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Spatio-Temporal Deep Q-Networks for
Human Activity Localization
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Abstract— Human activity localization aims to recognize cate-
gory labels and detect the spatio-temporal locations of activities
in video sequences. Existing activity localization methods suffer
from three major limitations. First, the search space is too large
for three-dimensional (3D) activity localization, which requires
the generation of a large number of proposals. Second, contextual
relations are often ignored in these target-centered methods.
Third, locating each frame independently fails to capture the
temporal dynamics of human activity. To address the above
issues, we propose a unified spatio-temporal deep Q-network
(ST-DQN), consisting of a temporal Q-network and a spatial
Q-network, to learn an optimized search strategy. Specifically,
the spatial Q-network is a novel two-branch sequence-to-sequence
deep Q-network, called TBSS-DQN. The network makes a
sequence of decisions to search the bounding box for each frame
simultaneously and accounts for temporal dependencies between
neighboring frames. Additionally, the TBSS-DQN incorporates
both the target branch and context branch to exploit contextual
relations. The experimental results on the UCF-Sports, UCF-101,
ActivityNet, JHMDB, and sub-JHMDB datasets demonstrate that
our ST-DQN achieves promising localization performance with
a very small number of proposals. The results also demonstrate
that exploiting contextual information and temporal dependen-
cies contributes to accurate detection of the spatio-temporal
boundary.

Index Terms— Activity localization, deep reinforcement learn-
ing, spatial context, temporal dependency, seq-to-seq model.

I. INTRODUCTION

HUMAN activity analysis, which is among the most active
research areas in computer vision and machine learning,

has many applications, such as video content-based retrieval,
human-computer interaction and video surveillance. Recently,
a considerable amount of research has focused on activity
recognition [44], [51], [53], which aims to assign a category
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label for an entire video sequence. However, activity occurs
at a precise spatio-temporal extent, and it is also desirable to
detect the spatio-temporal location in practical applications.
For example, driving non-motor vehicles on a motorway is an
abnormal activity, while driving on a non-motorway is normal.
Locating human activity in the spatio-temporal domain from
untrimmed videos is important and challenging, and the goal is
to recognize which activity a video contains and to detect when
and where the activity occurs. In recent years, most state-of-
the-art activity localization methods have adopted a “proposal
+ classification” framework [29], [43], where the main idea is
first to generate a large number of spatio-temporal candidates
and then to score them to obtain the final localization result
using a pretrained classifier.

Although this framework achieves promising performance,
several issues exist. 1) Compared with two-dimensional (2D)
object localization [37], [38], the search space is too large
for 3D activity localization, especially considering a flexible
bounding box size, which can vary across frames. Thus,
a flexible bounding box can be utilized to detect both moving
activities and nonmoving activities, while a fixed bounding box
(e.g., subvolume [48]) cannot handle activities with substantial
motion. Therefore, an effective and efficient method to extract
proposals instead of exhaustive sliding window searching must
be found. 2) Most existing methods are target-centred and
ignore contextual relations. However, human activity does not
occur in a vacuum and context has strong relevance to the
target activity. 3) Frame-based models are direct extensions of
object localization methods [14] and fail to capture temporal
dependencies between neighboring frames [34]. Thus, activity
is independently located in each frame, and video-level local-
ization results are obtained via temporal post-processing.

To address these three issues, we propose a unified
spatio-temporal deep Q-network (ST-DQN) that is inspired by
the success of DeepMind [32], [33], [50] at playing Atari
games and Go. ST-DQN is a deep proposal model that aims
to train a localization agent via deep reinforcement learn-
ing. Instead of time-consuming exhaustive search, the agent
focuses attention on regions with rich information, following a
procedure similar to human perception. The agent successively
locates the activity by exploring a small number of potential
time intervals and potential space regions with a temporal
Q-network and a spatial Q-network.

Compared with the common temporal Q-network, the spa-
tial Q-network is a novel two-branch sequence-to-sequence
deep Q-network (TBSS-DQN). The TBSS-DQN, which takes
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Fig. 1. (a) Temporal dependency: it tends to select consistent actions between
neighboring frames. In the activity of ‘diving’, the changing trend of the
bounding box is downward motion for each frame. (b) Contextual relation:
inaccurate localization can not only affect the activity itself (target) but also
negatively affect its context. The left image shows accurate localization, and
the right image is inaccurate.

both contextual relations and temporal dependencies into
account, has two advantages. First, TBSS-DQN is a sequence-
to-sequence model that makes a sequence of decisions to
change the attentional location of each frame simultane-
ously. The sequential Q-network successfully incorporates the
global temporal dependencies, where each change in decision
sequence is made depending on both the state of the current
frame and the cues from previous frames. Fig. 1(a) shows
a temporal dependency, namely, the network tends to select
consistent action between neighboring frames. Second, TBSS-
DQN is a two-branch model that associates a target activity
with its context to model the underlying relationship. Recent
works [15], [17] have shown that incorporating contextual
information leads to a significant improvement in activity
recognition. Context is important not only for activity recog-
nition but also for activity localization because the boundary
is just the intersection between the target activity itself and
its context, which inevitably influence each other, as shown
in Fig. 1(b). Specifically, if the detected bounding box is
smaller than the ground truth, part of the target is lost, and this
lost region will be mistakenly considered as part of the context.
In experiments, we show that our proposed model is capable
of effective reasoning reasoning regarding temporal bounds
and spatial bounding boxes. More importantly, the ST-DQN
achieves promising performance with a very small number
of proposals. To the best of our knowledge, this is the first
deep reinforcement learning model for human activity spatio-
temporal localization.

Overall, the contributions of this paper are as follows:
1) Human activity spatial localization and temporal localiza-
tion are addressed simultaneously with a unified ST-DQN,
which is an effective and efficient way to extract proposals via
an optimized attention strategy instead of exhaustive search.
2) A novel TBSS-DQN is proposed to make a sequence of
decisions to locate each frame simultaneously and to integrate
the context into the interpretation process to provide double

cues for activity localization. The TBSS-DQN fully captures
dynamic temporal relationships between neighboring frames
and exploits contextual information in the area surrounding the
target activity. 3) The experiment demonstrates that our spatio-
temporal deep Q-network is a good proposal model that can
generate high-quality proposals for human activities, namely,
the network achieves precise results using only a very small
number of proposals.

II. RELATED WORK

A. Proposal + Classification Based Localization Methods

Currently, human activity localization is commonly
approached by spatio-temporal proposals matching [3], [10],
[36], namely, the classic proposal + classification frame-
work [56], [64], [70]. Traditionally, proposals are generated
by a sliding window [12], [26], which is effective but not
efficient. Several efforts aim to reduce the computational
cost, such as the spatio-temporal branch-and-bound algo-
rithm [66]. The activity proposal model is another alter-
native to reduce the search space considerably. The 2D
deformable part model (DPM) is extended to a 3D spatio-
temporal DPM in [48], where the most discriminative 3D
subvolumes are selected as individual proposals. The naive
Bayes-based mutual information maximization (NBMIM) [65]
method has been introduced to find the optimal subvolume
in 3D video space to efficiently detect activity. In addition to
these subvolume-based methods, which cannot detect moving
activities, spatio-temporal tubes are extracted via structured
output regression [49] with a max-path search. A series of
spatio-temporal video tubes [63] are considered as local-
ization candidates and are generated via a greedy method
by computing an actionness score. Activity proposals are
defined as 2D+t sequences of bounding boxes called tubelets
in [20], which are generated by hierarchically merging super-
voxels. Although these proposal models achieve promising
performance, they are still time-costuming and do not follow
the human perception procedure of searching.

Many frame-based methods [23], which are direct exten-
sions of object localization approaches, have been proposed for
human activity localization. Poselet is extended to a dynamic
poselet model [52], where human activity is first decomposed
into temporal “key poses” and then further decomposed into
spatial “action parts”. Due to the excellent performance for
object detection, many works prefer to use convolutional
neural networks (CNNs) to extract proposals for each frame
and then either link or track the proposals to obtain the final
video-based localization result. In [58], frame-level proposals
are first detected and then scored using a combination of static
and motion CNN features. Next, the proposals with high scores
are tracked in the video sequence with a tracking-by-detection
approach. A multiregion two-stream R-CNN model [34] is
introduced to locate activity in realistic videos by starting from
frame-level detection based on faster R-CNN [14] and then
linking frame-level detections to obtain video-level detections.
In [45], a single-shot multi-box detector (SSD) is adopted to
regress the bounding box in each frame; then, action tubes
are constructed from these SSD frame-level detections. In the
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tube CNN [8], a set of tube proposals are generated depending
on 3D convolutional network features for each equal-length
clip; then, tube proposals from different clips are linked by
network flow. Overall, such indirect methods, which ignore
the temporal dynamics of human activity, are unsatisfying in
terms of search efficiency and localization accuracy.

B. Contextual Models for Activity Recognition

Recently, the advantage of combining context for human
activity recognition, which can significantly improve the
recognition performance, has been demonstrated by many
works. Various contextual elements have been integrated as
well, including spatial context [15], [17] and temporal con-
text [35], [69]. An r∗CNN [15] has been introduced to use
more than one region to construct a strong activity recognition
system. Additionally, a context-augmented event recognition
approach [57] has been proposed to capture three levels of
context from time to space, namely, image level, semantic
level, and prior level. In [35], a temporal embedding is learned
for complex video analysis by associating frames with the
temporal context. A novel active learning technique, which
not only exploits evidence from individual activity instances
but also utilizes contextual information among activities and
objects, is formulated in [17]. A framework of collective
human activity recognition that automatically captures the
relevant context of a crowd with a 3D Markov random
field is proposed in [41]. In [1], a novel deep action- and
context-aware sequence learning, which effectively combines
both context-aware and action-aware features via a multistage
recurrent architecture, is presented for activity recognition
and anticipation. A two-graph model [60] is constructed to
represent human activities by modeling spatial and temporal
relationships among local features. Then, a novel family
of context-dependent graph kernels (CGKs) is proposed to
measure the similarity between graphs for matching activities.
A recurrent interactional context model, which is an extension
of long short-term memory (LSTM) network, is proposed
to capture high-order interactional context in [54]. Mean-
while, a unified interactional feature modeling process is
introduced for one-person dynamics and for intragroup and
intergroup interactions. However, most current activity local-
ization approaches are still target-centred and give insufficient
attention to contextual information.

C. Deep Reinforcement Learning in Computer Vision

In recent years, an increasing number of computer visual
problems, such as object detection [2], [5], [22], recogni-
tion [6] and tracking [9], [67], [68], have been formulated
in the deep reinforcement learning framework. A fully end-
to-end approach for temporal activity localization is presented
in [62], where the agent is trained by reinforcement learning,
which directly learns to predict temporal bounds of activities.
An active model for localizing objects is proposed in [5],
where an agent is allowed to focus attention on candidate
regions to find the location of the target object accurately and
rapidly. An effective tree-structured reinforcement learning
(Tree-RL) method [22] has been introduced to sequentially

locate objects by fully exploiting both historical search paths
and current observations. Similarly, objects are located by
executing hierarchical object detection in 2D images guided
by a deep reinforcement learning agent in [2]. A collaborative
deep reinforcement learning method is proposed for joint
multiple objects detection by treating each detector as an
agent in [25]. The researchers utilize a novel multi-agent
deep Q-learning algorithm to learn inter-agent communication,
which effectively exploits beneficial contextual information.
In [68], a novel neural network tracking model is proposed;
the model comprises three sub-models: a CNN for extracting
features from each frame, a recurrent neural network (RNN)
for constructing temporal states, and a reinforcement learning
agent for making decisions to locate a target. A template
selection strategy constructed by deep reinforcement learning
for visual tracking, which utilizes this strategy to select
the best template for tracking a certain frame in videos,
is introduced in [9]. In [67], an action-decision network
(ADNet), which is trained by supervised learning and deep
reinforcement learning, is applied to control a novel tracker
by sequentially pursuing actions. In [6], an attention-aware
deep reinforcement learning (ADRL) method, which aims to
discard some misleading frames and find the most informative
frames to represent face videos, is introduced for video-based
face recognition.

In general, deep reinforcement learning provides a coarse-
to-fine search strategy, where observation and refinement are
performed iteratively. Such detection methods are similar to
the process of human perception, so they do not require a large
number of proposals. However, these methods are used either
to train a spatial localization agent for object detection or to
train a temporal localization agent for activity temporal detec-
tion. In contrast to the existing deep reinforcement learning
networks, the proposed ST-DQN is designed to achieve a light
computational burden and satisfactory localization accuracy
in both the spatial and temporal domains. A novel two-
branch sequence-to-sequence deep Q-network is proposed to
incorporate the temporal dynamics and contextual information
of human activities to improve the extension of frame-level
detection to video-level detection.

III. THE ST-DQN FOR ACTIVITY LOCALIZATION

The goal of human activity localization is to detect the
exact activity location in a video sequence, which is defined
as a series of bounding boxes B = {xt

1
, yt

1
, xt

2, yt
2}t2t1 between

the start frame t1 and end frame t2. Each bounding box
is represented by the coordinates of two of its corners. In
this paper, we propose a unified ST-DQN for activity local-
ization, consisting of a temporal Q-network and a spatial
Q-network, as depicted in Fig.2. The temporal model is
the common Q-network used for searching the time period
{t1, t2}. The spatial model is a novel TBSS-DQN that makes
a sequence of decisions to search the bounding box for each
frame simultaneously. Note that TBSS-DQN is a generalized
sequence-to-sequence model that is not based on the typical
encoder-decoder structure. Thus, when given input sequential
video frames, TBSS-DQN decodes each output for each frame
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Fig. 2. Illustration of the spatio-temporal deep Q-network (ST-DQN),
consisting of a temporal Q-network and a spatial network (TBSS-DQN), for
human activity localization. Before being fed to the ST-DQN, each frame of
input video is warped to 224*224 pixels. Then, the frames are processed by a
pretrained CNN following the VGG-16 architecture. The output of the CNN
is concatenated as the sequential state representation, which is taken as the
input of the spatial Q-network. The TBSS-DQN incorporates the target branch
and context branch to predict a sequence of spatial actions, where we take
the feature fusion as an example here. The input of the temporal Q-network
is calculated by temporal pooling via averaging of all the CNN outputs, and
the output is the predicted temporal actions.

from all the previous frames and current frame, and it then out-
puts sequential decisions frame by frame. The TBSS-DQN not
only accounts for temporal dependencies between neighboring
frames but also incorporates the target branch and context
branch to take full advantage of contextual relationships.

We cast the problem of human activity localization as a
Markov decision process (MDP) to rapidly find the spatio-
temporal location of an activity by a trained localization agent.
A video sequence is considered as the environment, where
the agent sequentially deforms a time interval and a series
of bounding boxes using a set of predefined actions in the
temporal and spatial domains. Typically, an MDP is defined
as an (S, A, R) tuple, namely, a set of states s ∈ S, a set of
actions a ∈ A, and a reward function R(s, a). At each time
step, the localization agent estimates the current state s and
takes an optimal action a∗ to find the next better location,
a∗ = arg max

a
Q(s, a), which is considered as a policy

mapping from the state set to the action set. The optimal
action is determined by maximizing the Q-function, which is
approximated by the spatial or temporal Q-network.

A. The Two-Branch Sequence-to-Sequence
Deep Q-network

For human activity spatial localization, we propose a novel
two-branch sequence-to-sequence deep Q-network (TBSS-
DQN) that fully models both contextual information and
temporal dynamics. Therefore, each element of the MDP in
TBSS-DQN is in a sequential form, including the spatial state
sS= {s1, s2}, spatial action aS= {a1, a2} and spatial reward
R(sS , aS) for the target and context components.

1) Network Architecture: The Q-function is defined as
an action-value function that accumulates the expected total
future discounted reward:

QS(sS,aS)= E[
K∑

k=m

γ k−m R(sk , ak)|sm=sS,am=aS;θ S] (1)

Instead of the currently returned reward R(sk , ak), the agent
takes all the future possibilities into account for action selec-
tion. As shown in Eq.(1), the spatial Q-function reflects
the improvement in localization accuracy during the whole
running episode K , where sm → sk is a state transition after
k − m steps and γ is a discount factor.

Due to the high-dimensional continuous state and model-
free environment, the problem is difficult to solve via tradi-
tional reinforcement learning. Therefore, we learn the search
strategy by considering TBSS-DQN as an approximator of this
spatial Q-function to estimate the optimal value for each state-
action pair, as shown in Fig.2. Technically, for TBSS-DQN,
given an activity video I = {I1, I2, . . . , IT }, the corresponding
optimal action of t − th frame at k − th searching step is
computed by

sk,t = φV GG−16(It , bbk,t )

hk,t = φL ST M (sk,t , hk,t−1)

qk,t = φRL(hk,t ) (2)

pk,t = φsof t max(qk,t )

ak,t = arg max
a

qk,t (sk,t , a)

First, a CNN is utilized to encode the visual information
of frame It within bounding box bbk,t , which is called
the current state sk,t . This current state, together with the
previous hidden state, is fed into the t − th input node of
LSTM [19] to drive the state transition from hk,t−1 to hk,t .
The q-value qk,t is calculated based on the hidden state hk,t ,
which includes all available information. Finally, we obtain
output probability pk,t by soft-max normalization and select
the action with the largest q-value as the optimal action ak,t

to change the bounding box bbk,t . Collectively, φV GG−16,
φL ST M and φRL constitute the TBSS-DQN parameterized
by θ S .

For the TBSS-DQN, we combine the target branch and
context branch to obtain stronger evidence for accurate local-
ization. Each branch in the TBSS-DQN consists of a fully
connected (FC) layer of 1024 neurons, an LSTM [19] layer
of 1024 neurons, and an output layer with a sequence of 6
action decisions. Given the two branches s1

k → q1
k and s2

k →
q2

k , following Eq.2, we want to learn a unified sS
k → qS

k . As
shown in Fig.3, we consider four different architectures to fuse
the two branches, including decision fusion, feature fusion,
unidirectional expert and bidirectional expert. Note that slight
differences exist between the four fusion strategies, which we
detail as follows: (1) Decision fusion in Fig. 3(a): This method
integrates two branches in terms of the final q-value by a
summation operation:

qS
k = q1

k + q2
k = {q1

k,1 + q2
k,1, . . . , q1

k,T + q2
k,T } (3)
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Fig. 3. Illustration of our proposed TBSS-DQN for human activity spatial localization. Note that although the network is a sequential model that
simultaneously processes multiple frames in a video, we present only one frame for simplicity. (a)(b) TBSS-DQN with decision fusion/ feature fusion:
the target network and context network are integrated by decision fusion or feature fusion. (c)TBSS-DQN with unidirectional expert: the context branch is
treated as an expert to refine the detection result of the target branch. (d)TBSS-DQN with bidirectional experts: the two branches support and complement each
other.

The two branches are trained independently, and their loss
functions depend on the Bellman equation [32]:

L1 =
∑

t,k

[γ max
a1

k+1,t

Q1(s1
k+1,t , a1

k+1,t ; θ1)

+ R(s1
k,t , a1

k,t )− Q1(s1
k,t , a1

k,t ; θ1)]2 (4)

L2 =
∑

t,k

[γ max
a2

k+1,t

Q2(s2
k+1,t , a2

k+1,t ; θ2)

+ R(s2
k,t , a2

k,t )− Q2(s2
k,t , a2

k,t ; θ2)]2 (5)

(2) Feature fusion in Fig. 3(b): To consider the pixel-wise
correspondences between the target branch and context branch,
we fuse the two branches in the feature layer and then directly
feed it to FC8 to compute sS

k → qS
k :

sS
k = s1

k + s2
k = {s1

k,1 + s2
k,1, . . . , s1

k,T + s2
k,T } (6)

In addition to the above two traditional fusion approaches,
we propose two novel fusion methods that are more adaptive
in the reinforcement learning framework. (3) Unidirectional
expert in Fig. 3(c): To train the target branch, we consider the
context branch as an additional expert. The loss function of
the context branch is still computed by Eq. 5, but that of the
target branch is converted to the following:
L1 =

∑

t,k

[R(s1
k,t , a1

k,t )− Q1(s1
k,t , a1

k,t ; θ1)

+ γ max
a1

k+1,t

Q1(s1
k+1,t , a1

k+1,t ; θ1)]2 − p2
k,t log p1

k,t (7)

In Eq. 7, the context branch provides supervised information
p2

k,t for training the target branch by a minimum cross entropy
constraint, which requires the output probabilities of the two
branches to be similar. (4) Bidirectional expert in Fig. 3(d): In
contrast to unidirectional fusion, bidirectional fusion requires
the two branches to act as experts for each other. The train-
ing of the context branch is also supervised by the target

branch:
L2 =

∑

t,k

[R(s2
k,t , a2

k,t )− Q2(s2
k,t , a2

k,t ; θ2)

+ γ max
a2

k+1,t

Q2(s2
k+1,t , a2

k+1,t ; θ1)]2 − p1
k,t log p2

k,t (8)

For the last two fusion strategies, qS
k = q1

k is obtained by
s1

k → q1
k . The context branch is used as an expert to help

the target branch make better decisions, since there is no
ground truth for each change in the bounding box during
training.

2) Spatial State: The spatial localization agent has a state
representation with information of the currently visible region,
composed by the descriptors inside the bounding box and
outside the bounding box. The former is used for the target
branch, while the latter is taken as the input of the context
branch. The target branch and context branch provide double
cues for accurate localization and complement each other.
Before being fed to the TBSS-DQN, each input video frame
is first warped to 224*224 pixels. As shown in Fig.2, the state
of the target branch is a sequence of representations
s1

k = {s1
k,1, s1

k,2, . . . , s1
k,T } extracted from the inside of the

current region at the k−th searching step using a pretrained
CNN following the VGG-16 architecture. We introduce a
model with the same architecture to extract the state of the
context branch, which represents the outside of the current
region at the k−th searching step by masking the target regions,
denoted as s2

k = {s2
k,1, s2

k,2, . . . , s2
k,T }.

3) Spatial Action: Two different spatial action sets are
available for changing the bounding boxes, which would be
evaluated and compared in the experimental part. The first
set of actions for spatial localization is composed of 5 trans-
formation actions (top-left scaling, top-right scaling, bottom-
left scaling, bottom-right scaling, and centre scaling) and one
terminate action. For example, centre scaling with a scaling
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Fig. 4. Illustration of the action set in the proposed ST-DQN. (Top) 6 actions for temporal localization; (Middle) 6 actions for spatial localization; (Bottom)
9 actions for spatial localization.

factor α is performed in the following way:
x1= x1+α × (x2−x1)/2, y1 = y1+α × (y2−y1)/2 (9)

x2= x2−α × (x2−x1)/2, y2 = y2−α × (y2−y1)/2 (10)

To stop the searching process, we introduce the terminate
action, which indicates that the agent has reached the location
of the activity of interest. The second set of actions for
spatial localization is composed of 8 transformation actions
(moving left/right, moving up/down, becoming shorter/longer
horizontally and becoming shorter/longer vertically) and one
terminate action. The details of the spatial action set A
are illustrated in Fig. 4 (middle and bottom). At the k− th
searching step, we obtain two sequences of actions, a1

k =
{a1

k,1, a1
k,2, . . . , a1

k,T } and a2
k = {a2

k,1, a2
k,2, . . . , a2

k,T }, esti-
mated from the target branch and context branch, respectively,
except in the feature fusion strategy.

4) Spatial Reward: The reward function R(sk,t , ak,t ) is
defined as the improvement in localization accuracy after
the agent selects a particular action ak,t at state sk,t . The
intersection-over-union (IoU) between the predicted bounding
box bbk,t and the ground truth bgt is used to measure the
localization accuracy. The reward function is divided into two
groups, namely, terminate RT and non-terminate RN :

RN (sk,t,ak,t )=λ1sign(IoU(bbk+1,t,bgt)− IoU(bbk,t,bgt))

(11)

RT (sk,t , ak,t ) = λ2sign(IoU(bbk,t , bgt)− τ ) (12)

Intuitively, the non-terminate reward indicates that a positive
reward λ1 = 1 is received if the IoU improves when the
agent performs action ak,t at state sk,t and transforms the
bounding box from bbk,t to bbk+1,t ; otherwise, a negative
reward is received. A different reward function is used for the
terminate action since the bounding box is no longer changed.
At the terminate state sk,t , the agent will obtain a positive
reward λ2 = 3 when the IoU is above the given threshold τ .
Similarly, the rewards of both branches are sequential, namely,
R(s1

k , a1
k ) = {R(s1

k,1, a1
k,1), R(s1

k,2, a1
k,2), . . . , R(s1

k,T , a1
k,T )},

R(s2
k , a2

k ) = {R(s2
k,1, a2

k,1), R(s2
k,2, a2

k,2), . . . , R(s2
k,T , a2

k,T )},
where each element is calculated in the same way.

B. The Temporal Q-network

The temporal model is a common Q-network to find the
time interval of an activity, consisting of the start frame and

the end frame. We approximate the temporal Q-function using
a temporal Q-network, as shown in Fig.2. The temporal
Q-network consists of two FC layers of 1024 neurons each and
an output layer with 6 action decisions, whose architecture is
similar to that in [32].

QT (sT,aT)= E[
K∑

k=m

γ k−m R(sk , ak)|sk=sT,ak=aT;θT ] (13)

where the temporal localization agent interacts with the video
environment via temporal state sT , temporal action aT and
temporal reward R(sT , aT ). The temporal reward is calculated
in a manner similar to that of the spatial reward by replacing
the bounding box with the time interval in Eq.11 and Eq.12.

1) Temporal State: We introduce a deep model to capture
the temporal dynamics of human activity and extract the visual
temporal state. As shown in Fig.2, after computing the spatial
states, a temporal pooling layer is used to generate the state for
the temporal Q-network. We integrate all the temporal infor-
mation within the time interval by averaging the state repre-
sentations of the target branch, sT = avg{s1

k,1, s1
k,2, . . . , s1

k,T }.
2) Temporal Action: As illustrated in Fig.4 (top), the action

set for temporal localization is composed of 3 scaling actions
(left scaling, right scaling, and centre scaling), 2 translation
actions (right shifting and left shifting ) and one terminate
action. For example, left scaling with scaling factor α and
right shifting with translation factor β are performed in the
following ways:

t1 = t1, t2 = t2 − α × (t2 − t1), (14)

t1 = t1 + β(t2 − t1), t2 = t2 + β(t2 − t1). (15)

IV. LEARNING AND INFERENCE WITH DEEP

REINFORCEMENT LEARNING

In this section, we first propose a unified training algorithm
to learn the localization agent via deep reinforcement learning.
Then, we detail the inference procedure for how to locate
human activity with this trained agent.

A. Training Localization Agent via Deep Reinforcement
Learning

The parameters of our localization agent are given by 	 =
{θT , θ S} = {θT , θ1, θ2}, and 	 is learned via the Q-learning
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algorithm [31]. The complete training procedure is presented
in Algorithm1. We run the agent N episodes for each video
clip, where temporal localization and spatial localization are
performed successively. That is, the temporal Q-network and
the spatial Q-network are updated iteratively until the accurate
location is reached. Specifically, the agent starts from the
largest time interval {1, T } spanning the whole video sequence
and takes a temporal action during each search step to update
the time interval and the temporal Q-network. θT is trained
by gradient descent:
∇θT LT = [R(sT

k , aT
k )+ γ max

aT
k+1

QT (sT
k+1, aT

k+1; θT )

− QT (sT
k , aT

k ; θT )]∇θT QT (sT
k , aT

k ; θT ) (16)

where (sT
k , aT

k , R(sT
k , aT

k ), sT
k+1) is a transition sample from

state sT
k to new state sT

k+1 after taking action aT
k and obtaining

reward R(sT
k , aT

k ). For spatial localization, we take the ‘uni-
directional expert’ as an example; the other methods follow a
similar training procedure, with the exception that the parame-
ters are updated according to the corresponding loss functions.
Starting from the whole image {1, 1, W, H } for each frame
during the currently detected time interval, the agent takes a
sequence of spatial actions to optimize the spatial Q-network.
During the first several episodes n < n1, we independently
optimize the two branches and consider the context branch as
an expert to help train the target branch. By minimizing the
loss in Eq.5, we update θ2 via deep reinforcement learning:
∇θ2 L2 = [R(s2

k,t , a2
k,t )+ γ max

a2
k+1,t

Q2(s2
k+1,t , a2

k+1,t ; θ2)

− Q2(s2
k,t , a2

k,t ; θ2)]∇θ2 Q2(s2
k,t , a2

k,t ; θ2) (17)

By minimizing the loss in Eq.7, we update θ1 via deep rein-
forcement learning with the Bellman equation and supervised
learning with cross entropy loss:
∇θ1 L1=[R(s1

k,t , a1
k,t )+γ max

a1
k+1,t

Q1(s1
k+1,t , a1

k+1,t ; θ1)

− Q1(s1
k,t , a1

k,t ; θ1)]∇θ1 Q1(s1
k,t , a1

k,t ; θ2)− p2
k,t

p1
k,t

∇θ1 p1
k,t

(18)

Note that the detected bounding boxes are updated in terms
of only the target branch. In TBSS-DQN, each change in
decision sequence is made depending on both the state of
the current frame and the cues from previous frames. When
it is required to change the attentional region of each frame
simultaneously, TBSS-DQN succeeds in capturing temporal
dependencies involving in human activity.

During training, the terminate state is reached when the IoU
between the detections and ground truth exceeds the threshold
τ . In the Q-learning algorithm, we adopt ε-greedy for the
behaviour of the agent to avoid becoming stuck in a local
optimum. In each searching step, the agent selects a random
action with probability ε and takes the action depending on
the previously learned policy with probability 1 − ε. Replay
memory is incorporated to store experiences and to randomly
sample a mini-batch to update the ST-DQN.

Algorithm 1 Training Procedure for the ST-DQN
1: Initialize the parameters of the spatio-temporal deep Q-

network 	 = {θ1, θ2, θT };
2: Initialize the time interval {t1, t2} = {1, T } and bounding

boxes bb1 = {1, 1, W, H }t2t1
3: for each episode n ∈ [1, N] do
4: for searching step k ∈ [1, K ] do
5: Given the current bbk , update the temporal DQN: θT ←

θT − α∇θT LT (Eq.16);
6: Given the current bbk , update the {t1, t2} by aT

k , where
aT

k = argmax
a

QT (sT
k , a; θT ) (Eq.13);

7: for each frame t ∈ [t1, t2]
8: Update the context branch: θ2 ← θ2 − α∇θ2 L2 (Eq.17);
9: if n < n1: Update the target branch: θ1 ← θ1 − α∇θ1 L1

(same as Eq.17);
10: else: Given the current θ2, update the target branch: θ1 ←

θ1 − α∇θ1 L1 (Eq.18);
11: Update the bbk,t by a1

k,t , a1
k,t = argmax

a
Q1(s1

k,t , a; θ1)

(same as Eq.2);
12: end if
13: end for t, k, n
14: return 	;

B. Locating Activity With the Optimal
Localization Policy

Once the agent is trained using the procedure described
above, testing is performed in a manner similar to that of
training, with the exception that the model is not updated.
During inference, the localization agent runs a series of
actions guided by the optimal policy, where the action
with the highest predicted Q-value is selected in each step.
The agent follows the optimal search path from the whole
spatio-temporal space of a video sequence to the accu-
rate activity location. After the agent reaches the terminate
action, we stop the searching process and consider the last
detected region to be the final proposal. Fixing the max-
imum number of steps is an alternative way to stop the
search process. In addition to efficiency, the policy-based
search is appealing because it mimics the human attention
mechanism and follows the procedure of human perception.
Compared with that of the two traditional fusion approaches,
the computation cost of TBSS-DQN with expert is much
lower since the context branch is no longer required during
testing.

The Q-value is designed for proposal extraction rather than
activity classification since it estimates only the improve-
ment resulting from each change and not a discriminative
score. Therefore, we adopt an external classification network,
namely, two-stream inflated 3D ConvNet (I3D) [7], which is a
state-of-the-art recognition model, as an evaluator to recognize
the activity proposals. The I3D is pretrained on Kinetics and
we replace its last layer with a new classification FC layer of
c + 1 neurons, that is, the number of activity categories and
a background class. We use the Adam optimizer [24] with a
small learning rate of 1e-6 to fine-tune the parameters.
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V. EXPERIMENTS

We evaluate localization performance of our proposed
ST-DQN on several public human activity datasets. In this
section, we first introduce the datasets, evaluation metrics
and implementation details. Then, we analyse our model
comprehensively. 1) We compare the frame-based and video-
based localization methods. 2) We evaluate the context for
activity localization. Finally, we compare to the state-of-
the-art methods and present some qualitative localization
results.

A. Datasets and Experimental Setup

1) Datasets: UCF-Sports [39]: This dataset is used for
activity localization to detect the spatial locations of activities
in realistic scenes. The videos in UCF-Sports are segmented
into short clips, and bounding box annotations are provided
for all frames. The dataset includes 150 clips from various
sporting events with 10 categories of sports activities. JHMDB
and Sub-JHMDB [21], [52]: The sub-JHMDB and JHMDB
are also used for activity spatial localization. The sub-JHMDB
is a subset of JHMDB where all the joints are inside the
frame, and it contains 316 clips with 12 activity categories.
Activity recognition for this subset is much more challenging
than that of the complete JHMDB [21]. UCF-101 [46]: This
large dataset is collected from YouTube for activity recognition
with more than 13000 videos and 101 categories. For the activ-
ity localization task, detailed spatial location annotations are
provided for a subset, which contains 3207 video sequences
with 24 categories of activities. In contrast to UCF-Sports and
sub-JHMDB, the videos in UCF-101 are relatively untrimmed,
which makes the dataset more realistic and challenging for
the spatio-temporal localization task. ActivityNet-1.3 [4] is
a large dataset for activity temporal localization, including
19228 videos from 200 activity categories. The training, vali-
dation and testing sets are divided according to a 2:1:1 ratio.

2) Evaluation Metrics: A localization is accepted as correct
if both the predicted activity label and the predicted location
match the ground truth, that is, the classification result is
accurate and the IoU with the ground truth exceeds a specified
threshold δ. The IoU between two spatio-temporal paths is
defined as the temporal IoU multiplied by the spatial IoU
between bounding boxes averaged over all overlapping frames.
To fully evaluate our ST-DQN, we consider an IoU threshold
of [0.05:0.95] for spatio-temporal localization and [0.5,0.75]
for temporal localization. By default, the reported metric is
the mean average precision (mAP), which comprehensively
represents the relationship between recall and precision, at an
IoU threshold of δ = 0.2. Furthermore, we report the
receiver operating characteristic curves (ROCs), as in previous
works [11], which are obtained by plotting the true positive
rate (TPR) against the false positive rate (FPR) at various
threshold settings. Unless otherwise noted, ST-DQN adopts
the default fusion strategy of bidirectional experts.

3) Implementation Details: We employ the standard train-
ing and testing split for each dataset. The state generator is a
multilayer CNN with the VGG-16 architecture pretrained on
ImageNet. We train the ST-DQN using reinforcement learning

with a ε-greedy policy for 15 epochs, each completed after
performing an episode for all training videos. During the
ε-greedy training, ε is annealed linearly from 1 to 0.1 over
the first 10 epochs, which allows the agent to progressively
utilize its own learned searching policy. Then, ε is fixed to
0.1 in the last 5 epochs, and the agent updates the ST-DQN
parameters based on experience produced by its own decisions.
The parameters are optimized by the Adam optimizer [24]
with a learning rate of 1e-6, and dropout regularization [47] is
used to avoid overfitting. For the training process, the discount
factor γ in Eq.(1)(13) is set to 0.9, and we run each episode
with a maximum of K = 100 searching steps. We utilize
an experience pool of size |D| = 1000, and the mini-batch
size is 16. By default, we use the scaling action with a factor
α = 1/10 in Eq.(14)(9), and the translation action with a factor
β = 1/10 in Eq.(15). Meanwhile, the threshold τ of terminate
reward in Eq.(12) is set to 0.75.

B. Frame-Based Localization vs. Video-Based Localization

One advantage of our model lies in accounting for the
temporal dependencies between neighboring frames to locate
activity in each frame simultaneously. We compare our
video-based localization method to a frame-based localization
method to verify the benefit of this sequence-to-sequence
model. Specifically, the ‘video-based localization method’ here
is equivalent to ‘target branch’, where only the target branch
of TBSS-DQN is employed. For the ‘frame-based localization
method’, we utilize the same temporal Q-network architecture
to independently locate activity frame by frame and replace
the temporal tuples (state, action, reward) with spatial tuples.
As shown in Table I, we compare the mAPs at different IoU
thresholds on UCF-Sports, sub-JHMDB and UCF-101. The
comparisons indicate that temporal dependencies are indeed
helpful for localization, which suggests that the agent makes
consistent decision among neighboring frames. Since human
activity changes are relatively gradual and sudden location
changes usually do not occur, it is reasonable to select the
same action for neighboring frames. We achieve a substantial
improvement at both low IoU and high IoU by incorporat-
ing temporal relationships into the Q-network. Specifically,
the mAP increases from 73.68% to 76.86%, 67.05% to 67.10%
and 78.62% to 83.25% on the UCF-Sports, sub-JHMDB and
UCF-101 datasets, respectively, when IoU= 0.05. Meanwhile,
the change from the frame-based method to the video-based
method leads to improvements of 0.59%, 1.05% and 1.14%,
respectively, at the higher IoU=0.3. This result highlights the
benefit of performing localization at the sequence level.

In addition, we analyse the ROC curves and precision-
recall curves for the frame-based localization method and
video-based localization method, as shown in Fig.5(a)-5(f),
where the default IoU=0.2 is adopted. The two curves types
are plotted by ranking all the activity proposals generated
by the localization agent. The ROC curves and PR curves
highlight the steady increase in localization performance by
utilizing the sequence-to-sequence model. The reasons for
the improved performance are as follows: 1) The decision
consistency constraint can refine and even fix some inexact
detections, which makes the model more robust. 2) Previous

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on October 19,2020 at 00:40:50 UTC from IEEE Xplore.  Restrictions apply. 



2992 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 30, NO. 9, SEPTEMBER 2020

Fig. 5. Comparison of the ROC curves and precision-recall curves of the frame-based method and video-based method for activity localization at the default
IoU = 0.2 on UCF-Sports, sub-JHMDB and UCF-101. The figure is best viewed in colour. (a) PR curve on UCF-Sports. (b) PR curve on sub-JHMDB. (c) PR
curve on UCF-101. (d) ROC curve on UCF-Sports. (e) ROC curve on sub-JHMDB. (f) ROC curve on UCF-101.

TABLE I

COMPARE mAPs OF THE FRAME-BASED METHOD AND VIDEO-BASED METHOD FOR ACTIVITY LOCALIZATION WITH RESPECT TO DIFFERENT IOU
THRESHOLDS ON UCF-SPORTS, SUB-JHMDB AND UCF-101

frames can provide some temporal contextual information for
the current frame, such that each decision is dependent on the
long-term activity sequence.

C. Evaluation of the Context for Activity Localization

Another advantage of our model is the combination of the
target branch with the context branch to refine the spatio-
temporal boundary of human activity. We compare the fol-
lowing approaches for performance evaluation to estimate the
influence of context in activity localization: 1) Context Branch:
employ only the context branch of TBSS-DQN; 2) Tar-
get Branch: employ only the target branch of TBSS-DQN;
3) Decision Fusion: fuse the context branch and target branch
at the decision level; 4) Feature Fusion: fuse the context branch
and target branch at the feature level; 5) Unidirectional Expert:
consider the context branch as an expert to help train the
target branch; and 6) Bidirectional Expert: the two branches
supervise each other during training. The first two methods are
designed to evaluate each TBSS-DQN branch separately. The
last four methods aim to compare the localization performance
of TBSS-DQN with those of different fusion strategies.

We follow the convention of reporting the mAP for each
approach when varying the IoU threshold values in Table II.

We obtain the following observations and conclusions based
on these experimental results. 1) In addition to the target
branch, the context branch contributes to the localization
task. For instance, when utilizing only the context branch,
we achieve a mAP of 44.1% at IoU=0.3 on UCF-101, which
is only 7.68% less than that of the target branch. 2) The
target branch and context branch are both important for activity
localization, and the precision of each individual branch can
be improved by incorporating both branches. For all datasets,
a clear gain between the individual branch of TBSS-DQN and
the complete TBSS-DQN is obtained at all IoU thresholds.
Compared to the target branch, the performance of TBSS-
DQN with bidirectional expert is increased by 3.16% on UCF-
Sports, 9.86% on sub-JHMDB and 4.06% on UCF-101. These
results highlight the benefit of combining target and context
cues when performing localization. 3) The bidirectional expert
is the best fusion strategy for TBSS-DQN from the perspective
of both precision and speed of localization. First, TBSS-DQN
with bidirectional expert achieves the highest localization
precision for all datasets, e.g., it outperforms TBSS-DQN
with other three fusion strategies (decision fusion, feature
fusion, and unidirectional expert) by 7.09%, 1.40% and 3.69%,
respectively, on sub-JHMDB. Second, since TBSS-DQN with
bidirectional or unidirectional expert considers the context
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Fig. 6. Comparison of the PR curves and ROC curves of TBSS-DQN with different fusion strategies on UCF-Sports, sub-JHMDB and UCF-101. (a) PR
curve on UCF-Sports. (b) PR curve on sub-JHMDB. (c) PR curve on UCF-101. (d) ROC curve on UCF-Sports. (e) ROC curve on sub-JHMDB. (f) ROC
curve on UCF-101.

TABLE II

COMPARISON OF THE mAPs OF TBSS-DQN WITH DIFFERENT FUSION STRATEGIES FOR ACTIVITY LOCALIZATION

WITH DIFFERENT IOU THRESHOLDS ON UCF-SPORTS, SUB-JHMDB AND UCF-101

branch as an expert only to help train the target branch, which
is not necessary during testing, its localization speed is faster
than that of TBSS-DQN with decision fusion or feature fusion.

To comprehensively validate the importance of con-
text for localization, the PR curves and ROC curves are
drawn to compare TBSS-DQN with various fusion strategies
in Fig.6(a)-6(f). Two interesting points can be noted in these
graphs. First, TBSS-DQN with bidirectional expert obtains
consistent results for all datasets, while the results of the
other three fusion methods vary among datasets. In contrast
to TBSS-DQN with bidirectional expert, whose PR and ROC
curves are always the highest, the curve of TBSS-DQN
with feature fusion is higher than that of TBSS-DQN with
decision fusion on UCF-Sports and sub-JHMDB, while the
opposite is observed for UCF-101. Second, when the recall
value increases, the PR curves of the four fusion methods all
gradually surpass that of the target branch. This fact clearly
demonstrates that combining context results in more accurate
localization for difficult examples.

D. Reward and Action Selection
We also perform ablation studies to more comprehensively

evaluate our model. The scaling factor α, translation factor
β, terminate reward λ2 and action type influence both the
precision and localization speed. Therefore, we measure the
impact of these factors on the final localization performance by
running ST-DQN with different action selections and reward
selections on JHMDB. The action selection is in terms of
the scaling factor (translation factor) and the action type,
where we set α = β, since this parameter determines the
change scale regardless of changes in scaling and translation.
The reward selection is determined by the terminate reward
λ2, which balances the terminate state and non-terminate
state.

As illustrated in Table III, the mAP is a measure of a
model’s localization performance, and the search step (namely,
the proposal number in this paper) is a measure of the localiza-
tion speed. Additionally, we report the processing speed during
the testing stage for a server with a 24-core XEON processor
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TABLE III

THE LOCALIZATION RESULTS AND DETECTION SPEED (ACTION TYPE, α , λ2)

TABLE IV

TEMPORAL LOCALIZATION RESULTS OF OUR TEMPORAL DQN

with 32G RAM and an NVIDIA 2080Ti GPU. We compare
the model with different action sets, which include a 6-action
set, a 9-action set and a 14-action set consisting of the former
two sets. The results show the following: 1) As the value of
the scaling factor decreases, the mAP and the required number
of search steps both increase. 2) Since the length-width ratio is
fixed for 6 actions, utilizing 14 actions or 9 actions results in
a more accurate localization boundary, especially for higher
IoU threshold (e.g., IoU=0.75), but it requires many more
steps to locate the target activity. In fact, utilizing 6 actions is
the simplest means to transform the bounding box to cover
any location of an image, without any redundant actions,
which means the different actions result in the same IoU value
or reward. The redundant actions and reciprocating actions
(e.g., moving left/ right) are the main reasons why utilizing
14 actions or 9 actions requires more steps for convergence.
Note that the localization result of ST-DQN with 6 actions
is on par with or even better than ST-DQN with 9 actions
or 14 actions using fewer proposals (approximately 10 vs.
approximately 40) when the IoU threshold is less than or equal
to 0.5. The results demonstrate that the ST-DQN with 6 actions
is feasible when the precision requirement is not rigid, where
the model can locate activity faster under the condition that
a certain precision is assured, and ST-DQN with 9 actions
or 14 actions is more suitable for pursuing higher precision.
Utilizing 9 actions, 14 actions or a small scaling factor
makes the search process slower and more refined. 3) When
too small of a terminate reward is adopted, the terminate
state and non-terminate state are treated equally, while too
large of a terminate reward makes the agent emphasize the
terminate state and neglect the intermediate process, both of
which decrease the localization performance. To balance the
localization precision with the convergence speed, we adopt
the 6-action set (with α = 1/10 and λ2 = 3) by default in
this paper, which results in satisfactory localization precision
with fewer steps. 4) Clearly, as the number of steps to

convergence increases, the fps decreases, and the testing speed
slows.

E. Comparison to the State-of-the-Art

We continue the evaluation with a comparison to the
recently proposed state-of-the-art methods in Table V. In
Table IV, we report the mAP of the temporal localization
obtained by our temporal DQN on UCF-101 and ActivityNet.

First, we compare our ST-DQN with frame-based localiza-
tion methods [16], [23], [40], [45], [58], which independently
detect activity for each frame (or several successive frames)
and then perform video-level detection via temporal post-
processing. Most of the compared methods are extensions of
faster R-CNN [8], [34], [40], which is currently the best object
detection method. Specifically, we achieve clear improvements
of 15.78% and 6% at IoU = 0.5 on UCF-101 and JHMDB,
respectively, compared to the method in [40], which is also
a two-stream architecture consisting of an appearance net-
work and motion network; we outperform the method in [8],
which is a generalization of R-CNN from 2D to 3D, by a
margin of 0.6% and obtain a mAP of 77.5% on JHMDB.
Although [23], [45] achieves a better result at IoU = 0.2 on
UCF-101, we achieve the highest mAP of 51.64% at IoU =
0.5. Moreover, our ST-DQN achieves comparable and even
better performance when using only RGB information or fewer
proposals, where c denotes the number of activity categories.

Then, we compare our method to some video-based local-
ization methods [13], [63] that directly extract video-level
proposals in the spatio-temporal domain. At a threshold
IoU = 0.2, on UCF-101, we obtain a mAP of 71.31%,
compared to the 42.8% reported by [63], which considers
spatio-temporal video tubes as activity proposals. Similarly,
our ST-DQN substantially outperforms [13] by 36.81%,
where activity proposals are extracted from dense trajectories.
Although the precision of ST-DQN with 6 actions is lower at a
higher IoU due to its fixed length-width ratio, that of ST-DQN
with 9 actions is on par with or even better than the state-of-
the-art methods [23] at IoU=0.75 and IoU=0.5:0.95. In the
case of low IoU threshold (e.g., less than or equal to 0.5),
ST-DQN with 6 actions is the optimal choice to fast locate
activity, where it achieves the best performance and is even
better than ST-DQN with 9 actions. For temporal localization,
our temporal DQN outperforms [18], [42], [61] on ActivityNet
at both IoU = 0.5 and IoU = 0.75. Compared to [28], which is
a typical two-stream model, we obtain a higher mAP at IoU
= 0.5 and comparable performance with a similar proposal
number at IoU = 0.75.

Overall, our ST-DQN outperforms the state-of-the-art
methods on JHMDB and is on par with [23] and [28] on
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TABLE V

COMPARISON TO THE STATE-OF-THE-ART METHODS FOR ACTIVITY LOCALIZATION

Fig. 7. Qualitative activity localization results on UCF-101. Comparisons between ST-DQN with 6 actions (first row), the target branch (second row) and
the frame-based method (third row). Comparisons between ST-DQN with 6 actions (fourth row and sixth row) and ST-DQN with 9 actions (fifth row and
seventh row). Green boxes indicate our detections and red boxes denote the ground truth.

UCF-101 and ActivityNet, respectively. Moreover, the promis-
ing localization mAP of our ST-DQN is achieved by utiliz-
ing much fewer proposals (e.g., approx. 10/40 vs. 10K [63],
approx. 10/40 vs. 256 [34], [40], [59]). Note that we con-
sider the average of the convergence steps to be the pro-
posal number, which means that the agent needs to generate
approximately 10/40 and 3-4 proposals before reaching the

target location for spatio-temporal and temporal localization,
respectively. We detail these characteristics in Section V.D and
Fig.8.In the ‘proposal + classification’ framework [59], [63],
the time complexity is proportional to the number of proposals
N , namely, O(N · [O(N Nprop )+ O(N Nclass )]), which refer
to the time complexity of proposal network and classification
network, respectively. The complexity of the proposal network
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TABLE VI

COMPARISON TO THE STATE-OF-THE-ART METHODS
FOR ACTIVITY PROPOSAL

Fig. 8. The distributions of the number of steps necessary to locate target
activity on UCF-Sports, sub-JHMDB and UCF-101. Almost all the detections
require fewer than 20 steps, with an average of approximately 10 steps.

is lower than that of most state-of-the-art activity classification
models. For example, in this paper, the number of parameters,
which is commonly used for measuring the complexity of
deep model, is 23.9M in ST-DQN, while that of I3D is 25M.
It clearly demonstrates the superior ability of ST-DQN to
extract proposals effectively and efficiently and the benefit
of explicitly integrating context information and temporal
dependencies.

F. Proposal Quality Evaluation

The proposed ST-DQN focuses mainly on spatio-temporal
activity proposal generation, so we also compare the proposed
method with some recently reported proposal methods [13],
[27], [71] on the UCF-101 dataset, as shown in Table VI. Sev-
eral common proposal evaluation metrics are used, including
mean average best overlap over all classes (MABO), recall
and average number of proposals, where recall is computed
at an IoU threshold of 0.5. Our ST-DQN obtains the highest
recall with approximately 10 proposals, which demonstrates
that our ST-DQN can produce proposals with good quality for
further activity localization. Moreover, we achieve a MABO
comparable to that of Zhu et al. [71] with fewer proposals, and
we achieve much better performance in terms of both recall
and MABO when using only the RGB stream.

G. Post-Processing Evaluation

In ST-DQN, we consider the last extracted proposal as the
final detection. However, there may be an alternative when it
is desired to perform some post-processing to fine-tune these
proposals, such as the bounding box regression. Following
the common steps, we parameterize the transformation in

TABLE VII

COMPARISON OF THE LOCALIZATION PERFORMANCE BETWEEN ST-DQN
WITHOUT AND WITH BOX REGRESSION (BR) ON SUB-JHMDB

TABLE VIII

THE EFFECT OF THE INTERMEDIATE ACTIONS FOR ST-DQN
WITH 9 ACTIONS ON SUB-JHMDB

TABLE IX

THE EFFECT OF THE INTERMEDIATE ACTIONS FOR ST-DQN
WITH 6 ACTIONS ON SUB-JHMDB

terms of four functions, including the scale-invariant trans-
lation of x1 and y1: dx(bb) = (bg[0] − bb[0])/(bb[2] −
bb[0]), dy(bb) = (bg[1] − bb[1])/(bb[3] − bb[1]) and the
log-space translation of the width and height: dw(bb) =
log[(bg[2] − bg[0])/(bb[2] − bb[0])], dh(bb) = log[(bg[3] −
bg[1])/(bb[3]−bb[1])]. Each function is modelled by a linear
function of the state of bb, and its parameters are optimized by
minimizing

∑
i (t∗i − wT s(bb))

2
, where t∗i is the regression

target. For more details, please refer to [14]. In Table VII,
we compare the localization performance between ST-DQN
without and with box regression (BR) on sub-JHMDB. The
results demonstrate that the bounding box regression indeed
improves the precision of proposals for both ST-DQN with
6 actions and ST-DQN with 9 actions, especially for those
proposals with high IoU, since the linear assumption is tenable
only if the detection is close to the ground truth. Compared
to ST-DQN with 6 actions, the effect of regression is a little
more remarkable for ST-DQN with 9 actions, since ST-DQN
with 9 actions can achieve better localization performance at
high IoU.

H. Qualitative Analysis

In order to present the effect of intermediate actions,
we report the variation of localization precision with search
step as shown in Table VIII and Table IX for ST-DQN with
9 actions and ST-DQN with 6 actions, respectively. Clearly,
for both action sets, as the search step increases (namely,
taking more actions), the mAP increases correspondingly,
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which demonstrates that our ST-DQN indeed increases IoU
step by step and locates activity iteratively. Additionally,
it observes that there exists some outliers, such as the mAP
at step=40 and IoU=0.75 in Table VIII and the mAP at
step=12 and IoU=0.5 in Table IX. For the outlier in Table IX,
the reason is that the model is to pursue a higher IoU
and cannot successfully converge to a terminate status. The
reciprocating actions in 9-action set result in the outlier
in Table VIII. Compared to the model with 9 actions, once
the model with 6 actions misses the target activity, there is
no chance to make it up, but these reciprocating actions in
9-action set result in the jitter of bounding box around the
target activity.

Finally, for a more intuitive and clearer explanation,
we present some qualitative results in Fig.7. 1) Comparisons
between ST-DQN with 6 actions, the target branch and the
frame-based method. Our ST-DQN can generate proposals
with high precision, not only for activities without movement
but also for moving activities, such as cliff diving and skiing.
As shown in the first three rows, we provide some qualitative
examples comparing the performance of ST-DQN with and
without contextual/temporal information. Compared to the tar-
get branch and frame-based method, incorporating context and
temporal relation leads to fewer missed detections and a more
accurate boundary when the activity location in one frame is
vague or occluded. For instance, in the first row, we reach
the correct location, whereas in the second and third rows,
there is a large variation in the detections. 2) Comparisons
between ST-DQN with 6 actions and ST-DQN with 9 actions.
As shown in the last four rows, ST-DQN with both action
sets can locate the target activity, while the detected boundary
of ST-DQN with 6 actions is less accurate, since its fixed
length-width ratio. Furthermore, our ST-DQN can efficiently
achieve promising localization with a much smaller number
of activity proposals, where the distribution of the number of
actions required by the agent to reach the target location is
plotted in Fig.8. The distribution has an average of 10, and
more than 90% of the detections require fewer than 15 steps
to terminate.

VI. CONCLUSION

In this paper, we propose a unified spatio-temporal deep
Q-network to effectively and efficiently extract activity pro-
posals. Following the process of human perception, we use a
coarse-to-fine searching strategy and train a localization agent
to locate activity gradually and iteratively, with the ability
to decide where to focus attention next based on predefined
actions. We reduce the required number of proposal candidates
by casting the activity localization problem as a Markov deci-
sion process and searching the target activity according to the
learned spatio-temporal policy. We achieve better performance
than frame-based localization methods by introducing the
sequence-to-sequence Q-network into the activity localization
process with consideration of the temporal interdependency
of neighboring frames. By incorporating the context branch
and target branch to exploit contextual relations and provide
double cues for localization, we obtain a more accurate spatio-
temporal boundary.
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