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a b s t r a c t 

Model-based 3D gaze estimation represents a dominant technique for eye gaze estimation. It allows free 

head movement and gives good estimation accuracy. But it requires a personal calibration, which may 

significantly limit its practical utility. Various techniques have been proposed to replace intrusive and 

subject-unfriendly calibration methods. In this paper, we introduce a new implicit calibration method 

that takes advantage of four natural constraints during eye gaze tracking. The first constraint is based 

on two complementary gaze estimation methods. The underlying assumption is that different gaze esti- 

mation methods, though based on different principles and mechanisms, ideally predict exactly the same 

gaze point at the same time. The second constraint is inspired by the well-known center prior princi- 

ple, it is assumed that most fixations are concentrated on the center of the screen with natural viewing 

scenarios. The third constraint arises from the fact that for console based eye tracking, human’s atten- 

tion/gaze are always within the screen region. The final constraint comes from eye anatomy, where the 

value of eye parameters must be within certain regions. The four constraints are integrated jointly and 

help formulate the implicit calibration as a constrained unsupervised regression problem, which can be 

effectively solved through the proposed iterative hard EM algorithm. Experiments on two everyday inter- 

actions Web-browsing and Video-watching demonstrate the effectiveness of the proposed implicit cali- 

bration method. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Eye gaze tracking is to track human’s attention or predict where

human looks in real time. Eye gaze tracking technology has been

applied to various fields. In Human Computer-Interaction, eye gaze

can replace traditional actions using mouse clicks and make inter-

actions fast, fun and totally natural. For instance, with an eye gaze

tracking system, we can zoom where we look at, text scrolls as we

read, etc. This is much faster and natural than the traditional input.

Eye tracking data can also help user-behavior study [1] , medical re-

search [2,3] , understand human’s cognitive process [4] etc. 

Various techniques have been proposed to perform eye gaze

tracking. Gaze estimation methods can be divided into model-

based methods and regression-based methods. Model-based meth-

ods [5–11] build a 3D eye model according to the anatomy of hu-

man eyes/faces. Leveraging on the geometric relations among dif-

ferent facial and eye features (facial landmarks, cornea, pupil, etc),

3D gaze direction can be computed. Along with this direction, dif-

ferent feature extraction approaches have been proposed [12–15] .

3D model-based methods mimic the human vision system and
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ompute the exact gaze direction as the human brain does. Known

or their accuracy and ability to handle head movement, 3D model-

ased methods are being widely used nowadays in many commer-

ial eye trackers. Since model-based methods require the knowl-

dge of human eyes and related parameters, a personal-calibration

s necessary to achieve good accuracy. However, personal calibra-

ion requires explicit collaboration from the user, which makes eye

racking system unfriendly to use and degrades the user experi-

nce. 

Regression-based methods leverage on powerful learning tech-

iques and assume mappings from eye appearance/features to gaze

ositions/directions. Compared to model-based approaches, they

void modeling the complex eyeball structure and only require

ollecting a large amount of data. Regression-based methods can

e further divided into feature-based and appearance-based meth-

ds. Feature-based regression methods [16–19] learn the mapping

unction from eye features to gaze positions/directions. Typical

ye features include pupil-glint vectors, pupil-eye corner vectors,

ross-ratios among glints, etc. Appearance-based regression meth-

ds [20–23] learn a mapping function from eye appearances to

aze positions/directions. The learning algorithms range from tra-

itional support vector regression, random forest to most recent

eep learning techniques. However, regression-based methods typ-

cally suffer from head movement issues without using extra data

https://doi.org/10.1016/j.patcog.2018.01.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.01.031&domain=pdf
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o compensate the movement. Besides, learning algorithms also re-

uire a large amount of data to learn a good mapping function. We

uggest readers refer to [24] for more detailed discussion on differ-

nt eye gaze tracking approaches. 

Both model-based and regression-based methods require per-

onal calibration. The calibration procedure requires explicit col-

aboration from users, which may not be applicable for certain ap-

lications (eye tracking for babies). For users who are capable of

ollaboration, the procedure is intrusive and degrades the user ex-

erience. To eliminate explicit personal calibration, we propose to

etter utilize information during natural human-computer interac-

ions. Despite the importance of the information, it is typically ig-

ored during eye gaze tracking. The information can be obtained

n the backend while subjects naturally operate on their comput-

rs, making eye gaze tracking more fun and friendly. Specifically,

e formulate four constraints from the information. The first one

s the complementary gaze constraint, which is inspired by the

inocular-constraint introduced in [25] . Binocular constraint states

hat gaze positions estimated from two eyes should be exactly

he same. But the use of binocular constraint limits head move-

ent since it requires both eyes in the view of the camera. Dif-

erently, we assume two gaze estimation methods predict exactly

he same gaze point at the same time. The two methods are based

n different principles and mechanisms but are complementary to

ach other. The two methods we choose are the 3D model-based

ethod and the feature-based regression method. The second con-

traint comes from the well-known center prior principle. It is as-

umed that most gaze fixations are concentrated near the screen

enter while users watch videos. Third, it is assumed human’s at-

ention/gaze are always within the screen region for a period of

ime. Finally, from human eye anatomy, personal eye parameters

ust have reasonable values. These four constraints are integrated

nto a constrained unsupervised learning problem, which can be

ffectively solved through the proposed iterative hard-EM algo-

ithm. 

Compared with existing work on reducing/eliminating explicit

ersonal calibration, the proposed method makes following novel

ontributions: 

• A non-intrusive and user-friendly eye gaze tracking system is

proposed. 
• Personal eye parameters can be implicitly calibrated with natu-

ral constraints. 
• Propose the hard-EM algorithm to solve the constrained unsu-

pervised regression problem. 
• The proposed method achieves comparable gaze estimation ac-

curacy with state-of-the-art implicit calibration methods, while

is less restricted and can be applied to a wider range of practi-

cal applications. 

. Related work 

Much work has been done to reduce/eliminate explicit per-

onal calibration for model-based methods. Guestrin and Eizenman

7] proposed a 1-point calibration method with two cameras and

our IR lights. By exploiting eye geometry knowledge, their sys-

em only has two unknown personal parameters. Thus 1 reference

oint which gives two equations is sufficient to solve the two eye

arameters. However, their method still requires explicit collabo-

ation from users. Model and Eizenman [25] proposed solve the

wo personal eye parameters with the help of binocular constraint.

hey assume the gaze directions from two eyes intersect on the

ame gaze point on the display device. However, their method is

imited in applications with larger displays and cannot produce

ood results for general usage with small displays. Maio et al.

22] proposed to alleviate the problem for ordinary display (36 cm
28.7 cm) by introducing additional generic person-independent

onstraints to the framework. However, binocular-constraint based

ethods limit head movement since two eyes are required to be

aptured by the camera and the experimental settings are rather

omplex. 

Chen and Ji [26] proposed to eliminate explicit calibration with

he help of saliency map. A Bayesian network is built to repre-

ent the probabilistic relationship among optical axis, visual axis,

nd eye parameters. User’s attention is assumed to be captured

y the saliency map, from which eye parameters can be estimated

y maximizing the posterior given the observed optical axes. Later,

hen and Ji [27] extended the work to use general Gaussian distri-

ution (center prior) as their prior model to alleviate issues from

aliency map. However, the use of center prior limits potential ap-

lications that exist strong center-biased gaze patterns like watch-

ng videos/images. Besides, their algorithm also takes a longer time

o converge. Recently Wang et al. [28] proposed to leverage on the

xation map learned from a deep model. By minimizing the KL

ivergence between the user gaze distribution (a function of eye

arameters) and underlying fixation map, they are able to recover

he eye parameters. Despite the advantage of using fixation map

nstead of saliency map, the method also requires explicit user col-

aboration to look at saliency content and the computation of fixa-

ion map takes time. 

Alnajar et al. [29] proposed to leverage on human gaze pat-

ern to eliminate personal calibration. It is assumed that differ-

nt subjects tend to have similar gaze patterns on the same stim-

li. Therefore off-line learned gaze patterns can be used to esti-

ate the regression coefficients for a new subject. However, the

nderlying assumption remains too strong and unrealistic. Differ-

nt types, content of the stimulus may result in different gaze pat-

erns for different subjects, therefore the proposed method may

ot be applied to real-world applications. Lu et al. [20] proposed

nother similar idea related to gaze pattern. By exploring the 2D

aze manifold, they are able to recover the relative gaze positions

urely from 2D eye appearance. The recovered uncalibrated gaze

attern can be mapped to true gaze positions with task-dependent

omain knowledge. However, their method cannot handle head

ovement, the 2D gaze manifold assumption does not hold any-

ore when head motion exists. Sugano et al. [30] proposed to

mplicitly collect training data using mouse clicks. They assumed

hat users would unconsciously look at the cursor when they click

he mouse. Eye appearance and gaze position pairs are implicitly

ollected and used to learn the regression parameters. However,

esides cases that users might not look at the cursor when they

lick the mouse, a lot of applications/interactions only require a

ew mouse clicks (watching videos, reading articles on the website,

tc). The calibration algorithm might require a much longer time to

onverge in such scenarios. Later, Sugano et al. [31] introduced a

isual saliency-based calibration framework. Similar to their previ-

us work, by assuming users look at salient region/objects of video

rames, they were able to implicitly collect appearance/gaze posi-

ion pairs and use them to compute regression parameters. How-

ver, it also suffers the common issues for saliency-based applica-

ions. Pfeuffer et al. [32] proposed to make calibration more flex-

ble and less tedious by using moving targets. The correlation be-

ween eye movement and target trajectory is explored to perform

mplicit calibration. However, the assumption might not hold in

ractice and subjects need to focus on the moving target for a pe-

iod of time. 

In summary, existing methods still require certain level collab-

ration from users or make strong assumptions about where the

sers look at during experiments, or have limited practical utilities.

ifferently, the proposed method does not assume specific inter-

ction scenarios or special content on the screen, while collecting

nformation silently to estimate personal eye parameters. The pro-
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Fig. 1. 3D eye model and gaze estimation. 
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posed method hence enables non-intrusive and user-friendly eye

gaze tracking, while achieving comparable gaze estimation accu-

racy compared to explicit calibration methods. 

3. Model-based gaze estimation 

Model-based methods estimate the 3D gaze directions or the

2D point of regard (PoR) by leveraging on the 3D geometric eye

model as shown in Fig. 1 . Eye is modeled as two spheres, the eye-

ball sphere, and the cornea sphere. The two spheres rotate together

around eyeball center to see different directions. Gaze direction is

defined as the visual axis that passes through fovea and cornea

center. PoR is defined as the intersection of visual axis and the

screen plane. Optical axis is defined as the line connects eyeball

center e , cornea center c and pupil center p . For 3D model-based

methods, the eye is typically illuminated with IR lights I as shown

in Fig. 1 . A ray comes from the light source I and reflects on a

point on cornea surface so that the reflected ray passes through

the camera nodal point o . The reflection point is defined as glint q ,

and the reflection ray intersects with the camera image plane and

produces glint image u q . Similarly, a ray comes from pupil center

p and refracts at cornea surface, the refracted ray passes through

camera nodal point and intersects with the image plane at pupil

image u p . Virtual pupil p v is typically assumed to be the intersec-

tion point of the extension of refraction ray and the optical axis

[9] . 

In practice, we use two IR light sources. By exploring the reflec-

tion property of two IR lights and refraction property of the pupil,

we are able to compute the 3D cornea center c and 3D virtual

pupil center p v given the pupil image u p and glint image u q , where

u p and u q can be efficiently detected on the captured eye images.

Please refer to [8] for a more detailed theory about 3D geometric

eye model. Optical axis is thus estimated by: N o = p v − c / || p v − c || .
Various studies show that the distance between eyeball center e

and cornea center c is a subject-dependent constant value K 

1 . Thus

we can estimate the position of the eyeball center as: 

e = c − KN o . (1)
1 For this research, we assume K is a constant for different subjects. 

g  

t  

s

he angle between optical axis and visual axis is also a constant

ubject-dependent value. We use θ = [ α, β] to represent the an-

les. Notice N o is a unit vector in 3-dimensional space, which can

e represented by two angles φ and γ as follows: 

 o (φ, γ ) = 

( 

cos (φ) sin (γ ) 
sin (φ) 

− cos (φ) sin (γ ) 

) 

. (2)

ince φ and γ can be computed directly given observation c and

 v , we call { c , φ, γ } the observations from one frame of data in

ater sections. Visual axis N g is then computed by adding [ α, β] to

ptical axis: N g = N o (φ + α, γ + β) . 

The point [ x, y, z ] T on the screen satisfies the surface equa-

ion f (x, y, z) = 0 , which can be estimated by a one-time off-line

isplay-camera calibration. Without loss of generality, we assume

he screen is a plane and satisfies: f (x, y, z) = z = 0 . Intersecting

isual axis with the screen plane, we can obtain the 2D PoR: 

 

m 

g = h (c , φ, γ ; θ ) = 

( 

c [1] − c [3] tan (γ + β) 

c [2] − c [3] tan (φ+ α) 
cos (γ + β) 

) 

, (3)

here c [ i ] represents the i th element of cornea center c. h ( ·) de-

otes the function to compute PoR given observations { c , φ, γ } and

ubject-dependent eye parameters θ . 

In traditional explicit calibration methods, users are required to

ook at N pre-defined points ( g i , i = 1,..., N) on the screen plane.

ye parameters θ can be estimated by solving the supervised re-

ression problem: 

∗ = arg min 

θ

N ∑ 

i =1 

(g i − h (c i , φi , γi ; θ )) 2 . (4)

. Model-based gaze estimation with implicit personal 

alibration 

Explicit personal calibration requires user collaboration. For

ome applications, this procedure can be cumbersome and de-

rades the user experience. In this work, we propose to remove

he explicit personal calibration by leveraging on four natural con-

traints during eye gaze tracking. 
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.1. Complementary gaze constraint 

The first constraint arises from the fact that 3D model-based

ethod and the feature-based method are complementary to each

ther. In traditional 2D feature-based gaze estimation methods, it

s assumed a linear relationship between the pupil-glint vector

 δx , δy ) and the PoR ( x, y ) on the screen plane. Pupil-glint vector

s defined as the difference between pupil image u p and glint im-

ge u q : ( 
δx 

δy 
) = u p − u q . To map pupil-glint vector to PoR, we can

onstruct the following equations: 

 = a x δx + b x δy + c x , (5) 

 = a y δx + b y δy + c y , (6) 

here ( a x , b x , c x , a y , b y , c y ) are the regression parameters, which

an be efficiently learned from training data through a one-time

alibration. However, because the pupil-glint vector contains only

D information on image coordinates, the learned regression pa-

ameters are only valid for a fixed head pose. Once we move our

ead, we need to learn another set of regression parameters. We

onsider eliminating the influence of head movement by adding

D information. Notice eyeball center is the rotation center of the

ye, thus its position e can well represent the position of the head.

he position of eyeball center e = (e x , e y , e z ) 
T can be computed

hrough Eq. (1) . 

Adding eyeball center position e as an additional feature to

qs. (5) and (6) gives rise to the new gaze estimation equations: 

 

f 
g = A δ, (7) 

here A = ( 
a x , b x , c x , d x , f x , g x 
a y , b y , c y , d y , f y , g y 

) r epr esents the r egr ession parame-

ers, and δ = (δx, δy, e x , e y , e z , 1) T represents the augmented fea-

ure vector. 

The 3D model-based method ( Eq. (3) ) and feature-based

ethod ( Eq. (7) ), though based on different principles and mecha-

isms, should produce close enough PoRs. 3D model-based method

rovides the domain knowledge about eye anatomy, and mimic the

uman vision system via a 3D geometric eye model. Therefore eye

aze generated from vision system can be accurately approximated

y the estimated gaze from 3D eye model. Feature-based method

onsiders gaze estimation from the learning point of view. It re-

uires enough training data to learn a regression function from eye

eatures to eye gaze. Thus the feature-based method is data-driven,

hile the 3D model-based method is eye anatomy-driven. These

wo methods complement each other and inspire us to come up

ith the following complementary gaze constraint: 

| P 

m 

g,i − P 

f 
g,i 

|| = || h (c i , φi , γi ; θ ) − A δi || ≤ ε+ 
1 ∀ i, (8) 

here { c i , φi , γi , δi } , i = 1 , . . . , N are the collected observations for

D model-based and feature-based methods, ε+ 
1 

is a small positive

onstant. h ( ·) is defined in Eq. (3) and A is defined in Eq. (7) . 

.2. Center prior constraint 

Center prior states that when users perform natural viewing

asks, like watching videos/images, most of the fixations are con-

entrated on the center region of the screen. Center prior con-

traint has been widely used in saliency map estimation [33] . Chen

nd Ji [27] also uses center prior as the prior gaze distribution

o help implicit personal calibration. Therefore we incorporate the

eak center prior constraint in our framework, specifically, we re-

θ

uire that: 

| 1 

N 

N ∑ 

i =1 

P 

m 

g,i −
(W 

2 

H 
2 

)
|| ≤ ε+ 

2 , (9) 

here ε+ 
2 

is a small positive constant, W and H represent the

idth and height of the screen ( W and H use the same unit as

ornea center c , Eg. millimeter). This constraint states that the

ean of all gaze points P 

m 

g,i 
is close to the screen center. 

.3. Display boundary constraint 

For natural interactions with a monitor/screen, it is assumed for

 continuous period of time, human’s attention is always on the

creen region. For example, when a subject watches a video clip

r browses the website for some time, all the PoRs or PoRs from

 consecutive time segment fall within the screen region. This in-

pires us to impose hard constraints that all PoRs lie within the

isplay region. Therefore PoR must satisfy: ( 
0 

0 
) ≤ P 

m 

g = ( 
x 

y 
) ≤ ( 

W 

H 

) ,

here W and H represents the width and height of the display. 

.4. Angular constraint 

From human eyeball anatomy, we know kappa θ = [ α, β] can-

ot take arbitrary values. According to [8] , the average horizontal

ngle between optical and visual axis α typical is +5 ◦ for the left

ye and −5 ◦ for the right eye. And the average vertical angle be-

ween the visual and optical axis β is typically 1.5 °. Therefore we

an impose hard constraint to force θ in a reasonable region S a : 

∈ S a = 

{(
α
β

)
∈ R 

2 : αl ≤ α ≤ αh , βl ≤ β ≤ βh 

}
, (10) 

here αl and αh are the lower and upper bounds for α, while β l 

nd βh are the lower and upper bounds for β . In the experiments,

e set αl = βl = −8 and αh = βh = 8 in degrees. 

.5. Implicit personal calibration with constrained unsupervised 

egression 

Explicit personal calibration can be considered as a supervised

egression problem. Given gaze data X = { c i , φi , γi } and gaze labels

 = g i (i = 1,...,N), our goal is to solve the supervised regression

roblem as in Eq. (4) . Therefore explicit user collaboration is re-

uired to collect the gaze labels g i . In this work, we only have

our constraints without an objective since we have no explicit

aze labels. Any solution satisfying the constraints can be our so-

ution. However, it is time-consuming if we perform greedy-search

o find the candidate solutions. Alternatively, we can formulate a

onstrained unsupervised regression problem to remove the need

or explicit gaze labels. For general unsupervised learning problem,

odel parameters can be estimated by maximizing the marginal

ikelihood of the parameter θ given data X : θ ∗ = arg max θ p(X | θ )

ubject to constraints. In our deterministic case, we can equiva-

ently minimize the regression error by marginalizing all possible

abel values g j : 

∗ = arg min 

θ

N ∑ 

i =1 

∑ 

g j 

|| g j − h (c i , φi , γi ; θ ) || 2 

ubject to the constraints. In practice, marginalizing all possible la-

els is infeasible, we therefore approximate the regression error by

sing the gaze position predicted by θ t−1 from last iteration: 

	t = arg min 

θ t 

N ∑ 

i =1 

|| h (c i , φi , γi ; θ t−1 ) − h (c i , φi , γi ; θ t ) || 2 (11) 
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Fig. 2. Hardware setup with one web camera and 4 IR-lights on the 4 corners of 

the monitor. 
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e  
s.t || h (c i , φi , γi ; θ ) − A δi || ≤ ε+ 
1 ∀ i, 

|| 1 

N 

N ∑ 

i =1 

h (c i , φi , γi ; θ ) −
(

W 

2 

H 
2 

)
|| ≤ ε+ 

2 ∀ i, 

θ ∈ S a = 

{(
α
β

)
∈ R 

2 : αl ≤ α ≤ αh , βl ≤ β ≤ βh 

}
. 

Notice that if we ignore the constraints in Eq. (11) , the solution

collapse to the first tentative solution. But the purpose of implicit

calibration is to use the natural soft constraints to gradually refine

the personal eye parameters and give better gaze estimation accu-

racy. 

To solve the constrained unsupervised regression problem as in

Eq. (11) , we plan to use the hard Expectation Maximization (EM)

algorithm [34] Before introducing the algorithm, we discuss how

to incorporate the four constraints into the hard EM framework. 

First, complementary gaze constraint and center prior con-

straint are interpreted as regularization terms by introducing two

Lagrangian multipliers. By doing so, we do not need to specify

the values of ε+ 
1 

and ε+ 
2 

, which may result in an empty solu-

tion space if not specified correctly. Second, display boundary con-

straint and angular constraint impose hard constraints on θ . From

display boundary constraint, each gaze point ( x i , y i ) 
T will deter-

mine a feasible region S i for [ α, β]. Combining angular constraint

in Eq. (10) and all display boundary constraints S i , we know θ must

satisfy: θ ∈ S f = 

⋂ 

1 ≤i ≤N S i ∩ S a , where S f denotes the final feasible

region of θ . 

Given the objective function as well as the constraints, we solve

the unsupervised regression problem through the hard EM frame-

work. The hard EM consists of an E-step and an M-step. In the

E-step, given estimated θ t−1 from the last iteration, we compute

all the PoRs given the data. In the M-step, we update θ t by solving

a constrained unsupervised regression problem. Algorithm 1 sum-

Algorithm 1 Hard EM algorithm. 

1: Given gaze data: { c i , φi , γi , δi } , i = 1 , . . . , N. 

2: Initialize θ to the human average value θ0 . Compute initial

PoRs with θ0 via Eq. (3). These initial PoRs are used to com-

pute initial regression parameter A 0 via Eq. (7). 

3: Compute gaze points g t 
i 

given θ t−1 from last iteration: g 	t 
i 

=
h (c i , φi , γi ; θ t−1 ) ∀ i 

4: Update θ t for current iteration by solving the following opti-

mization problem: 

θ	t = arg min 

θ t 

1 

N 

N ∑ 

i =1 

|| g 

	t 
i − P 

m 

g,i || 2 + 

λ1 

N 

N ∑ 

i =1 

|| P 

m 

g,i − P 

f 
g,i 

|| 2 + λ2 || 1 

N 

N ∑ 

i =1 

P 

m 

g,i −
(

W 

2 

H 
2 

)
|| 2 (12) 

s.t θ t ∈ S f , 

where P 

m 

g,i = h (c i , φi , γi ; θ t ) , P 

f 
g,i 

= A δi (13) 

5: Repeat step 3 and 4 until convergence. 

marizes the procedure. 

The first term in Eq. (12) is the regression error, while the sec-

ond and third terms impose the two soft constraints as regular-

izations, with multipliers λ1 and λ2 respectively. They represent

a trade-off between the regression errors and the violation of the

constraints. In the experiments, λ1 and λ2 are set to 0.4 and 0.02

for all subjects. They are chosen based on some experiments to

ensure different terms in Eq. (12) are at roughly similar scale. The

average performance for all subjects is not that sensitive to their

values, but individual subject’s performance might be affected. Ac-
ually, if subjects perform a video watching task, it might give bet-

er results if we set λ2 larger (center prior constraint is dominant

n video watching task). In practice, depending on tasks(subjects’

aze distribution), the optimal settings of λ1 and λ2 might be dif-

erent, however, providing the two values in the paper can usually

ive reasonable accuracy. 

Eq. (13) represents the feasible region imposed by the two hard

onstraints. The nonlinear optimization problem can be efficiently

olved through interior-point algorithm. To initialize the hard-EM

lgorithm, we first set eye parameter θ0 to the human average val-

es θ0 = ( α0 , β0 ), from which we can compute the initial PoRs

 

m 0 
g = g(c , φ, γ ; θ0 ) for model-based method ( Eq. (3) ). PoRs esti-

ated from feature-based method ( Eq. (7) ) are assumed to be

he same as model-based method: P 

f 0 
g = P 

m 0 
g , from which we can

ompute the initial regression parameters A 0 using Eq. (7) . 

Formulated as a constrained unsupervised regression problem,

he proposed implicit calibration method only uses four weak con-

traints on θ without any label information. Using individual con-

traint alone will not work. For the complementary gaze constraint

lone, it is ambiguous and non-unique in the sense that different

airs of parameters θ and A can satisfy the constraint. This is ex-

ctly why we need other three constraints to constrain the solu-

ion to make it both physically and anatomically meaningful. The

se of center prior constraint can benefit from center-biased gaze

atterns, but we want to point out that our algorithm is not as

ensitive to incorrect center gaze patterns as in [27] . Because cen-

er prior itself is a very weak constraint and is jointly used with

he other three constraints. In fact, the proposed algorithm can be

pplied to non-center distributed data like the web browsing gaze

ata. The display boundary constraint and the angular constraint

ontribute to the reduction of the feasible region from R 

2 to S f ,

hich improves the accuracy as well as the efficiency of the al-

orithm. In the next section, experiments will demonstrate how

hese constraints work in both qualitative and quantitative man-

ers. 

. Experiments and analysis 

.1. Experimental settings 

Hardware setup : The hardware setup is illustrated in Fig. 2 . We

se a Sony Webcam WCX550 web camera in the experiments, its

R filter is removed and we also add a natural light filter. 4 IR-light

rrays are placed on the 4 corners of the 21.5-inch monitor. We

mplement the one camera two IR lights system [8,9] to efficiently

stimate 3D pupil p v and 3D cornea c . The purpose of using 4 IR-
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Fig. 3. Synthetic uniform and center prior distributions and real PoR distributions from one subject with video watching and web browsing scenarios. PoRs are recorded by 

a commercial eye tracker [35] with approximately 0 . 5 ◦ accuracy. 
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ights is to enable larger head motions and improve the robustness,

he method can work with only 2 IR-lights. 

Data : we evaluate the proposed method with both synthetic

ata and real data. For synthetic data, we first generate target

aze distributions as shown in Fig. 3 , and observations can be syn-

hesized through reverse engineering. For real data, we invite 8

ubjects (5 male and 3 female) whose age ranges from 22 to 30

ears old to perform two natural tasks: video watching and web-

ite browsing. Subjects sit in front of the screen at a distance of

500 mm and can move horizontally and vertically as long as

heir eyes are visible to the camera. The real data are implicitly col-

ected while subjects perform the tasks (approximately 120 –150 s).

ig. 3 (c) and (d) show an example gaze distribution from one sub-

ect. 

Evaluation : To evaluate the estimated personal eye parameters,

e ask subjects to look at 25 uniformly distributed points on the

creen, these points served as the groundtruth positions and are

sed to compute the gaze estimation error. For comparison, we

lso implement the explicit 9-points calibration method as base-

ine, where Eq. (4) can be used to solve the eye parameters. 

To evaluate the gaze estimation performance, we use the angu-

ar error in degree as the evaluation metric. Specifically, since the

ystem is fully calibrated, we know the groundtruth gaze position

 g = [ x g , y g , 0] and the predicted gaze position P 

m 

g = [ x p , y p , 0] on

he screen plane (see Section 3 for details). We also know the es-

imated eyeball center position e = [ e x , e y , e z ] . Given these, we can

stimate the groundtruth gaze direction v g and predicted gaze di-

ection v p : 

 g = 

P g − e 

|| P g − e || , v p = 

P 

m 

g − e 

|| P 

m 

g − e || 

aze estimation error is calculated as err = arccos (v T g v p ) in degree.
.2. Evaluation on synthetic data 

The proposed method depends on different viewing patterns

rom the subjects. Therefore we first study several common gaze

atterns as shown in Fig. 3 . They include the uniform-distributed

aze pattern, a center-biased gaze pattern, one real gaze pattern

ecorded when the subject watches a video, and one real gaze pat-

ern from the subject browsing the website. These gaze patterns

an be considered as N groundtruth gaze positions { P 

i 
g } N i =1 

on the

creen. Next, we can simulate different subjects and their spatial

ositions. Different subjects means different kappa angles [ α, β],

hey are drawn from a prior uniform distribution with lower bound

 αl , βl ] = [ −8 , −8] and higher bound [ αh , βh ] = [8 , 8] . Note that the

rue kappa distribution is not a uniform distribution but rather a

aussian distribution ( [8] ). The proposed method is more general

nd does not assume known distributions of kappa angles. Sub-

ects’ spatial position refers to the position of the 3D eyeball center

 , which is also manually selected, so that subject appears in front

f the screen and camera, with a distance around 500 millimeters.

iven this information, we are able to perform reverse-engineering

nd estimate the 3D pupil center and 3D glints position ( Fig. 1 ).

e mainly rely on the law of reflection and refraction of light on

he corneal surface (See [8] for details). Given the 3D pupil and

lints positions, we can project them down to the image plane

given camera parameters) to get the measurements. We also add

oise to the measured 2D pupil and glint positions. The noise level

eans the gaze estimation error using explicit-calibration with the

oisy measurements. 

With the proposed implicit calibration method, the results are

hown in Fig. 4 . As we can see, the center prior pattern gives the

oorest result, as we cannot leverage on other constraints like the

creen boundary constraint. As for the two natural scenarios web

rowsing and video watching, they give better results (1.5 °) than
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Fig. 4. Gaze estimation accuracy with different noise levels and gaze distributions. 

Table 1 

Estimated eye parameters [ α, β] from 9-points calibration and the pro- 

posed method with Video and Web scenarios. 

Subjects 9 points Video Web 

1 1.0 0.3 0.5 0.6 0.3 0.7 

2 −0.7 3.8 −1.0 2.9 −1.3 3.5 

3 1.3 2.8 1.6 2.3 1.7 2.0 

4 1.6 2.0 1.5 1.3 2.1 2.1 

5 2.7 −0.8 3.2 −0.5 2.5 −0.7 

6 −3.6 −0.8 −2.8 −1.0 −3.2 −1.1 

7 0.8 −2.3 1.2 −1.0 0.1 −1.3 

8 1.2 −3.0 0.4 −2.1 1.8 −2.8 

9 1.9 0.3 2.2 0.5 1.7 0.4 

10 −1.3 1.9 −0.5 1.8 −1.7 2.1 

11 1.8 −1.5 1.7 −1.2 2.1 −1.7 

12 −3.9 −3.3 −3.2 −2.7 −3.5 −3.7 

13 1.7 3.9 1.6 4.0 1.5 4.1 

14 1.6 2.3 2.1 2.1 1.8 2.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Gaze estimation error with different calibration settings. 

Fig. 6. Calibrated parameters with a different number of calibration samples. 
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center prior, but not as good as the explicit-calibration approach

(1.0 °). The best result is from the uniform distribution which is

comparable to explicit-calibration, the underlying reason is that it

narrows down the feasible solution space with the screen bound-

ary constraints, but such pattern is not realistic in practice. Overall,

the results with web browsing and video watching scenarios con-

vince us the proposed method can implicitly calibrate eye param-

eters, and give reasonably good results. 

5.3. Evaluation on individual subjects 

Personal eye parameters : We first take a look at the estimated

eye parameters for different subjects. Table 1 lists the eye param-

eters estimated from explicit 9-points method, and the proposed

implicit method with Video and Web scenarios. We can find that

some eye parameters are close to each other, while others differ

a lot. For example, β from subject 7 differ a lot to the explicit

method. α and β from subject 8 with Video task also different a

lot to the explicit method. Since we do not know the groundtruth

eye parameters for each subject, the parameter comparison is only

for reference. 

Gaze estimation evaluation : The gaze estimation error for differ-

ent subjects with Video and Web scenarios are shown in Fig. 5 .

Visually speaking, 9-points method is better than Video and Web

scenarios, but the accuracy is also comparable. These results prove

that the proposed method can not only work with strong center-

biased PoR distribution ( Fig. 3 (c)) but also work with distributions

where PoRs are close to the boundary of the display ( Fig. 3 (d)).

In [27] , center prior is directly utilized to align the subjects’ gaze

data to learn the eye parameters; therefore strong center-biased

PoR distributions are required. However, in the proposed method,
enter prior is only interpreted as a soft constraint and is jointly

tilized with other three constraints. If PoR distributions are in-

eed center-biased, the center prior constraint will help find better

ye parameters. If PoR distributions are similar to Fig. 3 (d) where

oRs are close to the boundary, such distribution forces the feasible

egion S f to be smaller and compact, therefore we eliminate more

rong parameters and are able to find better eye parameters. 

Quantitatively speaking, the average error for 9-points calibra-

ion, Video scenario and Web scenario are 1.18 °± 0.43 °, 1 . 36 ◦ ±
 . 48 ◦ and 1 . 32 ◦ ± 0 . 47 ◦ respectively. The variance is resulted from

oor feature detections, head motions, and screen reflections, etc.

verall, we can see that the proposed implicit calibration method

an achieve comparable results as the explicit method. The re-

ults also illustrate that the proposed framework can work effi-

iently with natural interactions like browsing websites and watch-

ng videos. 

.4. Evaluation on number of calibration samples 

The performance of the algorithm also depends on the num-

er of data samples. Fig. 6 shows the calibrated parameters from

ne subject and Fig. 7 shows the average gaze estimation error

or all subjects with a different number of calibration samples. The

verall error is decreasing when the number of samples increases,

s the calibrated parameters approach the groundtruth parameters

9-points calibration results). Because of the randomness of gaze

ositions on the screen, the curve is not monotonically decreas-

ng but with perturbations. However, after enough number of data

amples, the estimated eye parameters will finally converge, which

nable accurate eye gaze tracking. Depending on interaction sce-

arios where gaze patterns are different, the number of samples

ight be different. But with the proposed algorithm, we can ob-

ain very good results in around 10 0 0 samples as opposed to 60 0 0

amples in [27] . 
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Fig. 7. Gaze estimation error with a different number of calibration samples. 

Fig. 8. Visualization of solution space. 
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Table 2 

Distances (pixel) of predicted gaze positions in Figs. 9 and 10 . p f , p m and 

g represent gaze positions predicted from the feature-based method, 

model-based method and groundtruth respectively. 

|| p f − p m || || p f − g || || p m − g || 
Fig. 9 Before calibration 64.9 196.9 208.7 

After calibration 8.6 64.3 64.8 

Fig. 10 Before calibration 9.5 216.9 216.8 

After calibration 9.2 65.1 66.9 
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.5. A deeper look into four natural constraints 

The goal of this paper is to solve a set of parameters given

our constraints. Without an objective function, any sets of param-

ters within the feasible space can be our solution. One brutal-

orce approach might be to evaluate all possible parameters and

onstruct the feasible space, the final estimation can be the mean

f parameters in the feasible space. However, such brutal-force ap-

roaches are time-consuming and require carefully chosen hyper-

arameters. For example, If ε+ 
1 

in Eq. (8) and ε+ 
2 

in Eq. (9) are set

oo small, we might end up with an empty feasible space, or the

onstraints might not work if they are set too large. Nevertheless,

ith the proposed hard-EM framework and iterative algorithm, we

an still take advantage of the constraints and obtain good eye pa-

ameters for eye gaze tracking. 

.5.1. Visualization of solution space 

We first take a look at the solving process from one iteration

n Algorithm 1 . As shown in Fig. 8 , the objective function contour,

easible space, and solutions are shown on a 2D plot. The objective

unction contour is obtained by computing the objective function

alue at the 2D grid of the parameters, which encodes how the

omplementary constraint and center prior constraint contribute to

ur estimation. The yellow polyhedron denotes the feasible space

orced by the display boundary constraint. The angular constraint

oes not contribute in this case since its feasible space is a super-

et of the yellow polyhedron. We can see that the objective func-

ion is monotonically decreasing towards the top right direction.

herefore our estimation (green cross) is the top right corner of the

ellow polyhedron. For reference, the parameters estimated from
-points method are marked as a red star. Compared to R 

2 , the

easible region defined by the yellow polyhedron is much smaller.

fter this iteration, the algorithm continues based on the current

stimate. Notice the solution space in Fig. 8 is only one particular

rial from one subject, the solution space will be totally different

or other trials. We cannot predict where is the optimal solution

s the solution space is a function of the number of samples, as

ell as the distributions of the samples. However, following the

lgorithm in Algorithm 1 , we can get a good estimation of the per-

onal eye parameters that give good gaze estimation performance. 

.5.2. Complementary gaze constraint 

In this section, we take a detailed look at how complementary

aze constraint affects the predicted gaze positions. For simplicity,

e denote p 

f , p 

m and g as gaze positions predicted from feature-

ased method, model-based method and groundtruth respectively.

s shown in Fig. 9 and Table 2 , the error for feature-based ( || p 

f −
 || ) and model-based ( || p 

m − g || ) methods are large. And the dis-

ance between feature-based and model-based ( || p 

f − p 

m || ) is also

arge. By solving the proposed constrained unsupervised regression

roblem, we are able to reduce the errors as well as the distance

etween the two methods. This demonstrates the effectiveness of

he complementary gaze constraint, by forcing gaze positions from

he two methods to be as close as possible, we are able to find

ore accurate personal eye parameters. 

Fig. 9 actually shows a case where complementary gaze con-

traint is dominant, we also take a look at a different scenario in

ig. 10 . Though the distance || p 

f − p 

m || is already pretty small be-

ore calibration, the proposed method can take advantage of other

atural constraints to find accurate parameters that give better es-

imation accuracy. 

.5.3. Importance of individual constraint 

To evaluate the importance of the four constraints, we drop one

f the 4 constraints one at a time and compare the accuracy with

sing all constraints. Similarly, we evaluated on both Video watch-

ng and Web browsing tasks. 

In Fig. 11 a), when dropping complementary gaze constraint,

he error significantly increases for both Web browsing and Video

atching tasks. This is because the complementary gaze constraint

s more generic and can apply to different scenarios, and thus

ropping this constraint degrades the performance. In Fig. 11 b),

t is clear that when gaze distribution is center-biased as in Video

atching task, the center-prior constraint is more effective and

ropping the constraint causes a large error. However, the error

lso increases even in Web browsing tasks, demonstrating the im-

ortance of center prior constraint. In Fig. 11 c), we find that

isplay-boundary constraint is of great importance as it can sig-

ificantly reduce the feasible solution space (yellow polyhedron

n Fig. 8 ). It also applies to both tasks and causes a large error

hen dropping the constraint. Finally in Fig. 11 d), it seems an-

ular constraint if of no use as dropping the constraint does not

ake any difference. The reason is that with sufficiently large sam-

les ( N = 800 ), the solution space determined by display-boundary

onstraint is already a subset of the feasible space determined by
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Fig. 9. Visualization of predicted gaze positions before and after calibration. Complementary gaze constraint is dominant. 

Fig. 10. Visualization of predicted gaze positions before and after calibration. Complementary gaze constraint is not dominant. 

Table 3 

Comparison with state-of-the-art methods. 

Method Error/degree 

Proposed 1.3 

Wang et al. [28] 1.5 

Chen and Ji [26] 1.7 

Chen and Ji [27] 2.5 

Guestrin and Eizenman [7] 1.3 

Sugano et al. [30] 4.8 

Sugano et al. [31] 3.5 

Alnajar et al. [29] 4.3 
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angular constraint. It can also be seen in Fig. 8 , where the yellow

polyhedron is a subset of S a = {−8 ≤ α ≤= 8 and − 8 ≤ β ≤= 8 } . 
However, when there are not enough samples, angular con-

straints may also contribute to finding the personal eye param-

eters. As shown in Fig. 12 , when we use only 200 samples, us-

ing all constraints cannot give a good performance, but we ob-

serve that dropping angular constraint indeed increases the error.

This demonstrates that the angular constraint can benefit espe-

cially when we do not have enough calibration samples. 

5.6. Comparison with state-of-the-art 

Finally, we compare the proposed method with other state-

of-the-art methods in reducing/eliminating explicit calibration, as

shown in Table 3 . In particular, we implement three model-

based approaches [26–28] which have similar experimental set-

tings with ours. The algorithms in [26,28] utilize saliency maps,

while [27] use a simple Gaussian distribution. Since the Web

browsing scenario might not give good saliency map and gaze pat-

terns are not center-biased, we therefore only evaluate on Video

watching scenarios in order to be comparable. The numbers for

one model-based approach [7] and three appearance-based ap-
roaches in [29–31] are extracted from their original papers for

eference. Though we did not implement and compare with these

ethods directly, they are limited in practical usages. For example,

he limitation of complex system setup in [7] and the requirement

f saliency content [29,31] . 

Compared to [26,28] , our method is fully implicit with mini-

um user cooperation, while their method requires users to look

t salient images/videos and requires saliency computation. The

ethod in [27] only requires a Gaussian distribution, however,

heir method is limited to actual center-biased gaze patterns, and

annot apply to an noncenter-biased interactions. Besides, even for

enter-biased gaze patterns like Video watching, their method re-

uires much longer time to converge (60 0 0 frames). Compared

o state-of-the-art model-based approaches, the proposed method

rovides a generic calibration interface for many interaction sce-

arios, requires minimum user cooperation, and enables efficient

nd accurate eye gaze tracking. 

. Conclusion 

In this paper, we propose a novel implicit calibration frame-

ork for 3D model-based method with the help of four natu-

al constraints during eye gaze tracking. By exploring the comple-

entary nature of two gaze estimation methods (complementary

aze constraint), the center prior principle (center prior constraint),

he viewing habit for screen-based scenarios (display boundary

onstraint), and human eye anatomy knowledge (angular con-

traint), we propose to formulate the implicit calibration problem

s constrained unsupervised regression problem which integrates

ll these natural constraints. The constrained unsupervised regres-

ion problem can be solved effectively using the iterative hard EM

lgorithm. The proposed framework does not require any explicit

ser participation. Experiments for different subjects with video

atching and web browsing scenarios prove the effectiveness of
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Fig. 11. Gaze performance without one of the 4 constraints, using N = 800 samples. 

t  

d  

c  

C  

p  

l

he proposed implicit calibration framework. Compared with tra-

itional explicit calibration method, the proposed method achieves

omparable results but is less intrusive and more friendly to users.

ompared with other methods in implicit personal calibration, the
roposed method is more efficient and achieves better results in

ess constrained experimental settings. 
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Fig. 12. Gaze performance without angular constraint, using N = 200 samples. 
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