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a b s t r a c t 

Locating human action in spatio-temporal domain among untrimmed videos is an important but chal- 

lenging task. Recent works have shown that incorporating contextual information leads to a significant 

improvement in action recognition, but there is still no existing work taking full advantage of context 

for action localization. While the popular target-centered methods have achieved promising results, they 

fail to exploit contexts and capture temporal dynamics in actions. In this paper, we propose a principled 

dynamic model, called spatio-temporal context model (STCM), to simultaneously locate and recognize ac- 

tions. The STCM integrates various kinds of contexts, including the temporal context that consists of the 

sequences before and after action as well as the spatial context in the surrounding of target. Meanwhile, 

a novel dynamic programming approach is introduced to accumulate evidences collected at a small set of 

candidates in order to detect the spatio-temporal location of action effectively and efficiently. We report 

encouraging results on the UCF-Sports and UCF-101. It demonstrates that the contextual information is 

not only helpful for action recognition, but also contributes to action localization. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Nowadays, since the multimedia data grows explosively, es-

ecially for video data, automatic multimedia analysis becomes

ore and more important. Among them, it is more meaningful

o understand “what he is doing” or “where and when he does

t” for human beings. Under this case, vision-based human action

ecognition and localization have played an important role in

ultimedia content analysis and they also have contributed to

ther multimedia applications. Human action analysis is the most

ctive research areas in computer vision and machine learning

ith many applications [1,2] such as video content-based retrieval,

uman-computer interaction and video-surveillance. 

Recently, there have been a considerable amount of works fo-

using on action recognition [3–5] , whose aim is to assign a class

abel for each entire video sequence. However, given a video se-

uence, action occur at a precise spatio-temporal extent and it is

lso desirable to detect the spatio-temporal location in real world.
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ction localization has attracted increasing attention [6,7] , which

nvolves three questions: (1) recognition : what the action is; (2)

emporal localization : when it starts and ends; (3) spatial localiza-

ion : where it happens. It is a more challenging problem than ac-

ion recognition task, due to the large intra-class variations and in

articular the very large spatio-temporal search space. In this pa-

er, we propose a unified framework to model human action for

oth recognition and localization tasks. 

Human action does not occur in a vacuum, and there also ex-

sts spatio-temporal contexts in the video sequence, which have

lose relevance to the action. For example, recognizing the com-

etition venue scene of a gymnastics will provide useful evidence

or the action analysis in Fig. 1 . As the same, it is helpful to rec-

gnize the wedding action, if holding ceremony and cutting cake

n church are recognized before and after the wedding action. Re-

ently, there are a large number of works on discovering the rela-

ions between actions and contexts to improve the performance of

ction recognition. Actually, spatio-temporal contexts are not only

mportant for action recognition, but also useful for action localiza-

ion. However, there is still no existing work taking full advantage

f context to help detect the accurate spatio-temporal boundary of

ction. 

For action localization, it is challenging to detect the accurate

oundary and incorporating action and its context can alleviate
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.01.008&domain=pdf
mailto:xuwanru@bjtu.edu.cn
mailto:11112063@bjtu.edu.cn
mailto:zjmiao@bjtu.edu.cn
mailto:jianyu@bjtu.edu.cn
mailto:qji@ecse.rpi.edu
https://doi.org/10.1016/j.neucom.2019.01.008


352 W. Xu, Z. Miao and J. Yu et al. / Neurocomputing 333 (2019) 351–363 

Fig. 1. Action spatio-temporal localization. (a) The top one is the accurate temporal localization and the bottom one is inaccurate. (b) The left one is the accurate spatial 

localization and the right one is inaccurate. Inaccurate localization can not only affect the action itself (target), but also has negative effect on its spatio-temporal contexts. 
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this issue. The reason is that the boundary is just the intersection

between action itself and its context, and if we change one, the

other one also changes accordingly as shown in Fig. 1 . As explained

earlier, if the detected bounding box is smaller than the ground-

truth, some part of target is lost and this region will be mistakenly

considered as the part of context at the same time. Although they

can provide double cues for accurate localization, there is no exist-

ing method utilizing both target and context to detect actions. In

addition, most action localization methods are inspired by 2D ob-

ject localization, where they usually apply an action classifier di-

rectly on a large number of spatio-temporal candidates. There are

three limitations: (1) The dynamic information in action is totally

ignored in many frame-level based methods [8–10] , which are di-

rect extensions of object localization approaches. Generally, they

first build frame-level detector taking advantage of 2D object de-

tection algorithm and then apply some temporal post-processing

to get the final video-level detection result. (2) The search space

is too large for the 3D action localization, especially considering

a flexible bounding box size where it can vary across frames. The

approach with flexible bounding box can be utilized to detect both

the moving action and the non-moving action, while those fixed

bounding box based approaches (eg. sub-volume) cannot handle

action with strong moving. (3) It has to repeat the same proce-

dure for each individual action class separately which is impracti-

cal for datasets with large numbers of action categories and it also

requires a large amounts of negative samples for each of them. To

address these issues, we propose a dynamic spatio-temporal con-

text model (STCM) to simultaneously locate and recognize human

actions. 

Overall, the contributions of this paper are as follows: First, we

integrate spatial and temporal contexts into the interpretation pro-

cess by constructing a unified STCM, which can be utilized for both

action recognition and action localization. Thus action and its con-

text are incorporated to complement each other to enhance recog-

nition capability as well as to refine each other to get more accu-

rate boundary. Meanwhile, no negative sample is required in this

paper, since the context is also considered as the positive sample.

Second, we propose a video-level based method to locate actions

using the trained dynamic model and take full advantage of tem-

poral independence between frames, where the location of action

in one frame is not only decided by current frame, but also af-

fected by previous frames and previous detections. Third, we de-

velop a dynamic programming with saliency map framework that
 t  
an find more accurate action location without significantly in-

reasing the number of candidates. 

The rest of this paper is organized as follows: Section 2 fo-

uses on related works. Section 3 provides an overall summary

f our method and formulate the action recognition and localiza-

ion problem. Section 4 details the structure of this novel spatio-

emporal context model with the training and inference algo-

ithms. The process of spatial and temporal localization using the

TCM is given in Section 5 . Section 6 reports experiment results

sing two human action datasets for recognition and localization

asks. Section 7 concludes this paper. 

. Related works 

Depending on the techniques, human action localization ap-

roaches can be divided into three categories: proposal and clas-

ification framework, segmentation based method and deep learn-

ng based method. Meanwhile, we review some context models for

ction recognition. 

Proposal + Classification framework . Human action localization

s commonly approached by spatio-temporal proposals matching,

hat is the classical proposal + classification framework. The main

dea is first to generate a large number of spatio-temporal candi-

ates and then score them to find the final detection result using

lassifier. Traditionally, proposals are generated by a sliding win-

ow based approach [11–13] which is effective but not efficient.

n [14] , temporal sliding window is used to generate several can-

idates and then train a SVM to match them by combining motion

nd appearance features. Approximately normalized Fisher vector

15] is proposed to represent actions and then a sliding window

cheme is applied for action localization, which yields significant

mprovements in the computational cost and memory of the FV.

lso several effort s aim at reducing the computational cost which

eed to evaluate during detection process, such as the spatio-

emporal branch-and-bound algorithm [11] . In [16] , actions are

reated as spatio-temporal patterns extracted by naive Bayes based

utual information maximization (NBMIM) and a novel search

lgorithm is introduced to find the optimal sub-volume in the

D video space for detecting action efficiently. Another limitation

ith these sliding-window based methods is that it cannot handle

he moving actions, since the detected action is usually captured

y a video sub-volume. Besides the sub-volume detection, spatio-

emporal action tubes can be detected using structured output
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egression [17] with a max-path search. A series of spatio-temporal

ideo tubes [18] are considered as localization candidates and

enerated using a greedy method by computing actionness score.

imilarily, the spatio-temporal tube (ST-tube) is employed for

ction localization in [19] with a one order Markov model by

ecursively infering the action regions at consecutive frames.

 novel PSDF descriptor [20] is computed for temporal action

ocalization, which is a intuitive descriptor for action class, posi-

ion and duration. For classification part, any action recognition

odels can be adopted as an evaluator to estimate these ex-

racted proposals. On one hand, classification performance can

e improved by improving representative power, such as a novel

epresentation on the intrinsic shape manifold learned by graph

mbedding algorithm is proposed in [21] . On another hand,

lassification performance can be also improved by improving

iscriminative power, such as a probabilistic framework based on

aussian processes [22] is proposed for providing an estimation of

ncertainty. 

Segmentation based method . Segmentation based method can be

reated as a special proposal + classification method, which gen-

rates proposals using segmentation techniques. In [23] , action

roposals are 2D+t sequences of bounding boxes, called tubelets

nd they are generated by hierarchically merging super-voxels. A

ierarchical MRF model [24] is proposed to segment human ac-

ion boundaries in videos in-the-wild automatically, which bridg-

ng low-level fragments with high-level motion and appearance.

he new hierarchical space-time segment [25] is considered as a

epresentation for action recognition and localization, which can

reserve their hierarchical and temporal relationships. In [26] , 2D

eformable part model is extended to 3D spatio-temporal DPM

or action localization, where the most discriminative 3D subvol-

mes are selected as parts and their spatio-temporal relations are

earned. Similarly, a relational model [8] is proposed for action

ocalization, which first decomposes human action into tempo-

al “key poses” and then further into spatial “action parts”. In

27] , the location is treated as a latent variable which is inferred

ith action recognition simultaneously using discriminative figure-

entric model. 

Deep learning . One line of these works is to extract spatio-

emporal feature representations for building strong classifiers us-

ng deep models. In [9] , they first detect frame-level proposals

nd score them using a combination of static and motion CNN

eatures. Then they track proposals with high score in the video

sing a tracking-by-detection approach. Similarly in [28] , an ap-

roach is proposed for action localization using convolutional neu-

al networks on static and kinematic cues. Three segment-based

D ConvNets [29] are adopted for temporal action localization in

ntrimmed long videos, including a proposal network, a classifi-

ation network and a localization network. A novel architecture

alled UntrimmedNet is presented in [6] for weakly supervised ac-

ion recognition and detection. It consists of a classification mod-

le and a selection module, where the first module is to learn the

ction model and the last one is to reason about the temporal

uration of action respectively. A multi-region two-stream R-CNN

odel [10] is introduced to locate action in realistic videos, which

tarting from frame-level action detection based on faster R-CNN

30] and then linking frame-level detections to obtain video-level

etections. In [7] , a novel action detection pipeline is introduced,

hich incorporates a very deep region proposal network (RPN) like

s Fast R-CNN and merges appearance and motion cues by a novel

usion strategy. However, such indirect methods are unsatisfying

n terms of both computation efficiency as well as accuracy, since

hey fully ignore the temporal dynamic in human action. Another

ine of these works is the end-to-end detection. A fully end-to-end

pproach [31] is introduced to detect action in videos learning to

irectly predict the temporal boundaries of actions. The model is
ormulated as a recurrent neural network-based agent to interact

ith a video over time, where the deep reinforcement learning is

sed. 

Context model for action recognition . Recently, the advantage of

ombining context for human action recognition has been fully

onfirmed by many works and various contextual elements have

een considered including spatial context [32–34] and temporal

ontext [35,36] . A r ∗CNN [32] is introduced to use more than one

egion to construct a strong action recognition system. A context-

ugmented video event recognition approach [37] is proposed to

apture three levels of contexts from spatial to temporal, includ-

ng image level, semantic level, and prior level. In [36] , a tem-

oral embedding is learned for complex video analysis by asso-

iating frames with the temporal context. A new active learning

echnique is formulated in [33] which not only exploits the in-

ormativeness of the individual action instances but also utilizes

heir contextual information among the actions and objects. In

38] , a framework for the recognition of collective human actions

s proposed, which can automatically capture relevant crowd con-

ext with a 3D Markov Random Field. In [39] , a novel deep action-

nd context-aware sequence learning is presented for action recog-

ition and anticipation to effectively combine both context-aware

nd action-aware features by a multi-stage recurrent architecture.

 two-graph model [40] is constructed to represent human actions

y modeling the spatial and temporal relationships among local

eatures, and also a novel family of context-dependent graph ker-

els is proposed to measure similarity between graphs. A recur-

ent interactional context modeling scheme based on LSTM net-

ork [41] is proposed to model high order interactional context

nd a unified interactional feature modeling process is introduced

or one-person dynamics, intra-group and inter-group interactions.

ecently, it has been proved that combining target action with

ts context can significantly improve performance of human action

ecognition. However, current video-based action localization ap-

roaches are still almost target-centered which fully ignore these

mportant contextual information. To our best knowledge, this is

he first method to jointly model action and its spatio-temporal

ontexts for human action localization using the dynamic graphi-

al model. 

. Overview of the approach 

The graphical representation of the spatio-temporal context

odel proposed in this paper is depicted in Fig. 2 . For the tem-

oral domain, we integrate sufficient temporal contextual informa-

ion into the interpretation process by simultaneously modeling

he before-action, after-action and action itself. The before-action

nd after-action represent the sequences before or after the target

ction happens. For the spatial domain, we incorporate all infor-

ation of the whole frame, including target part and context part

o enhance model descriptive capability, and capture relations be-

ween human action and its surrounding context to improve model

iscriminative power. The target is denoted by the region within

he bounding box corresponding to human, while the context is

he region outside the bounding box. 

The STCM is a discriminative model which directly estimates

he probability of output conditioned on the observation. Actu-

lly, it is a three-layer probabilistic graphical model including in-

ut observation layer x , intermediate hidden layer h and output

abel layer y . There are many intra-class variations in both tar-

et actions and contexts, namely an action or a context may in-

olve many different intermediate states. Therefore, a set of hidden

ariables h are introduced to capture these variations and model

omplex dependencies among observations. This conditional prob-

bilistic model can be formulated as: 
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Fig. 2. The overview of our framework and the graphical representation of spatio-temporal context model (STCM), which integrates various kinds of contexts. Solid nodes 

represent observed variables, and hollow nodes denote as unobservable hidden variables. Compared to action recognition, action localization is a more challenging task, since 

it not only requires to recognize the action category, but also requires to detect the spatio-temporal location. 
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ll P (y | x ;�) = 

P (y, x ;�) 

P (x ;�) 
= 

P (y, x ;�) ∑ 

ˆ y 

P ( ̂  y , x ;�) 

= 

1 
Z 

∑ 

h ∈ H 
exp (−� · E(y, h , x )) 

1 
Z 

∑ 

ˆ y 

∑ 

h ∈ H 
exp (−� · E( ̂  y , h , x )) 

(1)

= 

1 

Z(x ) 

∑ 

h ∈ H 
exp (−� · E(y, h , x )) . 

The partition function can be defined as: 

Z = 

∑ 

x , h ,y 

exp (−� · E(y, h , x )) , (2)

playing a role of normalization to enable it to become a probability

measure. 

Z(x ) = 

∑ 

h ∈ H, ̂ y ∈ Y 
exp (−� · E( ̂  y , h , x )) (3)

Different from Eq. (2) , Eq. (3) is also a normalization term, which

introduces a different value for different sample, and later we will

explain how to handle it to make learning and inference tractable.

The E ( y , h, x ) represents the energy function, which can model var-

ious relations among variables. 

As shown in Fig. 2 , given a video X = { X 1 , X 2 , . . . , X T } with T

frames, the goal of action localization is to recognize the class label

ˆ y and detect a smooth spatio-temporal path 

ˆ B = { b t } t= t 2 t= t 1 , namely a

series of bounding boxes between the start frame t 1 and the end

frame t 2 and each of them b t = { x t 
1 
, y t 

1 
, x t 

2 
, y t 

2 
} is represented by the

coordinates of its two corners: 

( ̂  y , ̂  B ) = arg max 
y,B 

P (y, B | X ;�) = arg max 
y,B 

P (y | X (B ) ;�) . (4)

Given 

ˆ B and x = X ( ̂  B ) , it converts to a standard action recognition

problem: 

ˆ y = arg max 
y 

P (y, ̂  B | X ;�) = arg max 
y 

P (y | X ( ̂  B ) ;�) . (5)

Important notations in STCM are summarized as follows. 

T : the number of frames in an action video. 

X : video sequence X = { X 1 , X 2 , . . . , X T } , and each element de-

notes frame. 

x : complete observation of an action video sequence, x =
{ x a , x b , x w , x t , x c } . 

x b , x a : observations of before action and after action. 

x w : observations of whole frame, x w = { x w 

1 , x 
w 

2 , . . . , x 
w 

T } . 
x t : observations of target, x t = { x t , x t , . . . , x t } . 
1 2 T 
x c : observations of context, x c = { x c 
1 
, x c 

2 
, . . . , x c 

T 
} . 

y, ̂  y : the ground-truth and predicted action label. 

h : complete hidden variables of STCM model, h =
 h a , h b , h 

w , h 

t , h 

c } . 
h b , h a : hidden variables of before action and after action. 

h 

w 

: hidden variables of whole frame, h 

w = { h 

w 

1 
, . . . , h 

w 

T 
} . 

h 

t 
: hidden variables of target, h 

t = { h 

t 
1 
, h 

t 
2 
, . . . , h 

t 
T 
} . 

h 

c 
: hidden variables of context, h 

c = { h 

c 
1 
, h 

c 
2 
, . . . , h 

c 
T 
} . 

ˆ B : the detected spatio-temporal path 

ˆ B = { b t } t= t 2 t= t 1 , and each el-

ment denotes detected bounding box at each frame. 

�: the parameters of STCM model. 

. Spatio-temporal context model 

In this section, we first introduce the structure of STCM as well

s all kinds of contextual information we can utilize for action

ecognition and localization. Then we present training and infer-

nce based on the max-margin criterion. 

.1. STCM 

Actions always occur in the three-dimensional space during a

eriod of time. In spatial domain, action is not independent from

ts surrounding environment; In temporal domain, action is also

ot isolated from its before and after event sequences. Therefore, a

ovel spatiao-temporal context model is proposed to fully capture

he temporal context and the spatial context simultaneously. Con-

idering the structure of STCM in Fig. 2 (Left), it can be formulated

s, 

 (y | x ;�) = 

1 

Z(x ) 

∑ 

h ∈ H 
exp (−� · E(y, h , x )) (6)

= 

1 

Z(x ) 

∑ 

h ∈ H 
exp {−� · (E(y, h , x 

t ) + E(y, h , x 

c ) 

+ E(y, h , x 

w ) + E(y, h , x 

b ) + E(y, h , x 

a )) } . 
It consists several parts: the whole frame modeling; the before-

ction and after-action modeling; and the context and target mod-

ling. The first is the most fundamental one and the last two

re introduced for modeling temporal and spatial contexts, respec-

ively. 

The whole frame modeling can improve the recognition capabil-

ty by integrating all the information both in target region and in

ontext region: 

(y, h , x 

w ) = 

T ∑ 

t=1 

E(h 

w 

t , x 

w 

t ) + 

T ∑ 

t=1 

E(y, h 

w 

t ) + 

T ∑ 

t=2 

E(y, h 

w 

t−1 , h 

w 

t ) . (7)
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here are two unary functions to evaluate compatibilities between

wo variables: 

(h 

w 

t , x 

w 

t 
) = −

∑ 

i 

x 

w 

t 
· 1 { h 

w 

t = h i }; (8) 

(y, h 

w 

t ) = −
∑ 

i, j 

1 { h 

w 

t = h i }·1 { y = y j } . (9) 

 pairwise function taking some structural information into ac-

ount and describes the compatibility of variables belonging to a

hree-wise connected clique: 

(y, h 

w 

t−1 , h 

w 

t ) = −
∑ 

i, j,k 

1 { h 

w 

t−1 = h i } · 1 { h 

w 

t = h k }·1 { y = y j } (10) 

The before-action and after-action modeling play a role of tempo-

al localization which are sensitive to temporal boundary: 

(y, h , x 

b ) = E( h 

b , x 

b ) + E(y, h 

b ) + E(y, h 

b , h 

w 

1 ) ; (11) 

(y, h , x 

a ) = E( h 

a , x 

a ) + E(y, h 

a ) + E(y, h 

a , h 

w 

T ) . (12) 

here the unary and pairwise functions are calculated in the same

ay. These three parts E ( y , h, x w ), E ( y , h, x b ), E ( y , h, x a ) capture

he complete temporal dynamics in actions, where before-action is

he start node and after-action is the end node. It utilizes rich se-

uentially contextual information to better capture the appearance

volution and temporal structure of the full video. 

The context and target modeling play a role of spatial localiza-

ion which are sensitive to spatial boundary and complement each

ther: 

 ( y, h , x 

c ) = 

T ∑ 

t=1 

E 
(
h 

c 
t , x 

c 

t 

)
+ 

T ∑ 

t=1 

E ( y, h 

c 
t ) + 

T ∑ 

t=2 

E 
(
y, h 

c 
t−1 , h 

c 
t 

)
; (13) 

(y, h , x 

t ) = 

T ∑ 

t=1 

E 
(
h 

t 
t , x 

t 

t 

)
+ 

T ∑ 

t=1 

E 
(
y, h 

t 
t 

)
+ 

T ∑ 

t=2 

E 
(
y, h 

t 
t−1 , h 

t 
t 

)
. (14) 

he formulation is similar as the whole frame modeling and the

nly difference is the modeling objects of Eq. (7) , Eqs. (14) and

13) are the whole frame, target part and context part respec-

ively. Either considering context and target as a whole to model

ogether or modeling them separately is unreasonable, where both

ead to lose part of information. Therefore, our STCM is proposed

o not only separate the target from the context by the context

nd target modeling, but also combine them to discover their la-

ent relations by the whole frame modeling. Given a video X and

 spatio-temporal path B , there exists corresponding observations:

 

b = X ( t 1 ) and x a = X ( t 2 ) are the descriptors of before action and

fter action; x w = X ( t 1 , t 2 ) is extracted in the whole frame; x t =
 (b ) is extracted inside bounding boxes and x c = X (∼ b ) is ex-

racted outside bounding boxes. 

.2. Learning with max-margin criterion 

We learn the spatio-temporal context model based on the max-
argin criterion [42] , which achieves significant success in ma-

hine learning especially for classification and detection tasks.
rom the viewpoint of probability, the margin is defined as the
ifference between the log-probability of the ground-truth assign-
ent y i and that of the “second best” assignment. 

( i, �) = log p( y i | x i ;�) − max 
y � = y i 

log p(y | x i ;�) (15

= log 

∑ 

h ∈ H 
exp (−� · E( y i , h , x )) ∑ 

h ∈ H, ̂ y ∈ Y 
exp (−� · E( ̂ y , h , x )) 
− max 
y � = y i 

log 

∑ 

h ∈ H 
exp (−� · E(y, h , x )) ∑ 

h ∈ H, ̂ y ∈ Y 
exp (−� · E( ̂ y , h , x )) 

= log 
∑ 

h 

exp (−� · E(y, h , x )) − log 
∑ 

h , ̂ y 

exp (−� · E( ̂ y , h , x )) 

− max 
y � = y i 

log 
∑ 

h 

exp (−� · E(y, h , x )) + log 
∑ 

h , ̂ y 

exp (−� · E( ̂ y , h , x )

= log 
∑ 

h 

exp (−� · E( y i , h , x )) − max 
y � = y i 

log 
∑ 

h 

exp (−� · E(y, h , x )) .

uch that the partition function can be removed due to the same

artition value for each sample. However, it is still intractable to

ompute because of the log �, which is required to traverse all

ossible hidden configurations. Therefore, if we replace � with

ax , Eq. (15) can be simplified as: 

( i, �) ≈ ˆ δ( i, �) (16) 

= log max 
h ∈ H 

exp (−� · E( y i , h , x )) 

− max 
y � = y i 

log max 
h ∈ H 

exp (−� · E(y, h , x )) 

= max 
h ∈ H 

(−� · E( y i , h , x )) − max 
y � = y i , h ∈ H 

(−� · E(y, h , x )) . 

he log-sum-exp function of h in Eq. (15) is so called soft-
ax , while the max operator in Eq. (16) is commonly called
ax -function. We introduce a “temperature” parameter followed

43,44] to smooth between soft-max and max , which motivates a
ore general objective function. 

 log 
∑ 

h 

exp 

(
� · E( y i , h , x ) 

−ε 

)
− max 

y � = y i 
ε log 

∑ 

h 

exp 

(
� · E(y, h , x ) 

−ε 

)
(17) 

here ε is a temperature parameter to control how much uncer-

ainty we want account for h . Note that this temperature param-

ter can be just considered as a constant scaling factor, thus it

annot change the inference result. This general function includes

 number of existing methods as special cases. It reduces to the

aximum likelihood framework in Eq. (15) if ε = 1 , while ε → 0 + 

esults in the max-margin formulation in Eq. (16) . Therefore, ε →
 

+ smoothly approximates the soft-max via the max -function. 

This approximation has two benefits: First, it avoids exhaus-

ively enumerating every hidden configuration; Second, it still pre-

erves semantic information. In fact, Eq. (16) can be considered as

he difference between the log-probability of the ground-truth as-

ignment y i with its best hidden configuration and that of the “sec-

nd best” assignment, namely, 

ˆ ( i, �) = max 
h ∈ H 

log p( y i , h | x i ;�) − max 
y � = y i , h ∈ H 

log p(y, h | x i ;�) . (18) 

he max 
h ∈ H 

p( y i , h | x i ;�) can be treated as p ( y i | x i ; �) with best hid-

en configuration, that maximizing with the latent variables. While∑ 

 ∈ H 
p( y i , h | x i ;�) can be considered as combining the contributions

f the various possible values by marginalizing over the latent vari-

bles. 

The margin-based estimation methods usually aim to maximize

he margin and increase the log-probability gap as much as possi-

le. Because the larger is the margin, the more confident the model

s to select y i . Given training videos D = { x i , y i } N i =1 
, the hinge loss

unction is defined as: 

N 
 

i =1 

max (0 , �( y i , y ) + max 
y � = y i 

log p(y | x i ;�) − log p( y i | x i ;�)) . (19) 
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Fig. 3. The process of action spatio-temporal localization. The temporal localization and spatial localization execute in sequence and they refine each other. After get K-top 

temporal candidates, a dynamic programming approach is used to infer the P-top paths for each temporal candidate. 
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In analogy to the classical SVMs and according with Eqs. (16) and

(19) , the max-margin objective function is: 

min 

�,ξ

{ 

1 

2 

|| �| | 2 + C 

N ∑ 

i =1 

ξi } (20)

s.t. ∀ i, ∀ y � = y i , ξi ≥ 0 

max 
h ∈ H 

(−� · E( x i , y i , h )) − max 
h ∈ H 

(−� · E( x i , y, h )) ≥ �( y i , y ) − ξi . 

where C is the trade-off parameter and ξ i is the slack variable for

the i − th sample to deal with the soft margin. Although there ex-

ists exponential number of constraints in Eq. (20) , it can be eas-

ily solved by the Concave–Convex Procedure (CCCP) [45] , which is

equivalent to solving the learning problem with incomplete data

using Expectation-Maximization (EM) algorithm. 

5. Spatial and temporal localization 

After learning the spatio-temporal context model, we detail

how to use the STCM to recognize action label and detect action

location simultaneously. Given a video, our goal is to recognize

which action this video contains and detect when and where this

action occurs, as explained in Eq. (4) above. The detected smooth

spatio-temporal path B consists of the start frame t 1 , the end frame

t 2 and a series of bounding boxes b during this period. For the

spatio-temporal localization, the search space is too large. So the

temporal localization and spatial localization execute in sequence,

where we fix one to detect the other, and they can refine each

other as illustrated in Fig. 3 . 

5.1. Temporal localization with STCM 

Given a new video X = { X 1 , X 2 , . . . , X T } with T frames, the goal

of temporal localization is to recognize the action ˆ y and detect the

start frame t 1 and end frame t 2 of this action: 

( ̂  y , ̂  t 1 , ̂  t 2 ) = arg max 
y, t 1 , t 2 

P (y, t 1 , t 2 | X ;�) (21)

= arg max 
y,t 1 ,t 2 , h 

1 

Z 
exp {−� · ( E(y, h , X ( t 1 , t 2 ) ) 

+ E(y, h , X ( t 1 ) ) + E(y, h , X ( t 2 ) ) ) } , 
here only the whole frame is considered and we fix the context

nd target items in the STCM. The temporal search space is orga-

ized by multi-scale sliding window: { t 1 ,i , t 2 ,i } N i =1 
, where t 1, i > 0,

 2, i < T . Then K-top temporal candidates with highest confidence

core { t 1 ,i , t 2 ,i , ̂  y i , s i } K i =1 
are achieved by Eq. (21) for further spatial

ocalization, and their corresponding detection confidence scores

an be calculated by s i = P ( ̂  y i , t 1 ,i , t 2 ,i | X ;�) . It is benefit for de-

ecting the real temporal boundary and avoiding the incomplete

egments, since the detection score considers both action part and

ts temporal context part. For example, the before-action can re-

ne the start boundary and the after-action can refine the end

oundary. 

.2. Spatial localization with STCM 

Then we fix the temporal localization result to detect the spatial

ounding box and refine it in turn to get the final spatio-temporal

ocalization result. Given a set of temporal candidates, the goal of

patial localization is to reevaluate the action label ˆ y and detect a

eries of spatial bounding boxes ̂  b among this time range: 

( ̂  y , ̂  b ) = arg max 
y, b 

P (y, b | X t 1 ,i : t 2 ,i ;�) . (22)

ompared to 2D objection localization, the 3D action spatial lo-

alization is more challenging and complex. For a temporal candi-

ate of size M × N × T , the search spaces for 3D subvolumes and

D subwindows are only O ( M 

2 × N 

2 × T ) and O ( M 

2 × N 

2 ), respec-

ively. However, if we consider a flexible bounding box size where

t can vary across frames, the search space will increase exponen-

ially. Such that the exhaustive search is infeasible and Eq. (22) can

ot be easily inferred. 

Therefore, we present a dynamic programming with saliency

ap framework to address this computational issue. In this pa-

er, we propose a novel search algorithm which can locate the

patial locations in several successive frames without significantly

ncreasing the number of candidates. The idea is to maintain a

ool of the best P paths for each temporal candidate and up-

ate them at each time step. The pool of the i -th temporal can-

idate denotes as Q 

i = { ( b 

i,p , ̂  y i,p , s i,p ) , p = 1 , 2 ...P } , where b 

i,p =
 b 

i,p 
, t = 1 , 2 , . . . , t 2 ,i − t 1 ,i + 1 } is a series of bounding boxes. For
t 
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Algorithm 1 Action spatio-temporal localization algorithm. 

Input: 

A video sequence { X 1 , X 2 , . . . , X T } ; 
Output: 

Localization result ˆ y and recognition result ˆ B = { ̂ b t } t= ̂ t 2 
t= ̂ t 1 

; 

1: Temporal localization: 

2: Use multi-scale sliding window to generate N candidates for 

temporal localization { t 1 ,i , t 2 ,i } N i =1 
; 

3: Achieve K-top temporal candidates with highest confidence 

score by STCM, { t 1 ,i , t 2 ,i , ̂  y i , s i } K i =1 
as (21); 

4: Spatial localization: 

5: for each i ∈ [1 , K] do 

6: Discover the top-P start locations (b 
i,p 
1 

, ̂  y i,p , s i,p ) , p = 1 , 2 , . . . , P } 
with highest confidence score as (23); 

7: for each path p ∈ [1 , P ] , t ∈ [2 : t 2 ,i − t 1 ,i + 1] do 

8: Use dynamic programming to find the most probable current 

location b 
i,p 
t and update action label ˆ y i,p as well as score s i,p 

for each path, as (24); 

9: end for 

10: end for 

11: Find the optimal spatio-temporal path ( ̂ i , ˆ p ) = arg max 
i,p 

{ s i,p | p = 

1 , 2 , . . . , P, i = 1 , 2 , . . . , K} 
12: { ̂ t 1 , ̂  t 2 } = { t 

1 , ̂ i 
, t 

2 , ̂ i 
} , ˆ b = b 

ˆ i , ̂ p , ˆ y = ˆ y 
ˆ i , ̂ p ; 

13: return { ̂ t 1 , ̂  t 2 , ̂  b } and ˆ y ; 
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t  
he i -th temporal candidate, at the first frame we discover the top-

 start locations (b 
i,p 
1 

, ̂  y i,p , s i,p ) , p = 1 , 2 , . . . , P } with highest con-

dence score using the multi-scale sliding window. We find the

ost probable location as the start of the path and infer its action

abel, 

( ̂  y i,p , b i,p 
1 

) = arg max 
y,b 

P (y, b| X t 1 ,i : t 2 ,i ;�) (23) 

= arg max 
y,b, h 

1 

Z 
exp{−� · (E( X t 1 ,i (∼ b) , h , y ) 

+ E(X ( t 1 ,i ) , h , y ) + E(X ( t 2 ,i ) , h , y ) 

+ E( X t 1 ,i (b) , h , y ) + E( X ( t 1 ,i , t 2 ,i ) , h , y )) } 
hen calculate its detection confidence score by s i,p =
 ( ̂  y i,p , b 

i,p 
1 

| X t 1 ,i : t 2 ,i 
, �) . During the forward search, we keep the

revious paths { (b 
i,p 
1: t−1 

, ̂  y i,p , s i,p ) , p = 1 , 2 , . . . , P } and try to find

ptimal current spatial locations { b i,p 
t , p = 1 , 2 , . . . , P } to extend

aths from t − 1 to t , that can maximize the confidence scores of

he complete paths { (b 
i,p 
1: t 

, ̂  y i,p , s i,p ) , p = 1 , 2 , . . . , P } . Fixed previous
etections, find the most probable location at the t -th frame and
pdate its action label by dynamic programming, 

ˆ y i,p , b i,p 
t 

)
= arg max 

y,b 

P 
(
y, b i,p 

1: t−1 
, b| X t 1 ,i : t 2 ,i ;�

)
+ αO 

(
b, b i,p 

t−1 

)
= arg max 

y,b, h 

1 

Z 
exp 

{
− � ·

(
E 
(
X t 1 ,i : t 2 ,i 

(
∼ b i,p 

1: t 

)
, h , y 

)
+ E 

(
X t 1 ,i : t 2 ,i 

(
b i,p 

1: t 

)
, h , y 

)
+ E ( X ( t 1 ,i : t 2 ,i ) , h , y ) 

+ E ( X ( t 1 ,i ) , h , y ) + E ( X ( t 2 ,i ) , h , y ) ) 
}

+ αO 

(
b, b i,p 

t−1 

)
(24) 

hen recalculate its detection confidence score as s i,p =
 (y, b 

i,p 
1: t 

| X t 1 ,i : t 2 ,i 
;�) + αO (b 

i,p 
t , b 

i,p 
t−1 

) . Compared with Eq. (23) only

onsidering the conditional probability of STCM as the detection

onfidence score, a smooth term O (b, b 
i,p 
t−1 

) = 

∩ (b,b 
i,p 
t−1 

) 

∪ (b,b 
i,p 
t−1 

) 
is adopted

n Eq. (24) , which make the spatio-temporal path smooth. Mean-

hile, instead of multi-scale sliding window, a saliency map is

tilized for sampling candidates. We define the map score by the

revious detection score, such that we can pay more attention on

hose regions with high detection scores which are close to the

revious paths. That is to say, we can treat previous detection

s a weak detection for current frame, since human action is

 relatively gradual process. Note that we don’t calculate the

apping for each time step that decreases the computational cost.

t can be seen that the spatial localization can not only detect the

patial location of action, but also refine the result of temporal

ocalization. Similarily, the STCM also contributes to detecting the

omplete bounding box which can accurately divide the target

rom the context, since both target part and context part modify

he spatial boundary together. After the forward search, we can

chieve the P-top complete spatio-temporal paths for each tem-

oral candidate. Then we choose the one with highest detection

onfidence score as the final localization result and its action label

s the final recognition result. The overall action spatio-temporal

ocalization procedure is outlined in Algorithm 1 . 

It’s worth noting that we execute temporal localization before

patial localization and this order of localization operation can’t

e inversed. The reason is that our proposal is a video-level local-

zation method for action sequence instead of frame-level method

or static image, where STCM is a dynamic model and information

f previous frames is already stored in hidden variables. Localiza-

ion process for each frame is not independent, where the current

etection is not only in terms of current frame, but also signifi-

antly affected by previous detections. If executing spatial localiza-

ion before temporal localization, it means we consider the whole

equence with all T frames as current temporal candidate, then we
hould detect bounding box for each frame, and even for those

rames without target action. Thus these correct detections would

ontinuously accumulate errors and decrease performance for fol-

owing frames. 

. Experimental results 

.1. Datasets and evaluation 

In our experiments, we use two action datasets: UCF-Sports and

CF-101. 

UCF-Sports [46] . The dataset is used for action spatial local-

zation to detect the spatial location of action in realistic scenes.

ince videos are already segmented to the short clips and bound-

ng boxes annotations are provided for all frames as well, it does

ot require to detect the temporal boundary. The videos in UCF-

ports are taken under extremely challenging and uncontrolled

onditions. It includes 150 clips from various sport events with 10

ategories of actions: diving, golf, kicking, lifting, horse riding, run-

ing, skate boarding, swing bench, swing side and walking. 

UCF-101 [47] . This large dataset is collected from YouTube for

ction recognition with more than 13,0 0 0 videos and 101 classes,

here the spatio-temporal localization annotations are contained

or a subset of 24 class labels: Basketball, BasketballDunk, Biking,

liffDiving, CricketBowling, Diving, Fencing, FloorGymnastics, Golf- 

wing, HorseRiding, IceDancing, LongJump, PoleVault, RopeClimb-

ng, SalsaSpin, SkateBoarding, Skiing, Skijet, SoccerJuggling, 

urfing, TennisSwing, TrampolineJumping, VolleyballSpiking, Walk- 

ngWithDog. Videos in UCF101 are relatively long and untrimmed,

hus we can evaluate our spatio-temporal localization method on

his dataset. In contrast to the UCF-Sports, the untrimmed nature

f UCF101 makes it more realistic and challenging for localization

ask. 

Features and parameters . Our algorithm needs a feature rep-

esentation for each x w , x c , x t , x b , x a . Inspired by the study in

48–50] , which have proved a deep architecture consisting of

ultiple layers with nonlinearity can improve the representa-

ion power of features, especially for recognition task, we adopt
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Fig. 4. The confusion matrices for action classification on the UCF-sports and UCF-101. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

The recognition accuracy on the UCF-sports and UCF- 

101. 

Algorithm UCF-sports UCF-101 

Baseline1 [52] 80% 46.95% 

Baseline2 [48] 83.67% 80.20% 

C3D + linear SVM [50] – 82.30% 

HSTM [53] 90.67% –

Whole-chain [54] 82.98% 79.51% 

Target-chain 85.11% 80.07 % 

Context-chain 72.34% 76.08% 

Before-Whole-After – 82.39% 

Whole-Target-Context 87.23% 80.84% 

STCM 87.23% 85.16% 
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i  
deep model to extract features. Each image is first warped to

224 ∗224 pixels and then processed by a pre-trained CNN follow-

ing the VGG-16 architecture [51] . For target x t , it is the descriptor

of the inside bounding boxes, where we first crop the target re-

gion and then extract feature representation by the deep model.

In contrast, the spatial context x c is the descriptor of the outside

bounding boxes around the target region, so we first mask the

target region and then process it by the deep feature extracting

model. Since the whole x w contains both the target part and con-

text part, we combine the two to represent it, namely directly ex-

tract the feature representation on the whole image. The way for

computing the descriptors of temporal context x b and x a are same

as that for calculating the whole x w . In this paper, the smooth co-

efficient α is set to 0.1 and the number of hidden states is set to 2

by cross validation. We keep 20-top temporal candidates for spa-

tial localization and maintain a pool of best paths with size of

20 for each temporal candidate by default. The temporal search

space is organized by multi-scale sliding window and we fix the

range of window length to [20:10:T] with scanning stride of 5

frames, which can cover every temporal interval among video se-

quence and adaptively deal with action sequences with different

length. For spatial search space of first frame, original sliding win-

dow size is 50 × 50 pixels, scanning stride is 20 pixels, and scale

step is 0.5 which balances the localization precision and searching

efficiency. 

Evaluation metrics . A localization is considered as correct if its

intersection over union (IoU) with the ground-truth is above a

threshold δ. In this paper, a video prediction is considered as cor-

rect if both the predicted action label and the localization result

match the ground truth. The IoU between two spatio-temporal

paths is defined as the average of the IoU between bounding boxes

among all overlapping frames in temporal domain. To fully evalu-

ate our model, we fix the range of IoU threshold to [0.2,0.5] for

spatial detection on the UCF-Sports, [0.2,0.8] for temporal detec-

tion on the UCF-101, and [0.05, 0.1, 0.2, 0.3] for spatio-temporal de-

tection on the UCF-101. By default, the reported metric is the mean

Average Precision (mAP) at IoU threshold δ= 20% for spatial local-

ization (UCF-Sports), δ= 50% for temporal localization and δ= 10%

for spatio-temporal localization (UCF-101). 
.2. Action recognition result 

Our method recognizes the action label and detects action loca-

ion simultaneously. We first analyze the recognition performance

f our STCM. We use the standard training and test splits for both

wo datasets. 

The classic approach [52] applying SVM based on the tra-

itional spatio-temporal interested points (STIPs) with a bag-of-

eature (BOF) style representation is used as the first baseline.

dditional, another baseline is to directly integrate the features ex-

racting network into a classification network to obtain the final

ecognition result, which is something like the spatial stream of

48] . We train the unified classification network with the similar

rchitecture, where the only difference is that during fine-tuning

e add two fully-connected layers and a classification FC layer

f 24 neurons or 10 neurons (consisting of 24 UCF-101 detection

lasses or 10 UCF-Sports detection classes) following the features

xtracting network. From Table 1 , it can be found that recognition

erformance of STCM is slightly worse than HSTM [53] on UCF-

ports, another probabilistic graphical model based method. The

eason is that HSTM is a much more complex model and able to

apture more fine-gained relations, e.g. the complexity of HSTM is

 (T N y |E| N h + N y T N h ) and STCM is O (3 N y T N h + 2 N y N h ) , where N h

s size of hidden set, N y is size of label set and patch edge number
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Fig. 5. Action spatial and temporal localization results on UCF-sport and UCF-101, measured by mAP and Recall at different IoUs and numbers of candidates. 
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E| � T . Therefore, HSTM is too complex to be utilized for recog-

ition task on big dataset (e.g. UCF-101) and also it is not suitable

or localization task, which needs to handle multiple proposals. 

In order to comprehensively evaluate the performance of STCM

nd the effectiveness of spatio-temporal contexts, we compare

TCM with its sub-models with different structures on the two

enchmark datasets in Table 1 . The target-chain and context-chain

ean only modeling the context and target region independently;

lthough the whole-chain is built on the whole frame, it makes no

istinction between target and context, which is equivalent to [54] ;

he Whole-Target-Context constructs the three chains jointly, but

t only contains the spatial context; The Before-Whole-After mod-

ls the complete dynamic process of action, but it only contains

he temporal context; The complete STCM incorporates both spatial

ontext and temporal context. Note that videos in UCF-sports are

he segmented short clips, where no before or after sequence ex-

sts, such that the STCM is equivalent to the Whole-Target-Context

ere. From these comparisons, the following points can be in-

icated: (1) Besides the target-chain, the context-chain and the

hole-chain also contribute to recognition task. (2) Both spatial

nd temporal contexts are important for action recognition, where
 c  
efore-Whole-After and Whole-Target-Context can improve the ac-

uracy of each individual chain. (3) The spatial and temporal con-

exts complement each other and combining them can reach the

ighest recognition rate. It concludes that both spatial and tem-

oral contexts can improve model’s discriminative power and de-

criptive capability. (4) Our STCM can achieve comparable and even

etter recognition performance with state-of-the-art methods. The

onfusion matrixes obtained by our model on the two datasets are

hown in Fig. 4 , which are detailed results for action recognition of

ach action category. 

.3. Action localization result 

Now we evaluate the performance of action localization using

he STCM. The advantage of our method lies in the combination

f target action and its context for action localization. Since both

emporal context and spatial context are integrated into STCM, to

erify the benefit of this combining, we test and analyze them in-

ependently as following. 

Firstly, to evaluate the effectiveness of spatial context, we

ompare the performance for action spatial localization on the
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Fig. 6. The AP of each action category on the UCF-101 for target-centered method (Target), model without temporal context (Whole-Target-Context) and model with spatio- 

temporal context together (our STCM). 
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UCF-Sports: (1) Whole-Target-Context: incorporate the whole-

chain, target-chain and context-chain to fully capture all kinds

of spatial contextual relationships; (2) Target-Context: remove the

whole-chain and only model the relations between target and con-

text; (3) Target-Whole: reserve the target-chain and whole-chain

to implicitly exploit some spatial contexts; (4)Target: remove all

spatial contexts and only utilize the target-chain, which is called

target-centered method. We follow the conventions, report the

mAP at different IoU thresholds in Fig. 5 (a). In addition, the ‘Recall-

candidate’ measures the recall rate when varying the numbers of

candidate paths as shown in Fig. 5 (b). It can be seen that our

method outperforms the target-centered method significantly, and

it achieves promising results even with a small number of can-

didate paths or at a high IoU threshold. Meanwhile, it verifies

both context-chain and whole-chain have contributions for captur-

ing spatial context and locating action. Although the ‘Target-Whole’

can obtain higher mAP than the ‘Whole-Target-Context’ at low IoU,

we get the best performance at high IoU when incorporating the

three chain together. That is to say, the target-chain is the fun-

damental one which provides a coarse position extent of action,

and its context contributes to refine it to get more accurate spa-

tial boundary. Under the same condition, when using multi-scale

sliding window instead of dynamic programming, it requires more

than 150 proposals for each time step to obtain the similar result. 

Secondly, we also evaluate the effectiveness of temporal con-

text on action localization for detailed analysis. The compared re-

sults of temporal localization on the UCF-101 are reported in Fig. 5 ,

where the ‘Before-Whole-After’ means that incorporating action it-

self, before-action and after-action together to fully capture tem-

poral contextual relationships, and the ‘Target’ refers to the model

without considering any temporal context. In the same way, we

show the mAP at different IoU thresholds in Fig. 5 (c) and the re-

call rate at different numbers of candidates in Fig. 5 (d) for tem-

poral localization. It can be found that our model outperforms the

target-centered method significantly, no matter at a low or high
oU threshold. Thus we can verify that the temporal context is in-

eed benefit for detecting accurate temporal boundary of human

ctions. 

Thirdly, we evaluate the performance of complete STCM for ac-

ion spatio-temporal localization on the UCF-101, where we can

onsider the ‘Whole-Target-Context’ and ‘Before-Whole-After’ as

ub-models of STCM for spatial localization task and temporal lo-

alization task respectively. The mAP when varying IoU thresholds

s reported in Fig. 5 (e), where STCM denotes the complete model,

he ‘Whole-Target-Context’ means removing the temporal context

rom STCM, and the ‘Target’ refers to STCM without any spatial and

emporal contexts. It demonstrates that the performance improves

hen incorporating more contextual information (STCM > ‘Whole-

arget-Context’ > ‘Target’), which is the consistent conclusion with

patial localization and temporal localization above. From these ex-

erimental results, we have following observations: First, it just

equires a small number of candidate paths to achieve the opti-

al localization performance in our dynamic programming with

aliency map framework, such that it saves the computational cost.

econd, integrating the spatio-temporal contexts to locate action

an achieve more complete boundary and get more accurate de-

ection result. 

Finally, we compare our model with other state-of-the-art ac-

ion localization methods on the UCF-Sports and UCF-101. To re-

ort the performance, we use the mAP as the base metrics, which

an well measure the capacity to localize accurate spatio-temporal

oundary of action sequence. The localization results on UCF-

ports and UCF-101 are shown in Table 2 . It is also worth not-

ng that the mAP is reported at IoU = 0.1 for spatio-temporal lo-

alization on the UCF-101, while it is reported at IoU = 0.2 for only

patial localization on the UCF-Sports. On average, our approach

btains 11.57% and 5.27% performance gains than [8] and [17] ,

espectively, and outperforms [57] substantially by 4.57% on the

CF-Sports. Despite of the challenge of locating actions both spa-

ially and temporally, we can achieve better performance than
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Fig. 7. Illustrative examples of our localization results (with green bounding boxes) on the UCF-101 dataset. The ground truth is marked by red bounding box. It can be seen 

that we can accurately locate non-moving actions as well as actions with strong moving. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Table 2 

Action localization results measured by MAP at 

IoU = 0.2 for spatial localization on the UCF-sports and 

at IoU = 0.1 for spatio-temporal localization on the 

UCF-101. 

Algorithm UCF-sports UCF-101 

Tran and Yuan [17] 54.30 –

Wang et al. [8] 48.0 –

Van Gemert et al. [55] 54.6 45.0 

Mettes et al. [56] 54.5 34.8 

Lu et al. [24] 48.1 –

Soomro et al. [57] 55 –

Gkioxari et al. [32] 58.34 –

Yu and Yuan [18] – 42.8 

Peng and Schmid [10] – 50.39 

Target chain 40.42 35.57 

Ours 59.57 49.39 
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18] and comparable performance with [10] using much less pro-

osals. In order to reach the optimal performance, we keep a pool

f 20 candidates in our model, while the required numbers of pro-

osals are 10K in [18] and 256 in [10] , respectively. In particu-

ar, combining spatio-temporal context leads to an improvement of

9.15% on the UCF-Sports and 13.82% on the UCF-101. Another ev-

dence illustrating the importance of context is that R 

∗CNN [32] is

uperior to [57] by exploiting contextual cues, which both depend

n RCNN framework. Instead of considering the most informative

econdary region as context [32] , we find a more suitable way to

efine context by dynamically considering the spatial context as

he outside of detected bounding box and obtain more accurate
ocalization result on UCF-Sports. It clearly demonstrates the supe-

ior ability of our method in accurate action localization and the

enefit of explicitly modeling context. Additionally, since R 

∗CNN

32] is a frame-level method only designed for spatial localization,

t cannot be used for spatio-temporal localization on UCF-101. 

The AP of action localization on the UCF-101 is presented in

ig. 6 , which contains the per class results for target-centered

ethod, model without temporal context and our STCM. Compared

o other works [18] , which causes much performance decrease for

ome actions with strongly moving, our STCM can relatively accu-

ately locate these moving actions. Since they detect each frame

ndependently and fail to exploit temporal dynamics in action se-

uences. Take some moving actions as examples, we show some

omparison results between [18] and ours: ‘Diving’ (22% vs 67%),

VolleyballSpiking’ (lower than 10% vs higher than 30%), ‘CliffDiv-

ng’ (21% vs 50%), and ‘PoleVault’ (31% vs 55%). Some examples of

ction localization results for different categories on the UCF-101

re illustrated in Fig. 7 . 

. Conclusion 

In this paper, we propose a unified framework to simulta-

eously recognize action label and detect action spatio-temporal

ocation. The STCM is proposed to associate target action with

ts context and model their underlying relationships. Moreover,

 novel dynamic programming approach is utilized to infer the

est spatio-temporal path, which not only preserves the dynamic

roperty of actions, but also reduces the searching space. By intro-

ucing various kinds of contextual information into action repre-

entation, we achieve better performance in action recognition task
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and obtain more accurate boundary than those target-centered

methods in action localization task. 
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