the spatial domain, we use the standard
4-neighborhood system. In the temporal domain, we cur-
rently only add two links between the pixels at the same
row and column locations in consecutive frames.

3. Spatial-temporal CRF Segmentation Model
The Spatial-temporal CRF model directly model the pos-

teriori probability distribution of the labeling variables yt,
given three consecutive image frames xt−1, xt, xt+1. The
posteriori distribution of the labeling variables is defined as

P (y|x) =
1
Z

exp{
∑
u∈V

[logP (yu, xu) +
∑

v∈Nu

yuyvµT guv(x)

+
∑

v∈Mu

yuyvγT guv(x)]} (1)

where v is a site in the spatial-temporal neighborhood of the
site u. Nu is the spatial neighborhood of the site u and Mu

is the temporal neighborhood. µ and γ are the parameter
vectors.

There are three terms in Eq.(1). The first term is the
unary potential, which tries to label the site u according to
its local features. For this purpose, we use a discriminative
classifier based on a three-layer perceptron. Let net(xu)
denotes the output of the perceptron when the features xu

are the input. The output of the three-layer perceptron is
converted to a probabilistic interpretation using a logistic
function, i.e.,

P (yu, xu) =
1

1 + exp(−yu
net(xu)

τ )
(2)

where τ is a constant that can adjust the curve of the logistic
function. In our experiments, τ is fixed as 0.34. The three-

layer perceptron is trained with a set of training data (see
more detail in Section 3.1).

The second term in Eq.(1) is the pairwise interaction po-
tential in the spatial domain. The third term in Eq.(1) is the
pairwise interaction potential in the temporal domain. We
separate these two kinds of pairwise potentials because the
homogeneity constraints in the spatial domain and that in
the temporal domain may be differently emphasized. guv(·)
represents the feature vector for a pair of sites u and v. An
additional bias term (fixed as 1) is also added into the fea-
ture vector guv(·). In this paper, we only use color fea-
tures in the CIELAB color space to define the feature vec-
tor guv(·). However, our model can use arbitrary feature
vectors as the observed data xu and xv . The feature vector
guv(x) is defined as

guv(x) = [1, |xu − xv|]T (3)

where T is the transpose of a vector. The operator | · | rep-
resents the absolute value of each component in the vector.

The variable Z in Eq. (1) is the normalization term (i.e.
the partition function). It can be calculated by summing out
all the possible configurations of the labeling variables y,
i.e.,

Z =
∑

y

exp{
∑
u∈V

[logP (yu, xu) +
∑

v∈Nu

yuyvµT guv(x)

+
∑

v∈Mu

yuyvγT guv(x)]} (4)

3.1. Parameter Estimation

The three-layer perceptron classifier and the parameters
of the pairwise potentials (i.e., θ = [µ, γ]T ) are automati-
cally learned from the training data. Different from the pa-
rameter estimation for two dimensional CRF model, each
training data here is a triple of consecutive image frames.
With a little abuse of notations, we denote x(i) as the ith
triple of the training images. y(i) are the corresponding
ground truth labeling for the ith triple images. Assume we
have x(1), x(2), ..., x(m) such triple images and their ground
truth labeling y(1), y(2), ..., y(m), where m is the number of
triple images, the aim of parameter estimation is to automat-
ically learn the parameters θ and the three-layer preceptron
classifier from these data.

First, we train the three-layer perceptron classifier. The
structure of our three-layer perceptron includes 3 input
nodes, 8 hidden nodes and 1 output node. In the training
step, the target output of the three-layer perceptron classi-
fier is +1 (foreground pixel) or -1 (background pixel). The
CIELAB color features of each pixel are the input of the
three-layer perceptron. Given the input and the desired out-
put, the three-layer perceptron classifier is trained using the
standard BFGS quasi-Newton backpropagation method [7].



Next, we fix the three-layer perceptron classifier and
use the Maximum Likelihood Estimation (MLE) method to
learn the parameter θ for the pairwise potentials. Assum-
ing all the training data are independently sampled, the log-
likelihood of the parameters is calculated as

L(θ) =
m∑

i=1

{
∑
u∈V

[logP (y(i)
u , x(i)

u ) +
∑

v∈Nu

y(i)
u y(i)

v µT guv(x(i))

+
∑

v∈Mu

y(i)
u y(i)

v γT guv(x(i))]− z(i)} (5)

where z(i) is the logarithm of the partition function, i.e.

z(i) = logZ(i)

The optimal parameters θ∗ are estimated according to the
MLE estimation, i.e.,

θ∗ = arg max
θ

L(θ) (6)

We use the stochastic gradient descent method [28] to
find the optimal parameters θ∗. The gradient of the log-
likelihood L(θ) is calculated as follows:

∂L(θ)
∂µ

=
m∑

i=1

[
∑

u

∑
v∈Nu

y(i)
u y(i)

v guv(x(i))

−EP (y|x(i);θ)(
∑

u

∑
v∈Nu

yuyvguv(x(i)))]

∂L(θ)
∂γ

=
m∑

i=1

[
∑

u

∑
v∈Mu

y(i)
u y(i)

v guv(x(i))

−EP (y|x(i);θ)(
∑

u

∑
v∈Mu

yuyvguv(x(i)))]

(7)

where EP [·] denotes the expectation with respect to the dis-
tribution P . For example,

EP (y|x(i);θ)(
∑

u

∑
v∈Nu

yuyvguv(x(i)))

=
∑

y

P (y|x(i); θ)
∑

u

∑
v∈Nu

yuyvguv(x(i))

=
∑

u

P (yu|x(i); θ)
∑

v∈Nu

yuyvguv(x(i))

(8)

The summation is performed over all possible configura-
tions of the labeling variables y. The term P (yu|x(i); θ) is
the marginal probability of the label yu given the observa-
tion x(i) and the model parameters θ.

The parameter estimation includes the following steps:

1. Given {x(i), y(i)}, randomly initialize θ0;

2. k=1, do the following until the maximum iteration is
reached or the change of weights is small enough:

• calculate the unary potential and the pairwise po-
tentials according to Eq. (1), Eq. (2) and Eq. (3);

• calculate the marginal probability
P (yu|x(i); θk−1) by Sum-product loopy be-
lief propagation [22];

• calculate the gradient ∂L(θ)
∂θ according to Eq. (7)

and Eq. (8);

• update θk by stochastic gradient descent [28];

• k = k + 1;

3. Return θk.

3.2. Labeling Inference

After all the parameters are estimated, the model in Eq.
(1) is used to segment video sequences. Given three consec-
utive image frames {xt−1, xt, xt+1}, we segment the frame
xt according to the Maximum Posterior Marginal (MPM)
criterion. Each site u is assigned a label that maximizes its
posteriori marginal probability, i.e.,

y∗u = arg max
yu∈Y

P (yu|xt−1, xt, xt+1; θ) (9)

The marginal probability P (yu|xt−1, xt, xt+1; θ) is calcu-
lated by Sum-product loopy belief propagation (LBP) [22].
The labeling inference is summarized as follows:

1. Given {xt−1, xt, xt+1; θ},

• calculate the unary potential and the pairwise po-
tentials according to Eq. (1), Eq. (2) and Eq. (3);

• calculate the posteriori marginal probability
P (yu|xt−1, xt, xt+1; θ) using LBP;

• assign the optimal label to the pixel u by Eq. (9);

2. Return the labeling result y.

4. Experiments
We have tested the proposed approach on three stan-

dard video sequences. The first sequence is the “Mother
and Daughter“ sequence that includes 150 frames. Since
the difference between consecutive frames is normally very
small due to the frame rate, we segment one frame every
five frames to make the problem a little more difficult.

We use the color features in CIELAB color space as
the pixelwise features used in Eq.(1) because the CIELAB
color space is perceptually close to the human vision sys-
tem. To train the model, we manually label a few image
frames. However, we use very few training data. Only
three manually labeled images are actually used to train



(a) (b)

(c) (d)

(e) (f)

Figure 2. Examples of the original images and the correspond-
ing segmentation masks for the “Mother and Daughter“ sequence.
a)the original #16 image; b)the segmentation of the #16 image;
c)the original #71 image; b)the segmentation of the #71 image;
e)the original #121 image; f)the segmentation of the #121 image.

both the three-layer perceptron classifier and the parame-
ters of the pairwise potentials. This is the minimum number
of data needed for training the spatial-temporal CRF model
because we need at least three consecutive frames to esti-
mate the temporal pairwise potentials.

Figure 2 shows several segmentation results on the
“Mother and Daughter“ sequence. Although there are sig-
nificant movements of the mother’s hand and her head, the
proposed approach accurately finds out the foreground (i.e.
the mother and the daughter) in these images.

The second sequence is the “Foreman“ sequence that in-
cludes 250 frames. The human in this sequence has much
larger and diversified movements, which makes it more
challenging to segment these images. We still use the min-
imum number of three consecutive frames for training our
spatio-temporal CRF model. We segment one frame every
five frames to make the difference of two consecutive seg-
mentations apparent. This setup makes the segmentation
problem harder because the human will have more signifi-
cant movements in consecutive segmentations.

Figure 3 shows the typical segmentation results on the
“Foreman“ sequence. Despite the large movement of the
person, he is still successfully segmented in these results.
Small errors exist on the boundary of this person, especially
on the boundary of the safety helmet. This is because the

(a) (b)

(c) (d)

(e) (f)

Figure 3. Examples of the original images and the corresponding
segmentation masks for the “Foreman“ sequence. a)the original
#15 image; b)the segmentation of the #15 image; c)the original
#130 image; b)the segmentation of the #130 image; e)the original
#185 image; f)the segmentation of the #185 image.

color features at these places are very close to the color fea-
tures in the nearby background, which makes the segmen-
tation difficult.

The third sequence is the “Silent“ sequence that includes
200 frames. The person in this sequence has quick hand
movements and the background looks more complex. These
reasons make it challenging to segment these images. We
did similar experiments as above. Figure 4 shows the typical
segmentation results for the “Silent“ sequence. The person
is also successfully segmented in these frames.

To quantitatively evaluate the segmentation results, we
calculate the average rates of wrongly labeled pixels (i.e.,
the error rates) in the test images and the standard devia-
tion of errors. The quantitative results for the three test se-
quences are summarized in Table 1. We achieve accurate
segmentation results for all these video sequences.

Tsaig et al. [27] also perform experiments on the three
video sequences used in this paper. Our segmentation re-
sults are qualitatively comparable (if not better) to their re-
sults. They did not give the quantitative results, prevent-
ing us from more detailed comparison with their approach.



(a) (b)

(c) (d)

(e) (f)

Figure 4. Examples of the original images and the corresponding
segmentation masks for the “Silent“ sequence. a)the original #8
image; b)the segmentation of the #8 image; c)the original #168
image; b)the segmentation of the #168 image; e)the original #178
image; f)the segmentation of the #178 image.

Table 1. The average segmentation error rates and their standard
deviations for all video sequences that have been tested using our
spatial-temporal Conditional Random Fields model.

image sequence average error standard deviation
Mother and Daughter 1.56% 0.12%

Foreman 2.0% 0.56%
Silent 1.62% 0.23%

Wang et al. [29] report an average error rate of 2.2% on the
“Mother and Daughter“ sequence. Compared with their ap-
proach, our model is much simpler. Our approach requires
very few training data. Most of important, our model does
not use any generative models and keeps the discriminative
nature of the Conditional Random Fields model. Our seg-
mentation results can also rival their results according to the
error rates.

We also redid the experiments using the Conditional
Random Fields model with only the pairwise potentials in
the spatial domain. We compared the segmentation re-
sults with those produced by the whole model. Figure 5
shows some apparent differences between these results. The

(a) (b)

(c) (d)

(e) (f)

Figure 5. Comparison of segmentation results. The first column
was produced by the model with only the spatial pairwise poten-
tials. The second column was produced by the whole model, i.e.,
the model with both the spatial and the temporal pairwise poten-
tials. a) and b): the segmentation masks of #141 image in the
“Mother and Daughter“ sequence. The apparent difference lies on
the head of the mother; c) and d): the segmentation masks of #155
image in the “Foreman“ sequence. The apparent difference lies on
the safety helmet of the person. e) and f): the segmentation masks
of #98 image in the “Silent“ sequence. The apparent difference
lies on the right shoulder of the person.

spatial-temporal CRF model produces visually better seg-
mentation than the CRF model that only includes the spatial
pairwise potentials. These results demonstrate the impor-
tance of the temporal links in Figure 1.

5. Summary
In this paper, we present a spatial-temporal Conditional

Random Fields model for segmenting video sequences.
This model exploits both the spatial relationship and the
temporal relationship among the labeling random variables.
It also keeps the discriminative nature of the CRF model.
We tested the proposed model on three standard video se-
quences and achieved accurate segmentation results in all
these sequences.

The future work includes studying the use of more tem-
poral links than the current model, which makes the tem-
poral relationship stronger. We want to see how different



choices of the temporal links can influence the performance
of the model. We will also exploit other features such as the
optical flow to complement the color features and make the
model more powerful. On the other hand, although the com-
putational complexity of loopy belief propagation is linear
in the number of nodes, the computation in the pixel based
CRF model is still high. A multi-scale CRF model may help
ameliorate this problem.
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