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Knowledge-Augmented Multimodal Deep Regression
Bayesian Networks for Emotion Video Tagging

Shangfei Wang , Senior Member, IEEE, Longfei Hao , and Qiang Ji , Fellow, IEEE

Abstract—The immanent dependencies between audio and
visual modalities extracted from video content and the well-
established film grammar (i.e., domain knowledge) are important
for emotion video recognition and regression. However, these tools
have yet to be exploited successfully. Therefore, we propose a
multimodal deep regression Bayesian network (MMDRBN) to
capture the relationship between audio and visual modalities
for emotion video tagging. We then modify the structure of
the MMDRBN to incorporate domain knowledge. A regression
Bayesian network (RBN) is formed from one latent layer, one
visible layer and directed links from the latent layer to the visible
layer. RBN is able to fully represent the data, since it captures the
dependencies not only among the visible variables but also among
the latent variables given visible variables. For the MMDRBN, first,
we learn several layers of RBNs using audio and visual modalities,
and then stack these RBNs to form two deep networks. A joint
representation is obtained from the top layers of the two deep
networks, capturing the deep dependencies between audio and
visual modalities. We also summarize the main audio and visual
elements used by filmmakers to convey emotions and formulate
them as semantical meaningful middle-level representation, i.e.,
attributes. Through these attributes, we construct the knowledge-
augmented MMDRBN, which learns a hybrid middle-level video
representation using video data and the summarized attributes.
Experimental results of both emotion recognition and regression
from videos on the LIRIS-ACCEDE database demonstrate that the
proposed model can successfully capture the intrinsic connections
between audio and visual modalities, and integrate the middle-
level representation learning from video data and semantical
attributes summarized from film grammar. Thus, it achieves
superior performance on emotion video tagging compared to state-
of-the-art methods.

Index Terms—Regression Bayesian network, Multi-modal deep
network, Domain knowledge, Emotion video tagging.
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I. INTRODUCTION

EMOTION video tagging has attracted increasing attention
in recent years due to the exponential growth of digital

video repositories and the increase in user demand for videos
consumed through the popular social networks. Mainstream
works on emotion video tagging either detect the expected emo-
tions from video content or recognize the induced emotions
from audiences’ spontaneous nonverbal responses while watch-
ing videos. Expected emotions are the emotions that a video
should convey via audio and visual cues; induced emotions are
the audiences’ invoked emotions when they watch videos. This
paper deals with expected emotions.

Video content consists of audio and visual elements. Both
elements are utilized by video makers to convey emotions to
audiences. For example, bright and vivid scenes may make peo-
ple feel more positive, while dim scenes may invoke negative
feelings. Loud noises may upset people, while soft music can be
relaxing. The relations between audio and visual elements and
their expressed emotions are referred to as domain knowledge.
Audio and visual elements interact with each other to enhance
the emotional atmosphere. For instance, a quick scene cut ac-
companied by urgent music may be used to convey excitement.
Thoroughly exploring this domain knowledge and successfully
integrating audio and visual elements should be beneficial for
emotion video tagging.

Current emotion video tagging usually extracts several hand-
crafted audio and visual features to characterize the video con-
tent. Those handcrafted features represent the emotion-sensitive
audio and visual elements to some extent, but cannot completely
explore the domain knowledge. Several recent works have em-
ployed deep neural networks to learn feature representation from
videos. Although the learned representations can take advantage
of deep learning and the large scale of videos, they are entirely
data-driven and do not consider domain knowledge.

After feature extraction, some works concatenate the ex-
tracted features as one feature vector, feeding them into either
a classifier for emotion recognition or a regressor for emotion
regression. We refer to this method as feature-level fusion. Ob-
viously, the interactions between audio elements and visual el-
ements cannot be thoroughly explored by simply linking all of
the audio and visual features into one feature vector. Instead
of feature-level fusion, some works employ decision-level fu-
sion to integrate audio and visual elements for emotion video
tagging. They first detect emotions from audio and visual el-
ements separately, and then combine the recognition results
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of the two modalities through certain fusion strategies. Either
decision-level fusion cannot successfully model the interaction
between audio signals and visual signals for emotion video tag-
ging, since there exist very complex relations between audio
content and visual content as well as the impact of video con-
tent on users’ emotions [1]. To leverage the connections be-
tween audio and visual content for emotion video tagging, mul-
timodal learning may be a better approach, since it jointly op-
timizes functions from multiple modalities and thus models the
dependencies existed among multiple modalities to boost the
performance.

We propose a new deep multimodal learning method, i.e., the
multimodal deep regression Bayesian network (MMDRBN), to
learn the joint representation of audio and visual modalities for
emotion video tagging. Specifically, we stack several regres-
sion Bayesian networks (RBNs) for audio and visual modali-
ties and then extract a joint representation through the stacked
RBNs. Through minimizing the KL-divergence between the
stacked deep network from two modalities and an inference
network, we transform the MMDRBN into the inference net-
work, which is used to predict affective scores from the video
content.

We further extend the proposed multimodal deep model to
a knowledge-augmented multimodal deep regression Bayesian
network by constructing a joint representation from the vi-
sual modality, audio modality, and the well-established cine-
matography. We summarize the film grammar describing how
filmmakers employ audio and visual elements to communicate
emotions with the audience. Then, we define these audio and
visual elements as attributes, and integrate them with the joint
middle-level representations learned from video data. Finally,
both the emotion labels and the attributes are used to further
tune the parameters of the proposed knowledge-augmented mul-
timodal deep network for emotion classification or regression
from video content.

A previous paper proposing a multimodal deep regression
Bayesian network appeared as [2]. Here, we extend the MM-
DRBN to a knowledge-augmented MMDRBN, which explores
both the connections between audio and visual modalities as well
as domain knowledge for emotion video tagging. Compared with
the previous paper, the advantages of this paper are as follows:
first, we have summarized the well-estimated film grammar and
manually extracted these audio emotion-sensitive attributes and
visual emotion-sensitive attributes as domain knowledge. Sec-
ond, we have described the extended domain knowledge aug-
mented multimodal deep regression Bayesian networks in the
method section. Third, we have added experiments using do-
main knowledge augmented multimodal model on the LIRIS-
ACCEDE database in the experiment section.

This paper is organized as follows. Section II provides an
overview of the related work on emotion video tagging and
multiview learning. Section III gives a problem statement.
Section IV elaborates on the details of the proposed MMDRBN
and proposed domain knowledge-augmented MMDRBN.
Section V presents the experimental results of both classifica-
tion and regression on the LIRIS-ACCEDE database. Section VI
concludes our work.

II. RELATED WORK

A. Emotion Video Tagging

Wang and Ji provided a comprehensive survey of current emo-
tion video tagging in [3]. In this section, we briefly analyze how
current works explore domain knowledge and the interaction be-
tween audio and visual elements for emotion classification and
regression from video content.

Current emotion video tagging mainly explore domain knowl-
edge by defining specific emotion-sensitive features to repre-
sent video content. For instance, Hanjalic and Xu [4] proposed
to adopt the linear combination of the sound energy compo-
nent, rhythm component and motion component as the arousal
curve and valence curve. Grounded on psychology and cine-
matography, Wang et al. [5] explored a number of audio and
visual cues. They addressed many audio features including
Log-Frequency Power Coefficients (LFPC), low short-time en-
ergy ratio (LSTER), normalized octave energy bands, spectral
flux, spectral roll-off and centroid, zero crossing rate (ZCR),
Mel-frequency cepstral coefficients (MFCC), and music scale.
For visual aspects, the visual excitement, lighting key, color en-
ergy and shot duration are explored.

These handcrafted features are inspired by psychological
and cinematography research. Therefore, they can capture the
emotion-discriminative audio and visual elements to some ex-
tent, but cannot fully explore the dependencies between expected
emotions and visual-audio content. Recently, several works have
adopted deep networks to learn representations for emotion
video tagging. For example, Acar et al. [6] used convolutional
neural networks (CNNs) to construct middle-level representa-
tions from MFCC and color values. The works employing deep
networks leverage the power of deep multimodal networks and
large-scale videos. However, they are driven by data and do not
utilize domain knowledge.

To the best of our knowledge, only one work explicitly
leverages the relations between audio-visual elements and ex-
pected emotions for emotion classification and regression from
video content. Chen et al. [7] summarized the connections be-
tween emotions and three visual elements (i.e., motion, color
and lighting), and then transferred these dependencies into loss
constraints during the classifier learning process. Their work
successfully takes advantages of domain knowledge to regular-
ize the emotion classifiers from video content. However, they
only considered visual elements and the probabilistic positive
or negative correlations between these elements and valence or
arousal. In addition to visual elements, audio elements are often
used to enhance the emotional atmosphere in a movie. Further-
more, the dependencies between emotion and video content are
much more complex than probabilistic positive or negative cor-
relations. In this paper, we summarize the relations between
visual elements and emotions as well as audio elements and
emotions. Instead of simply modeling positive or negative cor-
relations, we capture more complex and global dependencies
through a latent regression Bayesian network.

Current emotion video tagging employ either feature-level fu-
sion or decision-level fusion to handle interactions between au-
dio and visual elements. For feature-level fusion, the extracted
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audio and visual features are linked as one feature vector which
is then used as the input of a classifier or regressor. Such fu-
sion strategy can not thoroughly capture the complex interac-
tions between audio and visual content. While decision-level
fusion consists of two subsystems, which use either visual fea-
tures or audio features and make the decision independently. The
decision-level fusion strategy is then used to combine the deci-
sions from subsystems to produce the final decision. Such fusion
strategy ignores the synergy and the highly non-linear relation-
ships between audio content and visual content [1]. Multimodal
or multiview learning may be better approaches to leverage the
connections among audio and visual content for emotion video
tagging. However, to the best of our knowledge, little work
thus far exploits multiview learning for emotion classification
and regression from video content apart from Pang et al.’s [1].
Pang et al. [1] adopt the deep Boltzmann machine (DBM) to con-
struct a multimodal DBM (MMDBM) from auditory, visual, and
textual modalities for emotion classification and cross-modal re-
trieval. Specifically, the model first obtains middle-level repre-
sentations from low-level auditory, visual, and textual features
using DBM. The middle-level representations are combined to
construct a joint representation. Then, the joint representations
are fed into a logistic regression. Experimental results on web
videos demonstrate that the MMDBM can effectively capture
the non-linear and complex synergy among auditory, visual, and
textual modalities in a joint space for better emotion tagging and
retrieval. As a classical undirected graphic model, the restricted
Boltzmann machine (RBM) promises that the hidden nodes are
independent of each other given the neighboring visible layers.
However, latent variables should explain the patterns of the in-
put data cooperatively. This independence inevitably weakens
the representation power of the MMDBM.

We propose MMDRBN, a new multimodal learning method,
to construct the high-level joint representation of audio and vi-
sual modalities for emotion classification and regression from
video content. Although similar to current generative deep mod-
els in structure, the proposed MMDRBN is fundamentally differ-
ent from these generative models since the dependencies among
hidden nodes can be captured. Thus, the proposed MMDRBN
can successfully capture the immanent dependencies between
audio content and visual content and achieve better performance
for emotion video tagging compared to state-of-the-art works.

Although Pang et al.’s method captures the complex and
non-linear relations among different modalities in a joint space
for better video emotion tagging and retrieval, it learns a mul-
timodal middle-level video representation purely from training
data. While convenient, such a learned video representation
is sensitive to the quality and quantity of the training data.
Moreover, the automatically constructed video representa-
tion is semantically meaningless. The well-established film
grammar is often used to convey emotion through audio and
visual elements and is a semantically meaningful middle-level
representation that is crucial for emotion video tagging. This
well-established knowledge can be exploited to help construct
a hybrid middle-level video representation that can simulta-
neously leverage the available data and the existing domain
knowledge. To this goal, we propose a knowledge-augmented

multimodal deep network that combines the manually specified
and semantically meaningful middle-level video attributes with
automatically learned data-based middle-level video represen-
tation to produce a hybrid middle-level video representation for
emotion video tagging. Specifically, we add a layer of domain
knowledge at the joint representation layer. The domain knowl-
edge aims to learn a better video representation and to bridge the
gap between video representation and emotion video tagging.

B. Multiview Learning

Multiview data are readily available, since most features of
data can be naturally or manually split into distinct feature
sub-sets. For example, a video consists of audio and visual el-
ements. Compared to single view learning, multiview learning
can exploit the complementary information inherent in multiple
views to learn more expressive representation and more powerful
classifiers. Therefore, multiview learning has attracted increas-
ing attention due to its promising potential in many applications.
Comprehensive surveys on multiview learning can be found in
[8], [9].

As stated in [9], correlation, consensus, and complementar-
ity principles are adopted for multiview representation learn-
ing. Canonical correlation analysis (CCA) is a popular approach
for correlation principles. It aims to find linear combinations of
the two views with respect to maximum correlation with each
other [10]. Kernel canonical correlation analysis (KCCA) ex-
tends CCA to the nonlinear change by leveraging the kernel
method during CCA transformation [11]. The emergence of big
data and the success of deep learning led to the proposal of
deep canonical correlation analysis (DCCA) [12]. DCCA aims to
learn feature representations of two maximally correlated views
through employing deep neural networks (DNNs) as a nonlinear
transformation. DCCA has proven more accurate than KCCA for
nonlinear transformation tasks [13].

Multimodal deep Boltzmann machines (MMDBM) [14] and
Multimodal deep belief networks (DBNs) [15] are typical mod-
els combining consensus and complementarity principles. They
try to obtain a compact representation that best reconstructs the
inputs and maximize the complementary information that exists
in multiple views simultaneously. Both multimodal DBM and
multimodal DBN consist of several layers of restricted Boltz-
mann machine (RBM). As an undirected graphical model, an
RBM can effectively model global dependencies among visi-
ble units through the completely undirected links between the
hidden layer and the visible layer as well as the assumption of in-
dependencies among hidden units given visible units. Introduc-
ing dependencies among hidden units will increase the models’
ability to explain the patterns that inherent in the visible units.
Instead of using undirected links like an RBM, RBN adopts di-
rected links between hidden units and visible units to model not
only the dependencies among the latent variables given visible
variables but also the dependencies among visible variables, and
thus better represents the patterns intrinsic in the visible units.

However, RBN inference is computationally intractable. Gen-
eral approximation algorithms can alleviate the problem but
discard the dependencies among latent variables. To maintain
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the dependencies, we propose an approach through Gibbs sam-
pling. After learning several RBNs, we stack them to create an
MMDRBN. The MMDRBN models the inherent connections
between audio content and visual content. The MMDRBN is
used to initialize an inference network through KL divergence;
this inference network is a feed forward network for emotion
classification or regression from video content.

Domain knowledge augments the proposed MMDRBN to fur-
ther bridge the huge semantic gap between low-level features and
video affect. Specifically, the audio and visual elements used to
convey emotions to the audiences are aggregated into a domain
knowledge layer. The layer bridges the gap between low-level
features and high-level emotion semantic for video tagging.

Compared to related work, our contributions are as follows:
First, unlike the deep Boltzmann machine, which is an undi-

rected graphic model with the independent assumption among
latent nodes, the proposed deep regression Bayesian network
is an directed graphic model, which is able to capture ont only
the dependencies among the latent variables given the observa-
tion but also the dependencies among visible variables. Thus,
the proposed knowledge-enhanced multimodal deep regression
Bayesian network is more representative of the data.

Second, unlike most deep models which learn representations
from data only, the proposed deep regression Bayesian network
incorporates domain knowledge, i.e., the semantic middle-level
video representation, into the deep learning. Therefore, the hy-
brid middle-level video representation is expected to be superior
to both the manual and the data-based middle-level video rep-
resentation.

Last, we are the first to summarize both the dependencies
between visual elements and emotions as well as audio elements
and emotions, and to propose a graphic model capturing this
complex domain knowledge.

III. PROBLEM STATEMENT

The purpose of our work in this paper is to learn a multimodal
network that considers the synergy between audio and visual
data for emotion video tagging.

LetΩ = {vn,an,yn}Nn=1 denote the training set, whereN is
the number of instances, vn ∈ Rd1 denotes the d1 dimensional
visual feature of the training instance, an ∈ Rd2 denotes the
d2 dimensional audio feature of the training instance, and Y =
{yn}Nn=1 stores all ground truth emotion video tagging labels.
Given the training setΩ, our goal is to train a multimodal network
N : {Rd1 ,Rd2} → y.

Domain knowledge enhances the multimodal network.
Specifically, let Ω = {vn,an,atn,yn}Nn=1 denote the training
set, where atn ∈ Rd3 denotes the d3 dimensional audio and vi-
sual domain knowledge of the training instance. Therefore, our
purpose is to train a multimodal network enhanced by domain
knowledge N : {Rd1 ,Rd2 ,Rd3} → y.

IV. PROPOSED APPROACHES

A. Brief Introduction of RBN

The regression Bayesian network (RBN) [16] contains one
visible layer, one latent layer, and completely directed links

Fig. 1. The structure of a RBN.

from hidden layer to visible layer, as shown in Fig. 1. These di-
rected connections result in the “explaining away” effect, which
introduces the independencies among the latent variables given
the visible variables. To meet the requirements of our experi-
mental data, we introduce both the Gaussian-Bernoulli RBN,
which takes the continuous input, and the Bernoulli-Bernoulli
RBN, which takes the binary input.

Since the RBN is, in essence, a Bayesian network, the chain
rule applies. Therefore, the joint probability of all visible and
latent variables of a LRBN can be factorized into the product
of prior probabilities for a latent variable hj and conditional
probabilities of a visible node vi given all latent variables as
shown in Eq. 1,

P (x,h) =

nh∏

j=1

P (hj)

nd∏

i=1

P (xi|h) . (1)

The prior probability for latent variable hj is assumed to sat-
isfy the Bernoulli distribution as shown in Eq. 2,

P (hj) = sigm(dj)
hj (1− sigm(dj))

1−hj (2)

where sigm(x) = 1/(1 + exp(−x)) and dj is the bias of the
hidden variable hj .

The conditional probability of a visible variable xi given all
the latent variables h can be assumed as a linear Gaussian for
continuous input as shown in Eq. (3) and Bernoulli distribution
for binary input as shown in Eq. (4).

P (xi|h) ∼ N (
wT

i h+ bi, σi
)
, (3)

P (xi|h) = σ(wT
i h+ bi)

xi(1− σ(wT
i h+ bi))

1−xi (4)

where wi is the weight between all of latent variables h and
visible variable xi, and bi is the bias term for xi. The mean of the
Gaussian distribution is a linear combination of latent variables.
The standard deviation is calculated from visible variables x.

Therefore, when the visible variables are continuous, the RBN
can be viewed as a mixed Gaussian model. When the visible vari-
ables are binary, the RBN can be viewed as a Bernoulli model.

Given continuous visible variables, the joint probability of
RBN, Eq. (1), can be rewritten by combining Eq. (2) and
Eq. (3):

PΘ(x,h) =
∏

j

exp(djhj)

1 + exp(dj)

∏

i

N (xi : w
T
i h+ bi, σi)

=
exp(−ψΘ(x,h))

(2π)nd/2
∏

i σi
∏

j (1 + exp(dj))
(5)
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Fig. 2. The framework of the Proposed Multimodal Deep Regression Bayesian Networks for Emotion Video Tagging.

where Θ = {W ,σ, b,d}, and

ψΘ(x,h) =
∑

i

(xi − bi)
2

2σ2
i

−
∑

i

xi − bi
σ2
i

wT
i h

+
∑

i

1

2σ2
i

(wT
i h)

2 − dTh, (6)

Given binary visible variables, the joint probability of RBN,
Eq. (1), can be rewritten by combining Eq. (2) and Eq. (4):

PΘ(x,h) =
∏

j

exp(djhj)

1 + exp(dj)

∏

i

exp((wT
i h+ bi)xi)

1 + exp(wT
i h+ b)

=
exp(−ψΘ(x,h))∏

j(1 + exp(dj))
, (7)

where Θ = {W , b,d}, and

ψΘ(x,h) = −
∑

i

(wT
i h+ bi)xi −

∑

j

djhj

+
∑

i

log(1 + exp(wT
i h+ bi)). (8)

There are two primary differences between the joint prob-
ability of RBNs and the joint probability of RBMs. First, the
RBN adopts directed connections rather than undirected con-
nections. Thus, the mixed Gaussian RBN model has the ex-
tra term

∑
i

1
2σ2

i
(wT

i h)
2, which the Gaussian-Bernoulli RBM

does not have. The Bernoulli RBN model has the extra term∑
i(1 + exp(wT

i h+ bi)), which the Bernoulli-Bernoulli RBM
lacks. According to the formulation, the dependencies among
latent variables are modeled faithfully by the extra term. Se-
quentially, the model should better capture the relationships em-
bedding in the data. Second, unlike the partition function of the
RBM, which is computationally intractable, the normalized term
of the RBN can be calculated easily.

B. Multimodal Deep Regression Bayesian Networks

Fig. 2 shows the framework of the proposed multimodal deep
regression Bayesian network (MMDRBN), which contains two
deep stacked RBNs constructed for audio and visual modalities,
respectively. Since audio and visual features are continuous, the
bottom two modalities are mixed Gaussian RBNs, while the
others are Bernoulli-Bernoulli RBNs. First, the two deep stacked
RBNs are layer-wisely trained. The hidden layer of the lower
RBN is employed as the visible layer of its upper RBN. After
obtaining the trained deep networks of the two modalities, a joint
representation layer is added to the top layer. Specifically, the
visible variables of the joint representation layer are a link of the
top layers of the audio modality network and the visual modality
network. The latent variables of the joint representation layer
can be viewed as a joint representation of the audio and visual
modalities. After layer-wise learning, we obtain an MMDRBN,
as shown in the left part of Fig. 2.

For the MMDRBN, exact inference is intractable due to the
directed connections. Therefore, we transform the MMDRBN
into an inference network by minimizing the KL divergence be-
tween the MMDRBN and the inference network, as shown in the
right side of Fig. 2. Then, a label layer is added on the top of the
inference network. Given the label layer, the inference network
can be fine-tuned through a back-propagation (BP) algorithm.
After fine-tuning, the inference network is utilized to predict
discrete emotion labels or estimate continuous emotion scores
from video content. The methods for learning and fine-tuning
these networks will be discussed in detail in the following three
sections.

1) A Multimodal Generative Network Learning: In this sub-
section, we first propose an efficient parameter learning method
for the RBN based on stochastic approximation procedure
(SAP), and then briefly explain how to stack RBNs. As the mixed
Gaussian RBN and Bernoulli-Bernoulli RBN are similar, we just
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use mixture Gaussian RBN as an example to illustrate the SAP
algorithm.

Considering Eq. (5), maximizing marginal log-likelihood can
be used to learn model parameters Θ. Let D = {x(m)}Mm=1 de-
note the training data set, the target of proposed model can be
shown as Eq. (9):

L (D ; Θ) =
∑

m

logPΘ(x
(m))

=
∑

m

log

(
∑

h

PΘ(x
(m),h)

)
. (9)

Parameters are typically computed by gradient ascent to max-
imize the object function. The parameter gradient is shown in
Eq. (10):

�θL (D ; Θ) =
∑

m

∑

h

PΘ(h|x(m))
∂ − EΘ(x

(m),h)

∂θ
. (10)

According to Eq. (10), it is intractable to compute the exact
gradient. Due to the following two reasons, the posterior proba-
bility PΘ(h|x(m)) cannot be calculated. First, it is intractable to
computed because of the top-down connections of RBN. Sec-
ond, the exact gradient requires exponential summations of all
possible latent variables h.

Variational approximation algorithms, such as the mean field
algorithm [17], can be used to solve the above intractable in-
ference. However, such approximations inevitably introduce a
gap between the true posterior probability and corresponding
approximate, since the relationships will be discarded in the ap-
proximate distribution.

The true posterior probability can be estimated through sam-
pling. In the work, we try to remain the dependencies by di-
rectly sampling. Specifically, Gibbs sampling is employed to
draw samples for the hidden variables. One latent variable is
sampled under fixing all the other variables. In this way, depen-
dencies can be preserved to some degrees.

Since the specific form of P (h|x) is not available, it is in-
tractable to draw samples exactly from P (h|x) through Gibbs
sampling. To address the problem, we utilize some approxima-
tions during the sampling:

P (h|x) =
∏

j

P (hj |h1, . . . , hj−1,x) ≈
∏

j

P (hj |h−j ,x).

(11)
where h−j = {h1, . . . ; , hj−1, hj+1, . . . , hnh

}. Specifically, we
update hidden variable hj through Eq. (12).

htj ∼ P (hj |x,ht−1
−j ) . (12)

Given x and h−j ,

P (hj = 1|x,ht−1
−j ) =

P (hj = 1,ht−1
−j ,x)

P (hj = 1,ht−1
−j ,x+ P (hj = 0,ht−1

−j ,x)
(13)

According to Eq. (5) or Eq. (7), the probability can be calcu-
lated and the hidden variable hj will be updated through sam-
pling. In this way, one latent variable is sampled under fixing
all the other variables. The sampling procedure goes over for

several iterations until convergence, and then a sample is col-
lected and used to update parameters.

To address the exponential summations, Markov Chain Monte
Carlo methods are typically adopted. An intuitive estimation is
shown in Eq. (14).

�θL (D ; Θ) ≈ 1

n

∑

m

∑

s

∂ − EΘ(x
(m),h(m,s))

∂θ
, (14)

where h(m,1), . . . ,h(m,n) are n samples from P (h|x(m)). In
this work, we avoid multiple Gibbs chains by employing the
stochastic approximation procedure (SAP) framework [18], so
only one sample of the latent variables is used to estimate the
gradient.

Under some mild assumptions, the SAP is guaranteed to con-
verge to a local optimum [19] if the learning rate γt satisfies
Eq. (15),

∞∑

t=1

γt = ∞,

∞∑

t=1

γ2t <∞. (15)

Then, the gradient is calculated shown in Eq. (16).

�θL (D ; Θ) ≈
∑

m

∂ − EΘ(x
(m),h(m))

∂θ
, (16)

Since the energy function is merely a linear function of the
parameters, the derivate has a simple formulation. Due to Θ =
{W ,σ, b,d}, the four parts ofΘ can be calculated as following:

∂ − EΘ(x
(m),h(m))

∂wij
=
h
(m)
j (x

(m)
i − bi −wT

i h
(m))

σ2
i

. (17)

∂ − EΘ(x
(m),h(m))

∂σ2
i

= −
∑

i

(x
(m)
i − bi)

2

σ3
i

+
∑

i

2(x
(m)
i − bi)

σ3
i

wT
i h−

∑

i

1

σ3
i

(w2
ih)

2 (18)

∂ − EΘ(x
(m),h(m))

∂bi
=
x
(m)
i − bi − wT

i h

σ2
i

(19)

∂ − EΘ(x
(m),h(m))

∂dj
= h

(m)
j (20)

To make the learning phase fast and enable our method to
scale up to large dataset in practice, the mini-batch stochastic
gradient ascent algorithm is adopted, which calculates the gra-
dient through a random mini-batch of training data. In the work,
we go over the training set several epochs until convergence is
reached.

Detailed learning algorithm of RBN is summarized in
Algorithm 1.

During layer-wise training, each RBN is pre-trained using
the above learning algorithm, and the hidden layer of the lower
RBN is used as the visible layer of its upper RBN. We train two
stacked RBNs - one for the visual modality and one for the audio
modality. After that, we stack a joint representation layer upon
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Algorithm 1: Parameter Learning for an RBN [16]

Input training data D = {x(m)}Mm=1;
Output optimal parameters Θ = {W ,σ, b,d}.

1: the parameters of RBN Θ are initialized randomly;
2: at first, hidden variables are generated by Gibbs

sampling;
3: while learned parameters not optimal, do
4: a mini-batch of training data x are randomly

selected from D ;
5: for the mini-batch of training data, corresponding

hidden variables are sampled by Gibbs sampling,
h(t) ∼ P (h|x,h(t−1));

6: the gradient is calculated by Algorithm 1;
7: Update the parameters, θt = θt−1 + γt�θL (x) .
8: end while
9: return Θ = {W ,σ, b,d}.

the top layer of the two stacked RBNs. Specifically, the visible
variables of the joint representation layer are a concatenation of
the top layers of the audio and visual modality networks.

The latent variables of the joint representation layer are con-
sidered as the joint representation from two different modalities.
The multimodal layer is also pre-trained using the above learn-
ing algorithm. After stacking the trained RBNs, we obtain an
MMDRBN as shown in the left part of Fig. 2.

2) An Inference Network Learning: Due to the edge direc-
tion, it is intractable to compute exact inference for the RBN
model. Therefore, we learn an inference network as the basis
of the MMDRBN. To approximate the inference of the RBNs,
another distribution QΦ is introduced. To close to PΘ(h|x), we
minimize the KL divergence between them. Φ is the parameters
set of Q and PΘ is the RBN learned with our proposed method.
The equation is shown in Eq. (21):

KL(QΦ(h|x)||PΘ(h|x)) =
∑

h

QΦ(h|x)logQΦ(h|x)
PΘ(h|x) . (21)

Distribution Q is adopted to close to the intractable exact
inference PΘ(h|x) through minimizing KL divergence. We op-
timize the KL divergence by gradient descent, and the gradient
is calculated as follows:

∂KL(QΦ(h|x)||PΘ(h|x))
Φ

=
∑

h

∂QΦ(h|x)
Φ

logQΦ +
∑

h

∂QΦ(h|x)
Φ

−
∑

h

logPΘ(x, h)
∂QΦ(h|x)

Φ

= E((logPΘ(x, h)− logQΦ(h|x))

× ∂logQΦ(h|x)
∂Φ

. (22)

Since it is time consuming to calculate the expectation in
Eq. (22), a sampling-based method is used to estimate the

expectation. After sampling n samples from the distribution
QΦ(h|x), the approximation of the expectation can be calcu-
lated as Eq. (23):

∂KL(QΦ(h|x)||PΘ(h|x))
Φ

=
1

n

n∑

i=1

((logPΘ(x, h
(i))− logQΦ(h

(i)|x))

× ∂logQΦ(h
(i)|x)

∂Φ
. (23)

The mini-batch stochastic gradient ascent algorithm is also
employed here.

3) Discriminative Fine Turning and Inference: After initial-
izing an inference network from an MMDRBN, a layer of la-
bels is added on the top of the inference network. Given the
label layer, we can fine-tune the inference network through
a back-propagation algorithm. Since it is a multimodal infer-
ence network, there is a little difference between the adopted
back-propagation and the standard back-propagation algorithm
(BP). There are two steps for fine-tuning the parameters. In first
step, the BP is applied to the multimodal part of Fig. 2. The top
layers of the audio and visual modality networks are treated as
a individual layer in this step. After fine-tuning the multimodal
part, the errors propagate to the top layers of the audio and visual
modality networks. In second step, the back-propagated errors
are collected from the top layer of the two modalities. Accord-
ing to the errors, the remaining parts of the two networks are
fine-tuned through the BP. The final inference network can be
used to predict discrete or continuous emotion scores from video
content through a forward propagation algorithm.

C. Knowledge-Augmented Multimodal Deep Regression
Bayesian Networks

Since the joint representation learned from the audio and
visual modalities may be semantically meaningless, domain
knowledge should be introduced to bridge the semantic gap.
Therefore, we extend the proposed MMDRBN to a knowledge-
augmented MMDRBN, as shown in Fig. 3.

Like the proposed MMDRBN, the knowledge-augmented
MMDRBN contains of two stacked RBNs, one for the visual
modality and one for the audio modality. The two stacked RBNs
are layerwisely trained and stacked using the algorithm proposed
in Section IV-B1. After obtaining a network of two modalities, a
multimodal layer and domain knowledge layer are added upon
the top layer. Specifically, the visible variables of the multi-
modal layer are a link of the top layers of the audio and visual
modality networks. The latent variables are the joint represen-
tation of the two modalities and attributes from the summarized
domain knowledge. Since the RBN can model the dependen-
cies between visible variables and latent variables as well as
the dependencies among latent variables, there are relations not
only between attributes and the multimodal layer, but also be-
tween attributes and joint representation. The attributes function
as domain knowledge, leading to semantically meaningful joint
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Fig. 3. The framework of the proposed Knowledge-Augmented Multimodal Deep Regression Bayesian Networks for Emotion Video Tagging.

representation. After stacking the trained RBNs, we obtain a
domain knowledge-augmented MMDRBN as shown on the left
side of Fig. 3. Since exact inference is intractable, we transfer
the domain knowledge-augmented MMDRBN into an inference
network by minimizing the KL divergence, as shown on the right
side of Fig. 3. We then add a label layer for the multimodal and
domain knowledge parts. The label layer is utilized to fine-tune
the two networks through the back propagation algorithm.

Compared to the MMDRBN, this model has an extra layer
representing domain knowledge, which can further capture the
dependencies among both modalities to use domain knowledge
for superior emotion video tagging.

1) Summarized Domain Knowledge: Both audio and visual
elements are employed by filmmakers to communicate emotions
to audiences. These elements, also called attributes, capture film
production rules and bridge the gap between the high-level af-
fective semantics of movie content and its low-level audio and
visual features.

Following Chen et al.’s [20] work, we focus on three visual
video elements: color, lighting, and tempo. Color is an crucial
film element that can be changed to affect the audiences’ emo-
tion. Generally, colors are categorized into two groups: cool
colors and warm colors. The cool colors are less bold and
provocative than warm colors. By creating a scene with cool
colors, the filmmakers intend to present a scene of calmness and
introspection. On the contrary, the warm colors are typically uti-
lized to present a scene of energy, life, and outward tendencies.
We use color energy [5] to measure the color composition, and
describe a video’s color as either high color energy or low color
energy.

Lighting is another powerful video element that can be ma-
nipulated to establish certain moods for the viewers. Lighting
can be categorized as high key or low key. High key is typically
employed to create the lighthearted and warm atmosphere typ-
ical of joyous scenes, while the latter generates sad, surprising,
frightening, or suspenseful scenes with dim lights, shadow play,
and predominantly dark backgrounds. Based on this, we propose
to use lighting key [21] to measure lighting, describing a video’s
lighting as either high key or low key.

Finally, tempo is a measure of video dynamics. Tempo has
significant power to affect emotional intensity. For example, a
high tempo of action can induce stress and excitement, while a
slow tempo creates a more relaxed and slower-paced scene. In
this paper, average shot duration [22] is used to measure the pace
of a sequence in a movie clip. The movie’s tempo is labelled high
or low, depending on whether or not the average shot duration
of the clip is longer than the median value.

In addition to the visual elements, a video’s emotion tagging
can be characterized by certain audio elements. Scherer [23]
summarized several emotion-sensitive audio elements includ-
ing fundamental frequency (F0), formants, intensity, spectral
parameters, and duration, as shown in Table I. For example, a
high F1 formant mean is often related to negative emotions such
as disgust and sadness, while low F1 formant means typically
represent happiness. Happiness is produced with wider first for-
mant bandwidth, while disgust and sadness are produced with
narrow first formant bandwidth. Energy concentrates in high-
frequency regions for high arousal emotions like anger, and in
low-frequency regions for low arousal emotions such as sadness.
The audio elements summarized by Scherer [23] are adopted
as audio attributes in the proposed knowledge-augmented
MMDRBN.

2) Learning and Inference: After summarizing the well-
established film grammar and manually defining the emotion-
sensitive attributes, we use these attributes as the input of the
domain knowledge layer as shown in Fig. 3.

The learning process of the knowledge-augmented
MMDRBN consists of three steps: learning a multimodal
generative network, learning an inference network as well as
discriminative fine-tuning and inference.

The learning process of generative network for the domain
knowledge-augmented MMDRBN includes layer-wised train-
ing of several RBN according to Algorithm 1. All the RBNs use
the same learning algorithms, except for the top RBN. The latent
nodes of the top RBN are joint representation and domain knowl-
edge rather than joint representation only. Let h = {hj ,hd},
where h represents hidden nodes consisting of joint represen-
tation hj and domain knowledge hd. Since hd is known, the
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TABLE I
THE DEPENDENCIES BETWEEN EMOTION VIDEO TAGGING AND AUDIO ATTRIBUTES [23]

Note: ↑ represents increase; ↓ represents decrease. Double symbols refer to enhanced chagnes. Two opposite arrows indicate that the antecedent audio elements exert oppoising
influence.

Gibbs sampling shown in Eq. (12) should be modified as follows:

hj
t
k ∼ P (hjk|x,hj

t−1
−k ,hd) . (24)

The learning process of the inference network for the
knowledge-augmented MMDRBN is as the same as that for
MMDRBN, described in Section IV-B.

After learning the inference network, the connections of the
domain knowledge-augmented MMDRBN become bottom-up
rather than top-down. Since the value of domain knowledge is
known, the connections pointing to it can be removed.

During the last step, i.e., discriminative fine turning and infer-
ence, the domain knowledge is used to create an extra two-layer
network, N2, as shown on the right side of Fig. 3. Let N1 rep-
resents the predicted emotion labels from visual and auditory
content and N2 represents the predicted emotion labels from
domain knowledge. γ is a tradeoff between N1 and N2. The
output of domain knowledge-augmented MMDRBN N can be
obtained as follows:

N = γN1 ∗ (1− γ)N2 . (25)

Similar as Section IV-B3, back-propagation is adopted for
discriminative fine tuning.

V. EXPERIMENTS

A. Databases

Several benchmark databases can be used for emotion video
tagging, including the LIRIS-ACCEDE database [24], the
MAHNOB-HCI database [25], and the Database for Emotion

Analysis using Physiological Signals (DEAP) [26]. They con-
tains 9,800 film excerpts, 20 emotional videos, and 120 one-
minute music video excerpts respectively. Since the proposed
model requires as many samples as possible for better perfor-
mance and to avoid over-fitting, the LIRIS-ACCEDE database
is adopted for the evaluation.

The video clips from the LIRIS-ACCEDE database are rela-
tive assessed along the induced arousal and valence axes ranging
from 0 to 9,799. Based on these ranks of valence and arousal,
MediaEval 2015 [27] propose classification task, and MediaEval
2016 [28] and MediaEval 2017 [29] propose regression tasks.
MediaEval 2015 uniformly rescales the ranks to a more common
[−1, 1] range, and then assigns valence and arousal scores as
−1, 0, or 1 corresponding to three ranges [−1, −0.15], [−0.15,
0.15] and [0.15, 1]. MediaEval 2016 provides the absolute affec-
tive scores, which is estimated from initial ranks using Gaussian
regression models, as the ground truth for the regression task.
MediaEval 2017 [29] proposes to predict valence and arousal on
long movies, i.e. consecutive 10-second segments sliding over
the whole movie with a shift of 5 seconds.

B. Experimental Conditions

In our experiments, the classification task proposed by
MediaEval 2015, the regression task proposed by MediaEval
2016 and MediaEval 2017 are considered.

For the classification task, the features proposed in [24] are
adopted in our work; a set of 17 features is employed for valence
and a set of 12 features is used for arousal. We also augment the
features with 31 dimensional audio features and three visual
features adopted in [30]. All features are normalized prior to
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TABLE II
EXPERIMENTAL RESULTS OF EMOTION TAGGING FROM VIDEO CONTENT ON THE LIRIS-ACCEDE

the classification task. For the regression task, we do not use
the slope of the power spectrum and audio flatness envelope
from the arousal feature set following the baseline features pro-
vided by MediaEval 2016. On the MediaEval 2017 dataset, we
adopt the features provided by the organizers for audio and vi-
sual modalities. Specifically, for audio modality, 1582 features
provided by the organizers are normalized. And then, we re-
duce the dimensionality of the features by 99% of variation via
principal component analysis (PCA). For visual modality, all
features are concatenated and the mean value and standard devi-
ation value of corresponding segments are calculated. And then,
PCA is adopted to reduce feature dimensionality by keep 99%
variation. As to domain knowledge, the features summarized in
Section IV-C1 are extracted.

Ten-fold cross-validation is used on the MediaEval 2015 and
MediaEval 2016. For MediaEval 2017, we train our models on
the DevSet and test it on the TestSet provided by the organiz-
ers. The deep RBNs for audio modality and visual modality
each consist of two layers of RBNs. For the visual modality, the
number of nodes of the first hidden layer and that of the second
hidden layer are set to eight and 18 respectively. For the audio
modality, the number of nodes of the first hidden layer and that
of the second hidden layer are set to 30 and 18 respectively.
The dimension of the joint representation layer is 18. We utilize
accuracy as the metric for the classification task, and Pearson
correlation coefficient (PCC) and mean squared error (MSE) as
the metrics for the regression task.

Under the above data and experimental settings, we designed
several experiments to demonstrate the effectiveness of our
method from many aspects.

To demonstrate the superiority of the proposed method over
other multimodal methods, our method is compared to the results
of MMDBM, LCCA, KCCA, DCCA and DCCAE under the
same experimental conditions. To demonstrate the superiority
of the multimodal process in our method, the proposed model is
compared with the early fusion strategy and late fusion strategy.
For the early fusion strategy, the two modalities are concatenate
into one vector and trained for the concatenate feature vectors.
For the late fusion strategy, two individual inference networks
are learned through the proposed method. The two inference
networks can analyze the emotion video content separately. And
then, we combined the output of the two individual networks to

TABLE III
COMPARISON WITH RELATED WORK ON MEDIAEVAL 2015

TABLE IV
COMPARISON WITH RELATED WORK ON MEDIAEVAL 2016

predicted the emotion label. We also demonstrate that the joint
representation of the abstracted features is superior to simply
concatenate features, which is clarified in [14]. To demonstrate
the advantage of domain knowledge in our method, we com-
pare MMDRBN (none), MMDRBN augmented by audio do-
main knowledge only (audio), MMDRBN augmented by visual
domain knowledge only (visual), and MMDRBN augmented
by both audio and visual domain knowledge (audio+visual).
The results are shown in Table II. We also compare our classifi-
cation and regression results to the state-of-the-art works [20],
[31]–[34] in Table III, [35]–[39] in Table IV and [40]–[44] in
Table V.

C. Experimental Results and Analysis of MMDRBN

From Table II, we obtain several observations.
First, the proposed MMDRBN shows good performance

on the three datasets. Specifically, on the MediaEval 2015
dataset, the accuracy is 44.26% for valence and 64.30% for
arousal. On the MediaEval 2016 dataset, the MSE is 0.332 and
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TABLE V
COMPARISON WITH RELATED WORK ON MEDIAEVAL 2017

Fig. 4. Visualization of parameters for classification task.

the PCC is 0.387 in the valence space. For arousal, the proposed
MMDRBN achieves 0.766 for MSE and 0.416 for PCC. On the
MediaEval 2017, the MSE is 0.110 and the PCC is 0.351 in the
valence space. For arousal, the proposed MMDRBN achieves
0.103 for MSE and 0.315 for PCC. The results on arousal are
higher than that of valence for the three datasets. This may
demonstrate that the inner pattern of arousal data is more helpful
for recognition.

Second, the proposed MMDRBN outperforms the related
multimodal methods for the three datasets. LCCA and KCCA
aim to construct the common space from different modalities.
They directly construct a representation from the input modali-
ties, without the layer-wise feature abstraction. Therefore, their
input features contain modality-specific information, making it
harder to discover relationships across modalities [14]. While
our proposed model eliminates the modality-specific informa-
tion through deep networks, and then constructs a joint repre-
sentation of two modalities. This may be the reason why our
model outperforms LCCA, and KCCA. DCCA, DCCAE, and
MMDBM all consist of several RBMs. DCCA and DCCAE
combine the RBM-based deep neural network and CCA method.
MMDBM is constructed with DBMs of several modalities.
Our experimental results are also superior to those of DCCA,
DCCAE, and MMDBM, since the RBN is able to capture more
dependencies than the RBM can, as discussed in Section IV.
For an in-depth analysis of the comparison results, we visual-
ize and analyze the learned features of our model and DCCAE
which perform best among LCCA, KCCA and DCCA. For ex-
ample, in the classification task, we visualize the parameters of
the valence model of the bottom layers for the LRBN model
and DAACE model in Fig. 4. In the visual figure, parameters
of our model focus on colorfulness, fades, and number of scene
cuts, as these features are closely related to emotion according to
[5]. In the audio figure, we obtain larger parameters on MFCC-
related features, which are commonly used features in affective
computing.

Third, the proposed MMDRBN obtains better performance
than the early fusion and late fusion methods. Both early fusion
and late fusion methods are based on RBNs and are learned
using Algorithm 1 proposed in Section IV. This comparison
further demonstrates the important role of joint representation
in a multimodal method. The joint representation can capture the
relations between the features of different modalities with fewer
differences in modal concepts that are found when merging the
raw features directly. From the comparison results, we can infer
that representing multimodal data in the same output space is one
of the most important aspects for boosting model performance.

D. Experimental Results and Analysis of
Knowledge-Augmented MMDRBN

From Table II, we find that: compared to different domain
knowledge configurations, the MMDRBN augmented by both
audio and visual domain knowledge achieves the highest results.
The four methods share parameters. This demonstrates that the
proposed model, which leverages more domain knowledge, can
model more inherent connections between video and emotions.
Additionally, MMDRBN augmented by audio domain knowl-
edge only outperforms MMDRBN augmented by visual domain
knowledge only. It is reasonable, since there are about five times
as many audio attributes as there are visual attributes.

To further validate the effectiveness of the proposed mod-
els in learning data representation, we employ t-SNE to rep-
resent the learned middle-level representations. For example,
for valence classification on MediaEval 2015, Fig. 5 shows the
t-SNE embedding of raw video data, the t-SNE embedding of
the learned joint representations using a multimodal deep regres-
sion Bayesian network without exploring domain knowledge,
and the t-SNE embedding of the learned joint representations
using the proposed knowledge-augmented multimodal deep re-
gression Bayesian network. As shown in Fig. 5(a), the videos
with different valence labels tend to distribute uniformly, and
the centers of three categories are very close to each other. This
demonstrates that it is difficult to classify videos using the raw
input features. In Fig. 5(b), videos with different valence labels
distribute slightly differently, and the sample centers are sep-
arated. This demonstrates that, compared to the raw features,
the learned joint representation from video data is more dis-
criminative for emotion video tagging, since it can leverage the
inherent relations between the audio and visual modalities. In
Fig. 5(c), the videos with different valence labels are distributed
differently. The sample centers are farther apart, especially the
negative videos (in red points). This confirms that the learned
joint representation from both video data and film grammar is
superior to either the raw features or the data-based middle-level
video representation for emotion video tagging. Since emotion
video tagging is challenging for the ACCEDE-LIRIS database,
three valence classes do not completely distribute separately in
these figures, demonstrating the challenges of emotion video
tagging.

To analyze the contributions of the domain knowledge, we
conduct an ablation study by adjusting tradeoff γ from 0 to 1
in Eq. (25). Fig. 6 shows the experimental results on four tasks.
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Fig. 5. (a): A t-SNE embedding of video features on the LRIRS-ACCEDE
database; (b): A t-SNE embedding of joint representation learned from data
only; (c) A t-SNE embedding of joint representation learned from both data and
domain knowledge. −1, 0, and −1 in the figures represent the sample centers of
negative videos, neutral videos and positive videos. dist means distance between
sample centers.

Fig. 6. Experimental results varying the parameter γ in the range from 0 to 1.

From the four figures, we can find that when given an appropri-
ate γ, our method considering both the multimodal network and
domain knowledge outperforms the methods that only consider
the multimodal network or only use domain knowledge. In ad-
dition, the multimodal network plays a more important role in
our method. This is reasonable, considering that there are fewer
inputs and a simpler structure.

Fig. 7. Visualization of parameters for visual domain knowledge on the
(a) MediaEval 2016 and (b) MediaEval 2017 datasets.

To further analyze the dependencies between emotion and
domain knowledge, we have visualized the learned parameters
for three visual domain knowledge on the MediaEval 2016 and
MediaEval 2017 datasets as examples. From Fig. 7, we can find
the following observations: first, among the three visual ele-
ments, the learned weight of color is the largest for both valence
and arousal on two datasets. It may indicate that color has the
most significant influence on emotions. It is reasonable, since
color is a crucial film element that can be changed to affect the
audiences’ emotions. Second, compared with valence, tempo
has more influence on arousal since the learned absolute weight
for arousal is larger than that for valence on both datasets. It is ex-
pected, since tempo is a measure of video dynamics, and thus has
power to affect emotional intensity, which is related to arousal.
In conclusion, the different correlations between emotion tag
and domain knowledge may be the root cause of different γ.

E. Comparison to Related Works

Table III lists the results of all works published in MediaEval
2015 [27]. Because the experimental settings and used features
differ, we compare the highest results for reference only. Con-
sidering that our features are the simplest among all the related
works, our high results demonstrate the strong ability of the
proposed method to capture the dependencies among data. In
Chen et al.’s work [20], only visual domain knowledge was
adopted and audio domain knowledge was ignored. For the pro-
posed method, the domain knowledge is used to help model the
joint representation for audio and visual modalities and to bridge
the semantic gap between representation and emotion video tag-
ging. Thus, the proposed model achieves better performance.

Table IV lists the results of all works published in MediaEval
2016 [28]. Just as the above comparisons, this information
should only be used for reference due to differences in experi-
mental data and settings. Our model outperforms all of the listed
works except for RUC [35], which achieves the best overall ex-
perimental results among all the participants of MediaEval 2016.
Our results are competitive, though the MSE of valence is poorer
than the results achieved by other methods.

Table V lists the results of all works published in MediaE-
val 2017 [29]. Because their used features are different from
ours, we compare with their highest results for reference only.
For arousal prediction, the proposed method outperforms all the
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listed work. For valence prediction, the proposed method per-
forms better than all the listed work expect for TCNJ-CS [44],
who has a better MSE but a poorer PCC. Therefore, our results
are still competitive.

Considering the results of three tasks, our model not only
achieves good results for video tagging, but also has an excellent
generalization ability.

VI. CONCLUSION

This paper proposes a knowledge-augmented multimodal
deep regression Bayesian network to explore both the relation-
ships between the audio and visual modalities and the domain
knowledge for emotion video tagging. First, the well-established
film grammar is investigated and the emotion-sensitive attributes
are defined. Then, a knowledge-augmented multimodal deep
regression Bayesian network is constructed to learn the middle-
level representation from both video data and the emotion-
sensitive attributes. Efficient learning and inference algorithms
are also developed. Experimental results and comparisons on the
LIRIS-ACCEDE database show the superiority of the proposed
method. Although the proposed method successfully leverages
the well-established film grammar for emotion tagging from
videos produced by professionals, it may be not suitable to de-
tect emotions from videos generated by ordinary users, who usu-
ally do not have the expertise to apply various film grammars
to induce viewers’ emotions. How to define the semantically
meaning middle-level representation for user-generated videos
is worthy of further study.
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