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Content-based Video Emotion Tagging
Augmented by Users’ Multiple Physiological

Responses
Shangfei Wang,Shiyu Chen,Qiang Ji

Abstract—The intrinsic interactions among a video’s emotion tag, its content, and a user’s spontaneous responses while consuming
the video can be leveraged to improve video emotion tagging, but such interactions have not been thoroughly exploited yet. In this
paper, we propose a novel content-based video emotion tagging approach augmented by users’s multiple physiological responses,
which are only required during training. Specifically, a better emotion tagging model is constructed by introducing similarity constraints
on the classifiers from video content and multiple physiological signals available during training. Maximum margin classifiers are
adopted and efficient learning algorithms of the proposed model are also developed. Furthermore, the proposed video emotion tagging
approach is extended to utilize incomplete physiological signals, since these signals are often corrupted by artifacts. Experiments on
four benchmark databases demonstrate the effectiveness of the proposed method for implicitly integrating multiple physiological
responses, and its superior performance to existing methods using both complete and incomplete multiple physiological signals.

Index Terms—Video emotion tagging, EEG signals, peripheral physiological signals, support vector machine
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1 INTRODUCTION

Video emotion tagging has attracted increasing attention
in recent years due to its wide potential applications in
video creation and distribution. Automatic video content
analysis and annotation is necessary to organize videos ef-
fectively and assist users in finding videos quickly. Emotion
is an important component in the classification and retrieval
of digital videos. Current video emotion tagging can be
divided into two approaches [1]: direct approaches and
implicit approaches. Direct video emotion tagging assigns
emotion tags to videos based on users’ examination of the
video content. Implicit video emotion tagging, on the other
hand, infers videos’ emotion tags from a user’s spontaneous
nonverbal responses while consuming the videos [2].

Emotion is subjective by nature and involves physiolog-
ical changes in response to a stimulus; therefore, videos’
emotion tags are intrinsically linked to the video content
and users’ spontaneous responses. Fully exploiting the re-
lationships among video content, users’ spontaneous re-
sponses, and emotional descriptors will reduce the semantic
gap between the low-level audio-visual features and the
users’ high-level emotional descriptors. However, current
direct approaches only map from video content to emotional
descriptors, and implicit approaches only explore mapping
from users’ spontaneous responses to emotional descriptors.
Little research considers the relationships among video con-
tent, users’ spontaneous responses, and emotional descrip-
tors simultaneously [3] [4]. Furthermore, implicit methods
typically combine video content and users’ responses by
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explicitly fusing them during both training and testing.
Although the development of wearable devices like smart-
watches/bracelets allows us to capture some physiological
signals, such as skin temperature (TEMP), other physio-
logical signals, such as electroencephalograph (EEG) and
electro-oculogram (EOG) readings, can only be recorded
by expensive and complex sensors. Furthermore, users
may dislike wearing sensors to record their physiological
changes during the actual tagging, it is more practical to
employ only video content without any user interaction
during actual video tagging. To resolve this conflict, we
propose an implicit fusion approach which only requires
user’s physiological responses during training and employs
video content during actual tagging [5] [6].

We propose a novel content-based video emotion tag-
ging approach augmented by users’ multiple physiolog-
ical responses, which are only required during training.
First, features are extracted from multiple physiological sig-
nals and video content. For physiological signals, different
frequency-domain and time-domain features are extracted
from different signals. Audio-visual features are extracted
from the video content. Then, we use similarity constraints
on the mapping functions to capture the relationships
among users’ multiple physiological features, audio-visual
features, and emotional descriptors during training. After
that, we obtain a better video emotion classifier from video
content with the help of multiple physiological signals. Dur-
ing testing, only video content is required. Maximum mar-
gin classifiers are adopted, and efficient learning algorithms
of the proposed model are also developed. Furthermore,
we extend the proposed video emotion tagging approach to
utilize incomplete physiological signals, since physiological
signals may be unavailable for any number of reasons.
Instead of discarding the whole data instance if only a
part is corrupted, we keep all available videos and physi-
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ological signals to train the emotion classifiers, and employ
all available physiological signals to improve content-based
video emotion tagging during training. Thus, we avoid a
substantial amount of unusable data without discarding
the good portion of the data. Experiments on the DEAP
database [7], the MAHNOB-HCI database [8], the USTC-
ERVS database [9], and the LIRIS-ACCEDE database [10]
demonstrate the superiority of our proposed method to the
existing methods, not only for video emotion tagging but
also in the implicit integration of multiple physiological
responses.

The rest of this paper is organized as follows. Section
2 gives an overview of the related work on video emotion
tagging. In section 3, we present the framework and details
of our method. Section 4 shows the experimental results on
four benchmark databases, as well as the analyses and the
comparison to current work. Section 5 concludes the paper.

2 RELATED WORK

The concept of computational media aesthetics (CMA) pro-
posed by Chitra Dorai [11] may be the first work on emotion
tagging of videos. The purpose of CMA is to interpret
audiences’ emotional responses to media from visual and
aural elements based on the film grammar. Later, Hanjalic
and Xu [12] successfully linked the arousal and valence di-
mensions to low-level audio-visual features extracted from
videos. This kind of emotion tagging research uses the direct
approach, which classifies emotions from the related audio-
visual features.

In addition to visual and aural elements in videos,
users’ spontaneous nonverbal responses while consuming
the videos provide clues to actual emotions induced by
the videos, and therefore provide indirect characterization
of the video’s emotion content. Some researchers have as-
signed emotion tags to videos based on emotions auto-
recognized from users’ spontaneous nonverbal response.
This is called the implicit approach [13]. A comprehensive
survey of video emotion tagging can be found in [1].

Since emotion is subjective by its nature and involves
physiological changes in response to a stimulus, video
emotion tagging should involve video content and users’
spontaneous responses. However, few researchers have
fully explored the relationship between them [4]. Soley-
mani et al. [3] adopted a linear relevance vector machine
to analyze the relationship between subjects’ physiolog-
ical responses and video’s emotion tags, as well as the
relationship between the video content and the emotion
tag. Their experimental results demonstrate that there is a
significant correlation between emotion tags and physiolog-
ical responses as well as between emotion tags and video
content. Wang et al. [4] were among the first to combine
users’ EEG signals and video content for emotion annota-
tion. They constructed three Bayesian Networks (BNs) to
annotate videos by combining the video and EEG features at
independent feature-level fusion, decision-level fusion, and
dependent feature-level fusion. Their experimental results
prove that the fusion methods outperform conventional
emotion tagging methods that use video or EEG features
alone. Moreover, the semantic gap between the low-level
audio-visual features and the users’ high-level emotion tags

can be narrowed down with the help of EEG features. A
downside of their approach is that users’ EEG signals are
required during both training and testing. We refer this
method as explicit hybrid video emotion tagging.

While physiological signals are important for video emo-
tion tagging, it is inconvenient to collect users’ physiological
signals during actual emotion tagging due to the high cost
of physiological sensors and the comfort of users. Wang
et al. [5] proposed a video tagging method with the aid
of EEG signals, which are only available during training,
but not available during testing. Specifically, a new video
feature space is constructed using canonical correlation
analysis (CCA) with the help of video content. A support
vector machine (SVM) is adopted as the classifier on the
constructed video feature space. Han et al. [14] proposed
to recognize arousal levels by integrating low-level audio-
visual features derived from video content and the human
brain’s functional activity in response to videos as measured
by functional magnetic resonance imaging (fMRI). Specifi-
cally, a joint representation is learned by integrating video
content and fMRI data using a multi-modal deep Boltzmann
machine (DBM). The learned joint representation is utilized
as the feature for training classifiers. The DBM fusion model
can predict the joint representation of the videos without
fMRI scans. Both studies integrate video content and users’
physiological response to learn a new representation of
videos during training. The new representation is more dis-
criminative for emotion tagging than using each modality
alone. Physiological data are only required during training
to construct better video representation. During testing, only
videos are available. We refer to this as implicit hybrid video
emotion tagging, which is a more practical approach than
explicit hybrid video emotion tagging.

We prefer to incorporate physiological response implic-
itly, so that these responses are only needed during training.
Although the constructed representations in [5] and [14]
reflect the intrinsic relationship between video content and
users’ physiological responses, they have no direct relation-
ship to target emotion tags. To address this, we propose a
new implicit hybrid video emotion tagging approach, which
utilizes physiological responses to directly construct a better
classifier for emotion tagging. Instead of using one kind
of physiological signal like the two studies in [5] and [14],
our approach can integrate multiple physiological signals to
facilitate video emotion tagging. We impose the constraints
on the mapping functions from video content, EEG features,
and features of peripheral physiological signals to model
the relationships among them. We modify SVM with our
assumptions to train a better classifier from audio-visual
features during training for better performance with the
help of the other two kinds of features.

Current hybrid video emotion tagging research assumes
that all channels of data, including videos and users’ phys-
iological signals, are always available. However, missing or
corrupt data is common when investigating physiological
signals. Physiological signals may be corrupted by power
line interference, motion artifacts, electrode contact noise,
or sensor device failure. To the best of our knowledge, there
is little work on emotion tagging that considers missing or
corrupted physiological data. This situation is the same in
the field of emotion recognition from multiple physiological
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signals. Researchers have only recently begun to realize that
it is too optimistic to assume that all data from all modalities
is available at all times. Wagner et al. [15] may be the
first to explore fusion methods for multi-modal emotion
recognition with missing data. Other than discarding all
data instances containing invalid modalities, which results
in a substantial amount of unusable data, they propose to
handle missing data at the decision-level fusion by integrat-
ing all the available modalities. Similarly, in this paper we
extend the proposed content-based video emotion tagging
approach to handle missing physiological data by integrat-
ing all the available modalities. Specifically, we employ
all the available data during training to jointly train the
emotion classifier from videos and the emotion classifiers
from physiological signals. We use similarity constraints
on these emotion classifiers to capture the intrinsic rela-
tionships among emotion labels, video content, and users’
multiple physiological responses, to improve video emotion
tagging.

This paper is an extension of our previous work [6].
In [6], we propose an implicit hybrid video emotion tag-
ging approach that integrates video content and users’
multiple physiological responses, which are only required
during training. Specifically, we modify SVM with simi-
larity constraints on classifiers to improve video emotion
tagging, and conduct tagging experiments on three bench-
mark databases, i.e., the DEAP database, the MAHNOB-
HCI database, and the USTC-ERVS database. Compared to
our previous work, in this paper, we have extended our pro-
posed content-based video emotion tagging method for in-
complete physiological data, and conducted video emotion
tagging experiments with complete physiological signals on
the LIRIS-ACCEDE database and incomplete physiological
signals on two databases, i.e., the DEAP database and the
MAHNOB-HCI database.

3 PROPOSED METHOD

Our goal is to develop a method for video emotion tagging
in which three different feature spaces can be obtained
from training samples, and only one is required for testing
samples. Specifically, we extract audio-visual features, EEG
features, and features of peripheral physiological signals
for training samples and only use audio-visual features for
testing samples. Peripheral physiological signals include
electro-oculogram readings (EOG), electromyograms of
zygomaticus and trapezius muscles (EMG), electrocardio-
graph (ECG), galvanic skin response (GSR), respiration
amplitude (RSP), skin temperature (TEMP), and blood
volume by plethysmograph signals (BVP). The framework
of our proposed model is summarized in Fig.1. The details
are described in the following subsections.

3.1 Feature Extraction
We extract audio-visual features, EEG features, and features
of peripheral physiological signals for training samples and
use only audio-visual features for testing samples.

3.1.1 EEG Features
First, noise reduction is carried out. A band-pass filter
with a lower cutoff frequency of 0.3Hz and a higher cutoff

frequency of 45Hz is adopted to remove the DC drifts and
suppress the 50Hz power line interference [16] [17]. Then the
spectral power from theta (4Hz < f < 8Hz), slow alpha (8Hz
< f < 10Hz), alpha (8Hz < f < 12Hz), beta (12Hz < f <
30Hz), and gamma (30Hz < f) bands are extracted from
all 32 electrodes as features. In addition to power spectral
features, the difference between the spectral power of all
the symmetrical pairs of electrodes on the right and left
hemisphere is extracted to measure possible asymmetry in
the brain activities due to emotional stimuli [7] [8]. The total
number of EEG features for 32 electrodes is 216.

3.1.2 Features of Peripheral Physiological Signals
Peripheral physiological signals include EOG, EMG, ECG,
GSR, RSP, TEMP, and BVP signals. Before feature extraction,
these signals are preprocessed using band-pass filters to
restrain the noise. Then, several commonly used features
are adopted.

For EOG and EMG signals, 0.4Hz and 1Hz low-pass
filters are adopted respectively. Energy, mean, and variance
are extracted from 4 electrodes as features [7]. There are 12
EOG features and 12 EMG features.

For ECG signals, a 1Hz low-pass filter is used. Heart rate
variability (HRV), root mean square of the mean squared
difference of successive beats, standard deviation of beat in-
terval change per respiratory cycle, 14 spectral power in the
bands from 0-1.5Hz, low frequency 0.01-0.08Hz, medium
frequency 0.08-0.15Hz and high frequency 0.15-0.5Hz com-
ponents of HRV power spectrum, and Poincare analysis
features (2 features) [8] [18] are extracted as features. The
total number of ECG features is 22.

For GSR signals, mean, mean of the derivative, mean
of the positive derivatives, proportion of negatives in the
derivative, number of local minima, and 10 spectral powers
within 0-2.4Hz [7] [8] are extracted as features after using a
3Hz low-pass filter. The total number of GSR features is 15.

For RSP signals, a 3Hz low-pass filter is adopted. Band
energy ratio, average respiration signal, mean of the deriva-
tive, standard derivation, range of greatest breath, 10 spec-
tral powers within 0-2.4Hz, average and median peak to
peak time are extracted as features [7] [8]. The total number
of RSP features is 17.

For TEMP signals, mean, mean of the derivative, spectral
powers in 0-0.1 Hz and 0.1-0.2 Hz are extracted as features
after a 0.45Hz low-pass filter is used [7] [18]. The total
number of TEMP features is 4.

For BVP signals, 0.5Hz low-pass filter is adopted. BVP
signals can be used to compute the HRV. Average and
standard derivation of HRV and inter-beat intervals; energy
ratio between 0.04-0.15 Hz and 0.15-0.5 Hz; and spectral
power in 0.1-0.2 Hz, 0.2-0.3 Hz, 0.3-0.4 Hz, 0.01-0.08 Hz,
0.08-0.15 Hz, and 0.15-0.5 Hz components of HRV are used
as features [7]. The total number of BVP features is 11.

3.1.3 Audio-Visual Features
Audio and visual features are extracted from video content.
For audio features, 31 commonly used features including av-
erage energy, average loudness, spectrum flux, zero crossing
rate (ZCR), standard deviation of ZCR, 12 Mel-frequency
Cepstral Coefficients (MFCCs), log energy (as a kind of
MFCC), and the standard deviations of the above 13 MFCCs
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Fig. 1. The framework of our approach

[19] are extracted using PRAAT(V5.2.35) [5]. For visual
features, lighting key, color energy, and visual excitement
are extracted from video clips [20].

3.2 Content-based Video Emotion Tagging Augmented
by Multiple Physiological Signals
The proposed content-based video emotion tagging method
is based on the SVM classifier. We enhance video emotion
tagging by integrating the basic SVM with the similarity
constraints among the mappings of video content and mul-
tiple physiological signals to emotion labels.

3.2.1 Problem Statement
In this paper we concentrate on the three-view case. All the
features extracted from one modality construct one feature
space. There are three different feature spaces in our training
samples. Each one can be used to train a model. Instead of
training feature spaces separately, we combine them with
the similarity constraints. The objective of video emotion
tagging is to train a classifier that maps the features of a
sample into its true tag.

Audio-visual features, EEG features, and features of
peripheral physiological signals are denoted as v ∈ R|V |,
e ∈ R|E|, and p ∈ R|P | respectively, where |V |, |E|, and
|P | are the dimension of each feature space. Denote the
emotion tag associated with a sample as y ∈ {−1, 1}.
Training data consists of features in three feature spaces and
emotion tags, denoted as D = {vi, ei, pi, yi|i = 1, ..., l},
where l is the number of training samples. During the
testing phase, only audio-visual features are used, denoted
as T = {vi|i = 1, ..., t}, where t is the number of testing
samples.

Our training samples D can be split into three parts:

DS = {(vi, yi), (ei, yi), (pi, yi)|i = 1, ..., l} (1)

which can be used to build three different mappings: fv ,
fe, and fp respectively. These spaces provide different de-
scription powers, but they are all beneficial to video emotion

tagging. Motivated by the work in [21], we use the similarity
constraint between three distinct SVMs, each trained from
one view of the data, to improve the performance of the
related classifier. In this way, even if there is only one feature
space available during testing, the information of the other
feature spaces of training data can still be used on the
tagging mission. The similarity constraint of {fv, fe} can
be represented as follows:

|fv(vi)− fe(ei)| ≤ ηvei + ϵ (2)

where ηvei is the slack variable to measure the amount that
ith sample fails to meet ϵ similarity between mapping fv and
fe. This is an ϵ-intensity 1-normal constraint. The similarity
constraints of {fv, fp} and {fe, fp} are identical with the
similarity constraint of {fv, fe}. The similarity constraints of
the mapping of {fv, fe}, {fv, fp}, and {fe, fp} are combined
into the three SVMs to enhance the effect of the classifier.

3.2.2 Support Vector Machine

The SVM is the basic classifier of our method. The SVM
classifier first maps the feature into a real value. Given input
feature x, the mapping is defined as:

fx(x, θ) =< wx, ϕ(x) > +bx (3)

where ϕ is a kernel that maps input feature space into the
kernel space. θ = {wx, bx} are parameters of the model.

Then SVM can be viewed as a 1-dimensional mapping
followed by a decision function. The decision function is:

d(x) = sign(fx(x)). (4)

Given training data {xi, yi}, SVM learns the model pa-
rameters by solving the following optimization problem:
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Min
Θ

1

2
∥w∥2 + C

l∑
i=1

ξi

s.t.

yi(< w, ϕ(xi) > +b) ≥ 1− ξi,

ξi ≥ 0

all for i = 1, ..., l

(5)

where ξi is the slack variable which allows for the misclas-
sification of some samples. The solution to Eq. (5) can be
obtained by solving its dual problem.

3.2.3 Support Vector Machines with Similarity Constraints

Combining the three-view constraints with the SVMs, we
obtain the following optimization problem of the proposed
model:

Min
Θ

1

2
∥wv∥2 +

1

2
∥we∥2 +

1

2
∥wp∥2

+ Cv
l∑

i=1

ξvi + Ce
l∑

i=1

ξei + Cp
l∑

i=1

ξpi

+Dvp
l∑

i=1

ηvpi +Dve
l∑

i=1

ηvei +Dpe
l∑

i=1

ηpei

s.t.

|fv(vi)− fp(pi)| ≤ ηvpi + ϵ,

|fv(vi)− fe(ei)| ≤ ηvei + ϵ,

|fp(pi)− fe(ei)| ≤ ηpei + ϵ,

yifv(vi) ≥ 1− ξvi ,

yife(ei) ≥ 1− ξei ,

yifp(pi) ≥ 1− ξpi ,

ξvi ≥ 0, ξei ≥ 0, ξpi ≥ 0,

ηvpi ≥ 0, ηvei ≥ 0, ηpei ≥ 0

all for i = 1, ..., l

(6)

where Θ = {wv, we, wp, bv, be, bp} are the parameters to
be optimized. {Cv, Ce, Cp, Dvp, Dve, Dpe} are the weighted
coefficients. The mapping functions f are Eq. (3) by using
v, e, and p as the input features respectively. The first six
terms of Eq. (6) are three object and slack terms which are
the same as that in SVM: each pair for a feature space. The
last three terms are the new terms, which are slack variables
measuring any two of the three mappings that fail to meet
ϵ similarity. With the new terms, the mappings fv , fe, and
fp are constrained to map the related feature spaces into
similar 1-dimensional spaces.

This optimization problem can be solved by applying
Lagrange multiplier techniques. We arrive at the following

dual problem:

Max
α

− 1

2

l∑
i,j=1

[gvi g
v
jKv(xi, xj) + gei g

e
jKe(xi, xj)+

gpi g
p
jKp(xi, xj)] +

l∑
i=1

(αv
i + αe

i + αp
i )

s.t.

gvi = αv
i ∗ yi − βvp+

i + βvp−
i − βve+

i + βve−
i ,

gei = αe
i ∗ yi + βve+

i − βve−
i + βpe+

i − βpe−
i ,

gpi = αp
i ∗ yi + βvp+

i − βvp−
i − βpe+

i + βpe−
i ,

l∑
i=1

gvi = 0,
l∑

i=1

gei = 0,
l∑

i=1

gpi = 0,

0 ≤ αv
i ≤ Cv, 0 ≤ αe

i ≤ Ce, 0 ≤ αp
i ≤ Cp,

0 ≤ βve+
i , 0 ≤ βve−

i , βve+
i + βve−

i ≤ Dve,

0 ≤ βvp+
i , 0 ≤ βvp−

i , βvp+
i + βvp−

i ≤ Dvp,

0 ≤ βpe+
i , 0 ≤ βpe−

i , βpe+
i + βpe−

i ≤ Dpe

all for i = 1, ..., l

(7)

where βvp+
i , βvp−

i , βve+
i , βve−

i , βpe+
i , βpe−

i , αv
i , αe

i , αp
i , λv

i ,
λe
i , and λp

i are all the Lagrangian multipliers. Among them,
βvp+
i , βvp−

i , βve+
i , βve−

i , βpe+
i , and βpe−

i serve as bridges
to relate the different classifiers. Then we use quadratic
programming to solve the problem.

During the training process, the mapping functions in-
teract through the similarity constraints. Since only the
single feature space v is available during testing, we use
the mapping function fv to map the audio-visual feature to
a real value, and use the decision function to determine the
tag of the testing sample. Although only one feature space
is used during testing, the information from other feature
spaces of the training sample has remained in the trained
model.

3.3 Extension to Incomplete Physiological Data

Since corrupt or missing data is frequent during physiolog-
ical data collection, we extend the proposed emotion tag-
ging method so that it may use incomplete physiological
data during training. Multiple physiological signals are not
usually corrupted simultaneously, so discarding all of the
whole data instances containing invalid modalities results
in a substantial amount of unusable data. To fully utilize all
available data, we employ selection vectors during training
to separately select the modalities that are not corrupted
or missing and use them to train the emotion classifier
from videos and the emotion classifiers from the selected
physiological signals jointly, as shown in Eq. (8).
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Min
Θ

1

2
∥wv∥2 +

1

2
∥we∥2 +

1

2
∥wp∥2+

Cv
l∑

i=1

ξvi + Ce
l∑

i=1

µe
i ξ

e
i + Cp

l∑
i=1

µp
i ξ

p
i +

Dve
l∑

i=1

µe
iη

ve
i +Dvp

l∑
i=1

µp
i η

vp
i +Dpe

l∑
i=1

µe
iµ

p
i η

pe
i

s.t.

µe
i |fv(vi)− fe(ei)| ≤ µe

iη
ve
i + ϵ,

µp
i |fv(vi)− fp(pi)| ≤ µp

i η
vp
i + ϵ,

µe
iµ

p
i |fp(pi)− fe(ei)| ≤ µe

iµ
p
i η

pe
i + ϵ,

yifv(vi) ≥ 1− ξvi ,

µe
iyife(ei) ≥ µe

i (1− ξei ),

µp
i yifp(pi) ≥ µp

i (1− ξpi ),

ξvi ≥ 0, ξei ≥ 0, ξpi ≥ 0,

ηvpi ≥ 0, ηvei ≥ 0, ηpei ≥ 0

all for i = 1, ..., l
(8)

Compared to Eq. (6), Eq. (8) has two additional variables,
i.e., µe and µp. They are selection vectors, indicating the
availability of corresponding signals. Specifically, when the
training samples have EEG features and the features of
peripheral physiological signals, the corresponding µe

i and
µp
i are equal to 1. Otherwise, they are set to 0.

This optimization problem can be translated to its dual
problem by applying the Lagrange multiplier techniques.
The dual problem is as follows:

Max
α

− 1

2

l∑
i,j=1

[gvi g
v
jKv(xi, xj) + gei g

e
jKe(xi, xj)+

gpi g
p
jKp(xi, xj)] +

l∑
i=1

(αv
i + µe

iα
e
i + µp

iα
p
i )

s.t.

gvi = αv
i yi − µp

i (β
vp+
i − βvp−

i )− µe
i (β

ve+
i − βve−

i ),

gei = αe
i yi + µe

i (β
ve+
i − βve−

i ) + µe
iµ

p
i (β

pe+
i − βpe−

i ),

gpi = αp
i yi + µp

i (β
vp+
i − βvp−

i )− µe
iµ

p
i (β

pe+
i − βpe−

i ),
l∑

i=1

gvi = 0,
l∑

i=1

gei = 0,
l∑

i=1

gpi = 0,

0 ≤ αv
i ≤ Cv, 0 ≤ αe

i ≤ Ce, 0 ≤ αp
i ≤ Cp,

0 ≤ βve+
i , 0 ≤ βve−

i , βve+
i + βve−

i ≤ Dve,

0 ≤ βvp+
i , 0 ≤ βvp−

i , βvp+
i + βvp−

i ≤ Dvp,

0 ≤ βpe+
i , 0 ≤ βpe−

i , βpe+
i + βpe−

i ≤ Dpe

all for i = 1, ..., l
(9)

From the above discussion, the proposed emotion tag-
ging method without missing physiological data can be
regarded as a special case of emotion tagging method with
missing physiological data, where both µe and µp are 1
vector. The algorithm of our proposed model is outlined
in Algorithm 1.

Algorithm 1 Algorithm of proposed model

Input: Audio-visual features R|V |, EEG features R|E|,
Peripheral features R|P |, Emotional tag Y ,
Weighted coefficients {Cv, Ce, Cp, Dvp, Dve, Dpe},
Selection vectors µe and µp

Output: Predicted emotional tag
Choose the kernel function and project the input features
into the kernel space;
Training phase
1.Solve the dual problem in Eq. (9) with quadratic pro-
gramming;
2.Obtain the Lagrangian multiplier µp

i (β
vp+
i − βvp−

i ),
µe
i (β

ve+
i −βve−

i ), µp
iµ

e
i (β

pe+
i −βpe−

i ), αv
i , µe

iα
e
i , and µp

iα
p
i ;

Testing phase
1.Estimate fv with the Lagrangian multiplier and pro-
jected audio-visual features;
2.Output the predicted emotional tag using Eq. (4);

3.4 Comparison to Related Work

Compared to SVM2K [21], which uses a similarity con-
straint of mappings from two feature spaces to combine
kernel canonical correlation analysis (KCCA) and SVM into
a single optimization problem, our model captures the
relationships embedded in three modalities instead of just
two views. In addition, SVM2K needs two views during
testing, while our model requires only one modality. Our
model can be seen as a way to learn a classifier using
hidden information [22] or privileged information [23], since
only one modality is available during testing but multiple
modalities are used for training. The EEG features and
features of peripheral physiological signals can be viewed as
hidden information or privileged information that is used to
help audio-visual features build a classifier. Unlike hidden
information used as secondary features (proposed in [22]),
which apply the ϵ-insensitive loss inequality constraints
based on the assumption that secondary features are more
informative for classification than the primary features, our
model uses similarity constraints which are based on the
assumption all feature spaces for classification are similarly
useful. Our assumption is more general than Wang et al.
’s [22]. The assumption of our method is also more general
than SVM+ [23], which requires that privileged information
and available information share the same slacking variable.
Furthermore, both Wang et al.’s work [22] and SVM+ [23]
only consider two modalities, not three modalities.

4 EXPERIMENTS

4.1 Experimental Conditions

For these experiments, we evaluate our method on
four benchmark databases: the DEAP database [7], the
MAHNOB-HCI database [8], the USTC-ERVS database [9],
and the LIRIS-ACCEDE database [10].

The DEAP database includes EEG signals and six kinds
of peripheral physiological signals (EOG, EMG, GSR, RSP,
TEMP, and BVP signals) from 32 participants as they were
watching 40 stimulating music video clips. Two videos
(experiment IDs: 17 and 18) cannot be downloaded from
YouTube due to copyright issues. Therefore, we obtain 1216
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EEG and peripheral physiological segments corresponding
to 38 stimulus videos. We take every physiological seg-
ment and its corresponding video as a sample. The self-
assessment evaluations of users’ induced emotions after
video watching are reported in 9-point rating scales for
valence and arousal.

The MAHNOB-HCI database includes EEG signals and
four kinds of peripheral physiological signals (ECG, GSR,
RSP, and TEMP signals) from 27 participants as they were
watching 20 videos. Seven samples are removed because
they don’t have either a corresponding media file or gaze
data. As a result, we obtain 533 EEG and peripheral phys-
iological segments corresponding to 20 stimulus videos.
We take every physiological segment and its corresponding
video as a sample. Like the DEAP database, the emotional
self-assessment evaluations are in 9-point rating scales for
valence and arousal.

The USTC-ERVS database contains 197 EEG responses to
92 video stimuli from 28 users. We take every EEG response
and its corresponding video as a sample. Users’ emotional
self-assessment evaluations consist of 5-point rating scales
for both valence and arousal.

The LIRIS-ACCEDE database is composed of three sec-
tions: discrete, continuous, and MediaEval data sets. The
continuous section contains the averaged GSR signal of
13 subjects recorded during they were watching 30 full-
length movies. Each movie is annotated by 5 annotators
along the induced valence axis, and 5 other annotators along
the induced arousal axis. We cut these full movies into 60
seconds video clips since there were too few movies used to
train a classifier. Thus there are 441 peripheral physiological
segments corresponding to 441 video clips. We take every
physiological segment and its corresponding video clip as a
sample. Users’ emotional self-assessment evaluations range
from -1 to 1 for both valence and arousal for each frame. The
averaged evaluations from 5 subjects are provided.

The four databases provide actual emotion labels of
videos. The actual emotion is the affective response of
a particular user to a video. It is context-dependent and
subjective, and it may vary from one individual to another.
Therefore, a video may have multiple ground truth evalu-
ations, since it may be viewed by multiple subjects, with
each subject providing different emotional self-assessments.
In our emotion tagging approach, only audio-visual features
are provided during testing, without any clues from sub-
jects. Therefore, we only consider aggregated emotion tags.
Furthermore, in the experiments, we adopt two categories,
i.e., positive or negative valence and high or low arousal,
instead of 5-point, 9-point or continuous rating scales, since
the sample numbers are too small to conduct five or nine
classification or regression on the databases. For example,
there is only one video belonging to valence eight in the
DEAP database. Binary classification of expected emotions
is frequently used in the field of emotion tagging.

On the first three databases, the category label of a
video is determined by the difference between its averaged
ground truth evaluation and the averaged evaluations of all
the videos, since a video is viewed by multiple subjects.
We first average all the evaluations of a video and get
its averaged ground truth evaluation. Then, we compare
a video’s averaged ground truth evaluation to the aver-

aged evaluations of all the videos in the database. If the
averaged ground truth evaluation of the video is larger
than the averaged evaluations of all the videos, the video
is regarded as positive valence or high arousal. Otherwise,
the video is regarded as negative valence or low arousal.
For the LIRIS-ACCEDE database, the category label of a
video clip is determined by the average of the 60-second
continuous annotations. If the averaged evaluation of the
video is larger than 0, the video is regarded as positive
valence or high arousal. Otherwise, the video is regarded as
negative valence or low arousal. The sample size for valence
and arousal on the four databases can be seen in Table 1.

We adopt the leave-one-video-out cross validation on
the DEAP database, the MAHNOB-HCI database, and the
USTC-ERVS database, and 10-fold cross validation on the
LIRIS-ACCEDE database. Recognition accuracy, smaller F1-
score, and unweighted average recall are used as per-
formance metrics. Recognition accuracy measures overall
classification accuracy without considering performance for
each class. Smaller F1-score and unweighted average recall
are used to ensure independence to unbalanced data distri-
bution.

4.2 Experimental Results and Analysis with Complete
Physiological Data

To evaluate our method with complete physiological data,
we conduct five video tagging experiments, tagging videos
using video content only, video content enhanced by EEG
signals, video content enhanced by peripheral physiological
signals, video content enhanced by both EEG and peripheral
physiological signals through concatenating EEG features
and peripheral physiological features as a feature vector,
and the proposed method, which assigns emotion tags to
videos from video content augmented by both EEG signals
and peripheral physiological signals as two kinds of privi-
leged information. We do not conduct experiments with pe-
ripheral physiological signals on the USTC-ERVS database,
since it does not contain these signals of users. Likewise,
experiments with EEG signals can not be conducted on
the LIRIS-ACCEDE database, since it does not contain EEG
signals of users.

Table 2 and Table 3 show video tagging results with
complete physiological data for valence and arousal, respec-
tively. From Table 2 and Table 3, we observe the following
remarks:

1) Compared to video tagging from video content only,
video tagging from video content enhanced by com-
plete EEG signals achieves better performance for
both valence and arousal. For valence and arousal
tagging, our method increases recognition accuracy,
F1-score, and average recall on three databases (the
DEAP database, the MAHNOB-HCI database and
the USTC-ERVS database) in most cases. This sug-
gests that EEG signals which are only available
during training are beneficial for building a better
video emotion classifier.

2) Video tagging from video content enhanced by
complete peripheral physiological signals outper-
forms the method using video content only for
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TABLE 1
The sample size for valence and arousal on four databases

valence arousal
positive negative high low

physiological
segments video clips physiological

segments video clips physiological
segments video clips physiological

segments video clips

DEAP 544 17 672 21 800 25 416 13
MAHNOB-HCI 242 9 291 11 292 11 241 9

USTC-ERVS 64 30 133 62 162 70 35 22
LIRIS-ACCEDE 215 215 226 226 161 161 280 280

TABLE 2
Experimental results of video emotion tagging with complete physiological data for valence

video only
with the help

of EEG
(CCA) [5]

with the help
of EEG and
peripheral
(M-CCA)

with the help
of EEG

with the help
of peripheral

with the help
of concatenated EEG

and peripheral

with the help
of EEG and
peripheral

(ours)

DEAP
accuracy .658 .658 .737 .711 .737 .737 .737
F1-score .606 .606 .688 .686 .688 .706 .722

recall .655 .655 .736 .708 .736 .734 .737

MAHNOB-
HCI

accuracy .548 .600 .651 .752 .752 .754 .797
F1-score .470 .559 .592 .738 .738 .741 .713

recall .540 .597 .648 .773 .773 .774 .865

USTC-
ERVS

accuracy .868 .888 - .888 - - -
F1-score .745 .814 - .817 - - -

recall .918 .889 - .884 - - -

LIRIS-
ACCEDE

accuracy .757 - - - .780 - -
F1-score .751 - - - .777 - -

recall .757 - - - .780 - -

TABLE 3
Experimental results of video emotion tagging with complete physiological data for arousal

video only
with the help

of EEG
(CCA) [5]

with the help
of EEG and
peripheral
(M-CCA)

with the help
of EEG

with the help
of peripheral

with the help
of concatenated EEG

and peripheral

with the help
of EEG and
peripheral

(ours)

DEAP
accuracy .737 .737 .816 .790 .790 .790 .816
F1-score .546 .615 .696 .692 .692 .714 .741

recall .713 .708 .811 .766 .766 .768 .795

MAHNOB-
HCI

accuracy .651 .700 .751 .850 .850 .850 .852
F1-score .632 .700 .738 .824 .824 .842 .844

recall .651 .707 .750 .855 .855 .850 .852

USTC-
ERVS

accuracy .797 .822 - .797 - - -
F1-score .412 .407 - .524 - - -

recall .648 .684 - .681 - - -

LIRIS-
ACCEDE

accuracy .696 - - - .687 - -
F1-score .545 - - - .566 - -

recall .669 - - - .662 - -

both valence and arousal. For valence tagging, ac-
curacy, F1-score, and average recall improve on all
three databases (the DEAP database, the MAHNOB-
HCI database, and the LIRIS-ACCEDE database).
For arousal tagging, accuracy and average recall
increase on two databases, and F1-score increases
on all three databases. This further demonstrates
that our proposed method successfully utilizes pe-
ripheral physiological signals only available during
training to facilitate mapping between video content
and emotion labels.

3) The performance of video tagging enhanced by
complete EEG signals and video tagging enhanced
by complete peripheral physiological signals is sim-
ilar for both valence and arousal on the DEAP
database and the MAHNOB-HCI database. This

suggests that both EEG signals and peripheral phys-
iological signals play helpful roles in assisting video
tagging.

4) The performances of the proposed video tagging
method and the video tagging method enhanced
by concatenated EEG and peripheral physiological
features are better than those of video tagging using
video content only, video tagging from video con-
tent enhanced by EEG signals, and video tagging
from video content enhanced by peripheral phys-
iological signals, with higher accuracies, F1-scores,
and average recalls in most cases. This demonstrates
that EEG signals and peripheral physiological sig-
nals may be complementary in enhancing video
emotion tagging.

5) The proposed video tagging method is superior to
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the tagging method enhanced by concatenated EEG
and peripheral physiological features. For valence
tagging, accuracy and average recall improve on
both databases, and F1-score improves on the DEAP
database. For arousal tagging, accuracy and F1-
score improve on both databases, average recall
improves on the DEAP database. This demonstrates
that the similarity constraints between classifiers
during training can capture the intrinsic relationship
between EEG and peripheral physiological signals
more successfully compared to concatenating mul-
tiple features as one feature vector.

6) Compared to video tagging using video content
only, the improvement of our proposed video tag-
ging method is most significant on the MAHNOB-
HCI database. It may be due to the more balanced
data distribution in the valence and arousal space of
the MAHNOB-HCI database.

7) The performance of arousal video tagging is better
than that of valence tagging on the DEAP database
and the MAHNOB-HCI database, indicating that
arousal recognition may be easier than valence
recognition. The data distribution in the arousal
space is more balanced than that in the valence
space for these two databases. Valence recogni-
tion is more accurate than arousal recognition on
the USTC-ERVS database and the LIRIS-ACCEDE
database because the data in the valence spaces are
more balanced.

We also adopt the 5X2 cross validation paired t-test [24]
to check whether the improvement of the proposed
method compared to the other methods is significant or
not based on the F1-scores on the DEAP database and the
MAHNOB-HCI database. The p-values are all less than
0.05 when the F1-scores obtained by our method are larger
than those from other methods. This demonstrates that the
improvement is significant.

4.3 Comparison to Other Methods
Currently, little work in the field of video emotion tagging
exploits the relationship between users’ emotional responses
and stimuli. As mentioned in Section 2, there are only two
works using implicit hybrid video emotion tagging [5] [14].
Since the database used by Han et al. [14] is not publicly
available, we cannot compare our work with theirs. Here,
we compare our work with Wang et al.’s.

Wang et al. [5] proposed to tag videos’ emotions with
the aid of EEG signals by constructing a new video feature
space that exploits the relationship of EEG signals and
video content using CCA. Like us, they verify their pro-
posed method on the DEAP database, the MAHNOB-HCI
database, and the USTC-ERVS database. They also adopted
two categories, i.e., positive or negative valence and high or
low arousal, instead of 5- or 9-point rating scales. However,
their strategy to change users’ self-reported 5- or 9-point
rating scales to binary emotion labels is different from ours.
They assign binary labels to a video by comparing the
ground truth evaluation of a video to the middle value of
evaluations. Thus, a video may have different binary labels
since it may be evaluated by multiple subjects. Since only

video content is used during testing, a single unique label
for a video is more reasonable. Although we could not
compare our experimental results directly with theirs due
to the label difference, we replicate their experiments using
their proposed method. Rather than integrating multiple
physiological signals to facilitate video emotion tagging as
we did, Wang et al. [5] enhanced emotion tagging with only
one kind of physiological signal (EEG). We extend their
proposed implicit tagging with multi-set CCA (M-CCA),
which optimizes an objective function of the correlation ma-
trix of the canonical variate from multiple random vectors
such that the canonical variate achieves maximum overall
correlation. This allows us to more accurately compare our
methods. The experimental results of this comparison are
shown in Table 2 and Table 3.

From Table 2 and Table 3, we find that our method
for video tagging enhanced by multiple physiological sig-
nals outperforms Wang et al.’s method of video tagging
enhanced by one physiological signal. This further proves
that multiple physiological signals are complementary in
enhancing video emotion tagging. In most cases, recognition
accuracy, F1-score, and average recall are higher for our
method than that for Wang et al.’s method. This indicates
that our method is more effective at taking advantage
of physiological signals for video emotion tagging during
training, since its objective function is to minimize tagging
error directly, while the goal of Wang et al.’s is to construct
a new video feature space processing the highest Pearson
correlation coefficients with the physiological feature space.

4.4 Experimental Results and Analysis with Incomplete
Physiological Data
To evaluate our method’s performance when physiological
data is incomplete, we conduct four video tagging exper-
iments: one using video content enhanced by incomplete
EEG signals, one using video content enhanced by in-
complete peripheral physiological signals, one using video
content enhanced by incomplete EEG and peripheral phys-
iological signals through concatenating EEG and peripheral
physiological features as a feature vector, and one using
video content enhanced by both incomplete EEG signals
and peripheral physiological signals as two kinds of priv-
ileged information. We randomly miss 5%, 10%, 15%, 20%,
or 25% of EEG features and peripheral physiological fea-
tures. We conduct experiments on the DEAP database and
the MAHNOB-HCI database, since they contain both EEG
signals and peripheral physiological signals. We conduct
twenty times experiments for each missing rate and select
the average accuracy, F1-score, and average recall of the
middle ten times.

Fig.2 shows video tagging results with incomplete phys-
iological data for valence and arousal on the DEAP database
and the MAHNOB-HCI database. From this figure, we can
obtain the following remarks:

1) For all video tagging experiments, recognition accu-
racy, F1-score, and average recall decrease continu-
ously on both databases as loss of EEG signals and
peripheral physiological signals increases. This is
reasonable since fewer EEG signals and peripheral
physiological signals provide less contributions to
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video emotion classifiers from video content, and
thus results in decreased performance.

2) Compared to Table 2 and Table 3, we find that the
experimental results with incomplete physiological
data are superior to the experiments which use
video signals only and inferior to the experiments
which use video signals with the help of complete
physiological signals in most cases. This further
demonstrates that EEG signals and peripheral phys-
iological signals are helpful to video tagging.

3) When the four video tagging experiments have the
same percentage of incomplete physiological data,
the performance of the proposed video tagging
method and the video tagging method enhanced
by concatenated EEG and peripheral physiological
features is better than that of video tagging from
video content enhanced by EEG signals and video
tagging from video content enhanced by peripheral
physiological signals, with higher accuracies, F1-
scores, and average recalls for both valence and
arousal tagging on the two databases. This demon-
strates that EEG signals and peripheral physiolog-
ical signals may be complementary in enhancing
video emotion tagging.

4) When the four video tagging experiments have the
same percentage of incomplete physiological data,
the proposed video tagging method achieves better
results than the video tagging method enhanced
by concatenated EEG and peripheral physiological
features in most cases. For valence tagging, the
proposed method has the highest recognition accu-
racy, F1-score, and average recall on both databases.
For arousal tagging, the proposed method has the
highest recognition accuracy and average recall on
both databases. This demonstrates that the pro-
posed method is more powerful in capturing the
relationship between EEG and peripheral physio-
logical signals.

5) When the four video tagging experiments have the
same percentage of incomplete physiological data,
we observe that video tagging enhanced by incom-
plete EEG signals has better performance than video
tagging enhanced by incomplete peripheral phys-
iological signals in the valence space, while video
tagging enhanced by incomplete peripheral physi-
ological signals has better performance than video
tagging enhanced by incomplete EEG signals in the
arousal space on the both databases. This shows
EEG signals are more helpful to video tagging in the
valence space and peripheral physiological signals
are more helpful to video tagging in the arousal
space. This is consistent with our all observations.

6) For all video tagging experiments, the accuracy
differences, F1-score differences, and average re-
call differences between video tagging enhanced
by 95% physiological signals and video tagging
enhanced by 75% physiological signals are larger on
the MAHNOB-HCI database compared the DEAP
database. This may be due to the more balanced
data distribution on the MAHNOB-HCI database.

7) For all video tagging experiments, the accuracy

differences, F1-score differences, and average re-
call differences between video tagging enhanced
by 95% physiological signals and video tagging
enhanced by 75% physiological signals are larger in
the arousal space than in the valence space on both
databases. The reason may be that the data distribu-
tion in the arousal space is more balanced than that
in the valence space for these two databases.

5 CONCLUSIONS

In this paper, we propose an implicit hybrid video emo-
tion tagging approach that integrates video content and
users’ multiple physiological responses, which are only
required during training. Specifically, we propose similarity
constraints on the emotion classifiers from videos and the
emotion classifiers from available physiological signals to
capture the nature of the relationships among users’ phys-
iological responses, video content, and emotion labels. The
experimental results on four benchmark databases demon-
strate that our proposed method with the help of physiolog-
ical signals outperforms the baseline method, which uses
video signals only. Multiple physiological signals are com-
plementary in enhancing video tagging. For the experiments
with complete physiological data, our proposed method
using EEG signals and peripheral physiological signals has
the best performance. For the experiments with incomplete
physiological data, our proposed method also shows that
both EEG signals and peripheral physiological signals play
helpful roles in video tagging. Furthermore, the comparison
to related work shows our approach is superior to current
work, as it explicitly captures the embedded relationships
among multiple modalities and emotion labels.
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Fig. 2. The experimental results of video emotion tagging with incomplete physiological data on the DEAP database and the MAHNOB-HCI
database, ’EEG’ indicates video tagging from video content enhanced by incomplete EEG signals; ’PER’ refers to video tagging from video
content enhanced by incomplete peripheral physiological signals; ’EEG+PER(concatenated)’ means video tagging from video content enhanced
by incomplete EEG and peripheral physiological signals through concatenating EEG features and peripheral physiological features as a feature
vector; and ’EEG+PER(ours)’ means video tagging from video content enhanced by both incomplete EEG signals and peripheral physiological
signals as two kinds of privileged information. (a), (b), and (c) respectively show accuracy, F1-score, and average recall on the DEAP database for
valence tagging; (d), (e), and (f) respectively show accuracy, F1-score, and average recall on the DEAP database for arousal tagging; (g), (h), and
(i) respectively show accuracy, F1-score, and average recall on the MAHNOB-HCI database for valence tagging; and (j), (k), and (l) respectively
show accuracy, F1-score, and average recall on the MAHNOB-HCI database for arousal tagging.


