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A B S T R A C T

In this paper, we propose multiple facial Action Unit (AU) recognition and intensity estimation by modeling
their relations in both feature and label spaces. First, a multi-task feature learning method is adopted to learn
the shared features among the group of facial action units, and recognize or estimate their intensity
simultaneously. Second, a Bayesian network is used to model the co-existent and mutual-exclusive semantic
relations among action units. Finally, through probabilistic inference, the learned Bayesian network combines
the results of the multi-task learning with the AU relations it captures to perform multiple AU recognition and
AU intensity estimation. Experiments on the extended Cohn-Kanade database, the MMI database, the
McMaster database and the DISFA database demonstrate the effectiveness of our method for both AU
classification and AU intensity estimation.

1. Introduction

Recent years have seen an increasing attention and considerable
progress on facial Action Unit (AU) analysis due to its wide applications
in human-computer interaction [36]. The main stream of current AU
analysis either recognizes each AU individually or recognizes the fixed
AU combinations. They thus either ignore the dependences among
multiple AUs, or cannot handle thousands of possible combinations.
Only recently, several work exploits AU dependencies to facilitate AU
analyses from target labels or image features. However, little work
leverages the relations embedded in both AU labels and image features
for AU analyses. Since several AUs can be present at the same image,
the dependencies inherent in target labels and in the shared features
among multiple AUs carry crucial top-down and bottom up evidence
respectively for improving AU analysis.

Therefore, in this paper, we tackle the problem of AU recognition
and AU intensity estimation by exploiting the relations of AUs from
both shared features and target labels. First, a multi-task learning
(MTL) algorithm is adopted to learn the shared features among AUs
and recognize multiple AUs or estimate multiple AU intensity simulta-
neously. Second, a Bayesian network (BN) is used to model AUs'
relations from labels by structure and parameter learning. Finally, the
outputs of multi-task learning algorithm are used as the inputs of the
learned BN to obtain improved multiple AU recognition and intensity

estimation. Experimental results on the extended Cohn-Kanade (CK+)
database and the MMI database demonstrate that MTL outperforms
single task learning, and the relationship model from AU labels further
improves the performance of AU classification and the cross-database
experiment shows the generalization ability of our relationship model.
The results on the McMaster databases and the DISFA database for
AU intensity estimation also indicate that learning the shared feature in
each AU group by MTL improve the performance by single task
learning and our BN model modeling the AU relationship further
improve the AU prediction result by MTL.

The paper is organized as follows: Section 2 briefly reviews the
related works on AU analysis. Section 3 describes the details of our
proposed AU classification and AU intensity estimation approach
considering the relations among AUs from both features and labels.
Section 4 provides the experiments and analyses on four benchmark
databases. Section 5 summarizes our work briefly.

2. Related work

Usually, several AUs can be present at the same image or an image
sequence. Thus, AU recognition can be formulated as a multi-label
problem. Due to the large number of possible label sets, multi-label
recognition is rather challenging. Successfully exploiting the depen-
dencies inherent in multiple labels is the key to facilitate the learning
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process. Present AU recognition research can be divided into three
groups.

The first group recognizes each AU individually [30,31] directly
from images or sequences. They are referred to as image-based AU
recognition methods. For example, Valstar and Pantic [30] detected
and tracked 20 facial points, and then used a combination of
gentleBoost, support vector machines, and hidden Markov models as
a classifier to detect 22 AUs [30]. Maaten et.al [31] adopted Active
Appearance Model (AAM) features and linear chain conditional ran-
dom field for AU recognition. These works treat each AU recognition
individually as one-vs.-all scheme, do not consider the AUs' relations
existing in features or labels. However, multiple AUs can appear
together, and there exist dependencies among them. Exploiting such
dependencies may help AU recognition and modeling.

The second group recognizes AU combinations. Littlewort et al.
[14] adopted a linear SVM with Gabor features to analyze the AU
combinations of 1+2, 2+4, 1+4, and 1+2+4. Lucey et al. [17] detected a
few combinations of AUs (i.e. 1, 1+2, 4, 5) using SVM and Nearest
Neighbor with AAM features. Although the co-existent relations among
AUs in an AU combination has been exploited by the used features and
classifier in these works, the combinations are manually determined
and fixed. Each combination is regarded as a new AU. Thus, it is only
feasible for a few combinations, and hard to detect thousands of
possible combinations. In addition, such AU combinations only capture
coexistent AUs. They cannot capture AUs that are mutually exclusive of
each other.

The third group explicitly exploits the co-existent and mutual
exclusive relations among AUs from target labels or image features.
They are referred to as model-based AU recognition methods. Tong
et al. [29,28] used Gabor features and Adaboost to recognize each AU
first, then they modeled the relations among AU labels by Dynamic
Bayesian Network(DBN). Their method, however, learns the AU
relationships from training data and such learned relations may not
generalize well to a different database. To mitigate this problem, Li
et al. [12] proposed to use a knowledge-driven model that satisfies
specific constraints from AU relationships, then convert model para-
meter samples into pseudo-data and finally learned the parameters
from the pseudo-data. Their method generalizes better across data-
bases than the data-based models. Other than using DBN, Wang et al.
[33] proposed a three-layer Restricted Boltzmann Machine (RBM) to
capture global relations among all AUs, and to integrate the AU
measurements with the high-level AU semantical relationships for
AU recognition. More recently, Song et al. [26] modeled AU sparsity
and co-occurrence using a Bayesian compressed sensing model. These
work successfully model AU label relations, but ignore inherent AU
relations in image features, which are crucial for AU analysis. Zhang
et al. [37] utilized multi-task multiple kernel learning to detect multiple
AUs in the same group simultaneously. Yuce et al. [35] applied the
multi-label discriminant Laplacian embedding method for multiple AU
recognition. These work successfully model AU relations from image
features, or AU dependencies among AU labels. Therefore, current
model-based AU recognition methods rarely exploit the dependencies
inherent in both AU labels and image features to facilitate AU
recognition [39,5].

Due to the difficulties of collecting data with AU intensity values
and the limited available database, only a little research pays close
attention to the intensity of facial actions. Moreover, most of them
measure the intensity of each facial actions independently, such as
[18,2,6,23,9,3]. In this paper, we refer to these methods as image-
driven intensity estimation methods. Only recently, several works
consider AU relations for AU intensity estimation. Li et al. [13]
proposed using DBN to model AU relationships for measuring their
intensities. Sandbach et al. [22] adopted Markov random field struc-
tures to model AU combination priors to estimate the intensity of AUs
in the upper face region. Kaltwang et al. [10] proposed a generative
latent tree model to estimate multiple AU intensity. They are referred

to as model-based AU intensity estimation methods. Similar to AU
recognition methods, few model-based AU intensity estimation meth-
ods exploits the dependencies inherent in both AU labels and image
features.

To the best of our knowledge, this paper is the first work to
recognize AUs and estimate AU intensity by exploring their relations at
both feature and label levels [34]. By learning the shared features with
MTL and modeling the dependencies among AU labels with BN, the
proposed approach can exploit both top-down and bottom up relations
among AUs to improve multiple AU classification and intensity
estimation.

3. Multiple AU analysis approach

Fig. 1 shows the framework of our multiple AU analysis approach.
First, facial images are normalized and features are extracted. Second,
multi-task feature learning is performed to recognize multiple AUs or
estimate intensities of multiple AUs. Third, AU relations in labels are
modeled by BN. Finally, we use the trained BN to refine the output of
multi-task feature learning to improve AU classification or AU intensity
estimation.

3.1. Feature extraction

Both geometric features and appearance features are extracted from
the images. First, the face images are normalized to a fixed size of
330×300 according to the location of eyes. For the databases who
provide feature points, we use these feature points as geometric
features directly. For the databases without feature points, we detect
the feature points using [32]. For appearance features, the Gabor
features are extracted from the regions of the forehead, between the
eyebrows, between the eyes, outer corner of eyes, and the lower jaw, as
shown in Fig. 2. These appearance features present the transient
features caused by the movement of muscles [38].

3.2. Multiple AU recognition and intensity estimation by multi-task
learning

Different from classical single-task learning, MTL trains multiple
tasks jointly. Thus, one task in multi-task learning could benefit from
learning other tasks.

Suppose there are m AUs: Λ λ= { }i i
m
=1, to be analyzed. We treat each

of them as a single task. Let L TD w( ; )i i stand for the loss function of the
i-th AU (i.e. λi) learning task on its training dataset TDi, and wi are the
corresponding model parameters. For the AU intensity estimation task,
we use the mean square errors as the loss function. For the AU
classification task, we binarize the predicted value into AU states.

In standard learning paradigms, we analyze AUs independently and
no information is shared among them, which is,

Fig. 1. Framework of multiple AU analysis.
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2 is the squared Frobenius form: W w∥ ∥ = ∑ ∥ ∥F i i

2
2
2.

In MTL, we aim at finding a joint feature subspace S where all AUs
are well represented. Suppose the original feature xi could be trans-
ferred to subspace S by s S x=i

T
i, where S ∈ D D× is an orthogonal

matrix. Thus, the decision function turns out to be three equivalent
terms,
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where βB∥ ∥ = ∑ ∑d
D

i di2,1
2

=1
2 . This term calculates the 2-norm values

of every dimension across all the AU recognition tasks, which captures
the relationships in the feature-level space among AUs. Solving Eq. (3)
can obtain the representation of the shared subspace S simultaneously,
which can achieve our goal. Besides, to reduce the complexity of the
optimization algorithm, Argyriou et. al [1] proved that a closed solution
could be achieved by transferring Eq. (3) into the following problem:

∑ L TD γW w W= argmin ( ; ) + ∥ ∥ ,
i

i i
⋆

⋆
2

(4)

where W∥ ∥⋆ is the trace norm of the parameter matrix.
To exploit the commonality among tasks, MTL is performed for a

group of tasks, that have something in common. Suppose m AU
analysis can be divided into P groups, and q ∈ {0, 1}pi to indicate
whether the i-th task is assigned to group p. Let Q be the group
assignment matrix composed by qpi and Q ∈p

n n× be a diagonal
matrix with diagonal elements equal to qpi. Wp is the parameter matrix
for the p-th group, which is the parameter of the model. Multiple AU
recognition task within a group are learned jointly, and the learning
procedure for each group is independent. Kang et al. proposed an
automatic grouping method to find the optimal Q in [11]. In our
approach, before seeking the optimized model parameter W, we
defined Q manually according to the locations of AUs, as shown in
Table 4. For each group, we get the optimized parameter Wp by solving
the problem as follows:

∑ ∑L TD γW w W= argmin ( ; ) + ∥ ∥
i

i i
p

p
⋆

⋆
2

(5)

where TraceW WQ WQ∥ ∥ = [ ( ) ]p p p
T

⋆
2 1

2 .

3.3. AU relationship modeling from labels by BN

As a probabilistic graphical model, BN can effectively capture the
dependencies among variables in data. For this work, we use BN to
capture the dependencies among AU labels.

3.3.1. BN structure and parameters learning
A BN is a directed acyclic graph (DAG) G Λ E= ( , ), where

Λ λ= { }i i
m
=1 represents a collection of m nodes and E denotes a

collection of arcs.
Given the data of multiple AU labels TD λ= { }i

j , where i m= 1, 2,…,
is an index to the number of nodes, and j n= 1, 2,…, is index to the
number samples. The structure and parameter learning is to find a
structure G that maximizes a score function. In this work, we employ
the Bayesian Information Criterion (BIC)[24] score function which is
defined as Eq. (6)

Q G θ G θ E logP TD G θ Dim G n( , : *, *) = [ ( | , )] − ( )
2

logBIC
G θ*, * (6)

where the first term is the log-likelihood function of structure G with
respect to data TD, representing how well G fits the data. The second
term is a penalty relating to the complexity of the network, where
Dim(G) is the number of independent parameters and n is the number
of samples. The BN structure learning algorithm proposed by Campos
and Ji [4] are adopted to learn the dependencies among multiple AUs
here.

For the AU classification task, after the BN structure is learned from
the groundtruth labels, we link each node to the corresponding node
for measurements as shown in Figs. 3 and 4. The parameters can be
learned from the groundtruth labels and their measurements of the
training data.

For the AU intensity estimation task, a continuous BN consists of
continuous variables should be learned from groundtruth AU inten-
sities. However, the structure learning for a continuous BN is more
complex than that for a discrete BN. Therefore, in this paper, we

Fig. 2. Landmark points and appearance feature blocks on CK+, MMI, DISFA and McMaster databases.

Fig. 3. The BN model learned from the CK+ database. “M” represents the AU
measurement, “AU” represents the ground-truth AU label.
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propose a method to simplify the BN structure learning with contin-
uous nodes. We first discretize each continuous AU intensities into the
label with two classes based on the mean value of the ground-truth
value. We use the discrete labels to learn the BN structure to model the
relationships among AUs. After learned the BN structure based on
binarized AUs, we link each node with two corresponding gaussian
nodes representing the ground-truth label and measurement as shown
in the red circle in Figs. 5 and 6.

During the training, the parameters of our BN network are
estimated using the maximum-likelihood estimation (MLE), as shown
in Eq. (7):

∑ ∑θ argmax
n

lnP λ pa λ θ= ( 1 ( | ( ); ))MLE θ Θ
i

n

j

m

j
i

j
i

∈
=1 =1 (7)

where θ is the parameter (i.e. the conditional probability of each node),
λ λ λ, ,…, n1 2 are n independent samples, λj

i is the value of the jth node of
the ith sample, Pa λ( )ji is the value of the jth node's parents of the ith
sample.

3.3.2. BN inference
A complete BN model is obtained after the parameter and structure

learning. Given the AU measurements obtained from MTL, the true AU
category or AU intensity of the input sample is estimated through BN
inference. During the BN inference, the posterior probability can be
estimated by combining the likelihood from measurement with the
prior model.

For the AU classification, let λi and Mi, i m∈ {1,…, }, denote the AU
label variable and the corresponding measurement obtained from MTL
respectively. Then, most probable explanation (MPE) [21] inference is
used to estimate the joint probability of multiple AUs.

∏

∏

P λ λ λ M M P M λ

P λ pa λ

Y = argmax ( , , … ,…, ) = argmax( ( )

( ( )))

λ λ λ
m m

λ λ λ i

m

i i

i

m

i i

⋆

, ,…
1 2 1

, ,… =1

=1

m m1 2 1 2

(8)

The first part of the equation is the likelihood of λj given the
measurements and the second part is the product of the conditional
probabilities of each category node λj given its parents pa λ( )j , which are
BN model parameters that have been learned. In AU classification, the
inferred states of AUs are the states λ λY( = ( ,…, ))m

⋆
1 with the highest

probability given M M,…, m1 .
For AU intensity prediction, we use L λ,i i and Mi, i m∈ {1, 2,…, },

Fig. 4. The BN model learned from the MMI database. “M” represents the AU
measurement, “AU” represents the ground-truth AU label.

Fig. 5. The BN model learned from the McMaster database. “M” represents the
measurement of AU intensity, “AU” represents the ground-truth AU intensity. “V”
represents the discrete value of AUs discretized based on the ground-truth intensity. (For
interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)

Fig. 6. The BN model learned from the DISFA database. “M” represents the measure-
ment of AU intensity, “AU” represents the ground-truth AU intensity. “V” represents the
discrete value of AUs discretized based on the ground-truth intensity. (For interpretation
of the references to color in this figure, the reader is referred to the web version of this
article.)
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denote the discrete labels, the corresponding AU intensity values and
the corresponding measurements gained from MTL respectively. Then,

∏ ∏ ∏

P L L L λ λ λ M M M

P M L λ P λ L P L pa L

Y = argmax ( , ,…, , , ,…, | , ,…, )

= argmax ( ( , ) ( ) ( ( ))

L L λ λ λ
m m m

L L λ λ λ i

m

i i i
i
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i i
i

m

i i

⋆

, …, , , ,…
1 2 1 2 1 2

, …, , , ,… =1 =1 =1

m m

m m

1 1 2

1 1 2

(9)

The condition probability in the equation is learned in the training
phase. The inferred results are λ λ L LY = ( ,…, , ,…, )m m

⋆
1 1 with the

highest probability given M M,…, m1 . In practice, we use the junction
tree algorithm [8] to estimate the posterior probability effectively.

4. Experiments and results

4.1. Experimental conditions

To validate our approach, we conduct AU recognition experiments
on the CK+ database [15] and the MMI database [20], and AU intensity
estimation on the McMaster database [16] and the DISFA database
[19].

The CK+ database consists of 593 posed expression image se-
quences, starting from the neutral frame and ending at the peak frame,
from 123 subjects. 593 apex images signed with AU labels are selected,
and the AUs, whose positive sample number is larger than 50, are used
in the experiment, which are: AU1, AU2, AU4, AU5, AU6, AU7, AU9,
AU12, AU15, AU17, AU20, AU23, AU24, AU25, and AU27. The sample
distribution over AU states on the CK+ database is shown in Table 1. A
10-fold cross validation is adopted.

The MMI database consists of over 2900 videos and high-resolution
images of 75 subjects. It contains recordings of the full temporal
pattern of facial expressions, from neutral, through a series of onset,
apex, and offset phases, and finally back again to a neutral face. In this
experiment, 623 samples are selected, and 11 AUs are used in the
experiment: AU1, AU2, AU4, AU5, AU7, AU9, AU10, AU12, AU17,
AU25, and AU26. The sample distribution over AU states on the MMI
database is shown in Table 1. A 10-fold cross validation is adopted.

The McMaster database contains face videos of patients suffering
from shoulder pain. Totally, 200 sequences of 25 subjects are recorded
(48,398 frames). AU intensities are provided for each frame. AUs
4,6,7,9,10,12,20,25,26 and 27 are labeled on 6 levels (0−5) and AU 43
are labeled 2 levels(present or not). The sample distribution over AU
intensity levels are listed in Table 2. For AU 27, its data are very
unbalanced and AU 43 are labeled on only 2 levels, therefore we use the

rest 9 AUs for our experiment. We adopt the leave-one-subject cross
validation for our AU intensity estimation experiment.

The DISFA database [19] contains spontaneous facial expressions
of 27 young adults while watching emotion eliciting videos. Each facial
image has been annotated with six scale AU intensity for 12 AUs (i.e.
AU1, AU2, AU4, AU5, AU6, AU9, AU12, AU15, AU17, AU20, AU25,
and AU26) by an expert FACS rater. The samples distribution of
database is shown in Table 3. In our experiment, the 19,850 samples
whose sum of intensity is larger than 10 are selected. The leave-one-
subject cross validation is adopted.

We divided the AUs into several groups according to their locations,
as shown in Table 4. For the AUs in the same group, we learn the
shared features using the MTL described in Section 3.2.

To demonstrate the effectiveness of our methods, three experiments
are conducted: AU recognition/AU intensity prediction considering
each AU individually (single task), AU recognition/AU intensity pre-
diction using MTL (MTL), and our approach consider AU relations
from both features and labels (MTL+BN).

For AU classification, we calculate metrics from two aspects:
example-based view and label-based view. For example-based view,
we calculate accuracy and F1-score on each AU as well as the average of
them. For label-based measures, we adopt macro F1-score and micro
F1-score [27]. For AU intensity prediction, we use three metrics: the
Pearson correlation coefficient, the intraclass correlation coefficient
(ICC) [25] and the mean squared error(MSE).

4.2. Experimental results and analyses for AU classification

4.2.1. Analyses from example-based view
Table 5 provides the AU recognition results on the CK+ database

from example-based view. From Table 5, we can find the follows:
First, comparing the AU recognition as single task and AU

recognition as multi-task, the accuracies of 9 AUs and the F1-scores
of 13 AUs increase under the help of shared feature learning,
demonstrating the effectiveness of our proposed multi-task AU recog-

Table 1
Sample distribution over AU states on the CK+ and MMI databases.

CK+ database MMI database

Label 0 1 0 1
AU1 418 175 428 195
AU2 476 117 393 230
AU4 399 194 398 225
AU5 491 102 388 235
AU6 470 123 – –

AU7 472 121 448 175
AU9 518 75 518 105
AU10 – – 523 100
AU12 462 131 503 120
AU15 498 95 – –

AU17 390 203 478 145
AU20 514 79 – –

AU23 533 60 – –

AU24 535 58 – –

AU25 269 324 173 450
AU26 – – 328 295
AU27 512 81 – –

Table 2
Sample distribution over AU intensity levels on the McMaster Database.

Intensity 0 1 2 3 4 5

AU4 47,324 202 509 225 74 64
AU6 42,841 1776 1663 1327 681 110
AU7 45,034 1360 991 608 305 100
AU9 47,975 93 151 68 76 35
AU10 47,873 171 208 63 61 22
AU12 41,511 2145 1799 2158 736 49
AU20 47,692 286 282 118 0 20
AU25 45,992 766 803 611 138 88
AU26 46,306 430 918 265 478 1
AU27 48,380 6 3 3 6 0
AU43 45,964 2434 – – – –

Table 3
Sample distribution over AU intensity levels on the DISFA database.

Intensity 0 1 2 3 4 5

AU1 14,942 344 286 2432 1291 555
AU2 16,388 144 83 2124 752 359
AU4 12,518 478 744 2335 2768 1007
AU5 19,168 213 192 189 62 26
AU6 9738 2734 3281 3367 589 141
AU9 16,120 377 772 2277 283 21
AU12 9312 816 796 6301 2453 172
AU15 16,815 1825 385 780 45 0
AU17 16,281 1160 758 1540 100 11
AU20 18,788 58 323 681 0 0
AU25 4827 860 1120 7720 4464 859
AU26 11,493 3923 1701 2327 234 172
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nition with the facial-region grouping strategy. Specifically, there exist
a significant improvement for AU9, whose F1-score increases by
0.5592, and accuracy increases by 7.59%. Furthermore, the perfor-
mance of its group partener – AU6 is also improved, with an increase of
0.1005 in F1-score and 1.53% in accuracy. Such improvement indicates
that each AU in this group benefits from the shared feature space,
especially for the AUs that take a small fraction of the samples, such as
AU9, whose proportion of the total sample is 12.64%. Similar
phenomena can be found in AU15(16.02%), AU20(13.32%), AU23
(10.11%) and AU24(9.78%), whose F1-scores increase by 0.6693,
0.4741, 0.4368 and 0.2133 respectively. In addition, the average
accuracies and F1-scores increase by 2.15% and 0.1813, further
confirming the effectiveness of MTL.

Second, comparing the result of our method using both MTL and
BN with the one using MTL, there are 12 AUs with improvement in
accuracy and 8 AUs with increase in F1-scores. The most significant
improvement occurs in the F1-score of AU24, whose increase is
0.1117. From Fig. 3, we can find that the only link to AU24 is AU23.
Thus, the improvement may be cause by the dependency between
them. Furthermore, the average accuracies and F1-scores increase by
0.15% and 0.0283, demonstrating that the BN model can improve the
results from MTL.

Fig. 3 shows the learned BN structure, and Table 6 lists the
dependencies between each AU pair: P λ λ( | )j i , measuring the probability
of label λj happens, given label λi happens. Comparing the learned BN
with the dependency table, we find that the label pairs whose
conditional probabilities are top ranked or bottom ranked are linked
in the BN in most cases. For example, the link from AU1 to AU9 shows
the mutual exclusive relationship, since P AU AU( 9| 1) is zero. While the
link from AU2 to AU1 represents the strong co-occurrence relationship
between AU1 and AU2, since P AU AU( 1| 2) is 1.0. Therefore, the learned
BN can systematically capture the relations among AU labels. Thus, the
learned BN can calibrate the AU recognition results from MTL.

Third, our proposed AU recognition method considering AU
relations in both feature and label space performs best among the
three AU recognition experiments, with the highest average accuracy

and F1-scores.
Table 7 provides the AU recognition results on the MMI database

from example-based view. Similar to the analysis on the CK+ database,
we can find the following from Table 7:

First, comparing the AU recognition as single task and AU
recognition as multi-task, the accuracies and F1-scores of 9 AUs
increase by sharing feature spaces, which shows the effectiveness of
our proposed multi-task AU recognition with the facial-region grouping
strategy. Specifically, there exist a significant improvement for AU1,
whose accuracy increases by 17.49% and F1-score increases by 0.3485.
Furthermore, the performance of its group partner — AU7 are also
improved, with a increase of 0.0398 in F1-score and 1.60% in accuracy.
In addition, the average accuracies and F1-scores increase by 1.86%
and 0.0411, which further confirming the effectiveness of MTL.

Second, comparing the result of our method with the one using
MTL, there are 3 AUs with improvement in accuracy and F1-score, and
all of the improvement are less than 1%/0.01. Furthermore, the
average accuracies and F1-score of our proposed method slightly
decrease by 0.05% and 0.0006, which indicates a minor improvement
with the BN structure. However, the accuracy and F1-score of AU1
increase in both single task and MTL results, which shows that the
structure learned from MMI could improve the recognition perfor-
mance on AU1.

Fig. 4 shows the learned BN structure, and Table 8 lists all the
dependencies. Comparing the learned BN with the dependency table,
we find that the label pairs whose conditional probabilities are top
ranked or bottom ranked are linked in the BN in most cases. For
example, the link from AU5 to AU12 shows the mutual exclusive
relationship, since P AU AU( 12| 5) is 0.04. While the link from AU25 to
AU26 represents the strong co-occurrence relationship between AU25
and AU26, since P AU AU( 25| 26) is 1.0. Therefore, the learned BN can
systematically capture the relations among AU labels. Thus, the learned
BN can improve the recognition results from both single task and MTL,
especially for AU1.

From Table 5 and 7, we can find that multi-task AU recognition is
better than single task AU recognition for both databases; the learned

Table 4
AU group definitions.

Groups (Facial regions) CK+ MMI McMaster DISFA

Eye AU1, AU2, AU4, AU5, AU7 AU1, AU2, AU4, AU5, AU7 AU4, AU7 AU1, AU2, AU4, AU5
Mouth and chin AU12, AU15, AU17, AU20, AU23, AU24,

AU25, AU27
AU10, AU12, AU17, AU25,
AU26

AU10, AU12, AU20, AU25,
AU26

AU12, AU15, AU17, AU20, AU25,
AU26

Cheek and nose AU6, AU9 AU9 AU6, AU9 AU6, AU9

Table 5
AU recognition on CK+ database from example-based view.

AU Accuracy (%)/F1-score of single task Accuracy (%)/F1-score of single task
+BN

Accuracy (%)/F1-score of MTL Accuracy (%)/F1-score of MTL+BN Accu.(%) in [14]

1 84.82/0.6875 84.49/0.6783 87.18/0.7610 84.65/0.6873 97.5
2 92.75/0.7795 92.75/0.7795 93.76/0.8213 92.75/0.7882 87.1
4 80.27/0.6139 79.60/0.6033 73.86/ 0.6301 78.58/0.6319 97.4
5 89.88/0.6341 90.73/0.6784 90.73/0.6893 91.40/0.7213 87.0
6 87.18/0.6162 87.18/0.6162 88.53/0.7167 88.87/0.7105 80.2
7 83.98/0.3949 83.98/0.4172 82.80/ 0.5565 84.32 /0.5550 89.1
9 89.71/0.3297 89.71/0.3297 97.30/0.8889 96.96/0.8732 100.0
12 90.22/0.7456 90.22/0.7478 90.22/0.7852 93.42/0.8482 92.4
15 84.15/0.0208 80.78/0.5512 91.06/0.6901 91.74/0.7030 91.0
17 87.86/0.8182 87.18/0.8100 85.67/0.7826 89.54/0.8480 89.0
20 87.18/0.0952 88.03/0.2022 90.05/0.5693 92.75/0.6718 91.1
23 89.88/0.0000 89.88/0.0000 91.74/0.4368 91.91/0.4286 81.3
24 90.22/0.0000 90.22/0.0000 90.05/ 0.2133 90.89/0.3250 N/A
25 88.53/0.8828 88.53/0.8828 82.97/0.8308 92.07/0.9162 90.7
27 96.12/0.8456 95.95/0.8400 97.13/0.9314 97.30/0.9000 N/A
Ave. 88.18/0.4976 87.95/0.5424 90.33/0.6789 90.48/0.7072 90.29
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BN structures improve the recognition performance of single task for
both databases, but it only help multi-task AU recognition on the CK+
database, not the MMI database. It may indicate that the learned
relations among AUs can help AU recognition especially when the
measurements are poor.

4.2.2. Analyses from label-based view
Table 9 shows the label-based results on the CK+ and the MMI

databases. It is clear that all the F1 measures of MTL is higher than
those of single task, which indicates that MTL outperforms the classic
method. Besides, the F1-measures of our method on CK+ is the highest
among all the methods, which also demonstrates the effectiveness of

our method. Specifically, The macro/micro F1-score of MTL+BN on
MMI database is only 0.0028/0.0020 lower comparing with MTL,
which could be treated as an equivalent result.

4.2.3. Cross database experiments
To further validate the generalization ability of our proposed

approach, we perform cross-database experiments. Since the feature
points provided by the CK+ database and MMI database are different,
we can not validate the generalization ability of multi-task learning due
to different features for different databases. Therefore, we only verify
the generalization ability of the learned BN structures.

Table 10 and 11 shows the cross-database experiment results on CK
+ and MMI database. It is clear that for single task, the average F1-
score increases when refined by BN structure learned from other
database for both databases. For MTL, the performance after improved
by BN structure learned from other database is not always improved.
Specifically, the learned BN from the MMI database can benefit AU
recognition on the CK+ database in term of F1-score, but not vice
versa. Considering that MTL outperforms single task, the results
indicate that the structure learning is more effective when the

Table 6
AU dependencies on CK+ database.

λj

λi AU1 AU2 AU4 AU5 AU6 AU7 AU9 AU12 AU15 AU17 AU20 AU23 AU24 AU25 AU27

AU1 1.00 1.00 0.35 0.85 0.07 0.14 0.00 0.07 0.39 0.24 0.57 0.13 0.05 0.39 0.89
AU2 0.67 1.00 0.10 0.79 0.01 0.01 0.00 0.04 0.14 0.08 0.24 0.05 0.05 0.31 0.89
AU4 0.39 0.16 1.00 0.25 0.28 0.81 0.67 0.07 0.40 0.63 0.66 0.75 0.62 0.18 0.02
AU5 0.50 0.69 0.13 1.00 0.02 0.05 0.01 0.04 0.03 0.05 0.28 0.12 0.00 0.29 0.75
AU6 0.05 0.01 0.18 0.03 1.00 0.38 0.32 0.63 0.01 0.11 0.20 0.15 0.09 0.26 0.00
AU7 0.10 0.01 0.51 0.06 0.37 1.00 0.64 0.08 0.07 0.35 0.34 0.58 0.55 0.12 0.00
AU9 0.00 0.00 0.26 0.01 0.20 0.40 1.00 0.03 0.04 0.26 0.03 0.17 0.21 0.04 0.00
AU12 0.05 0.04 0.05 0.05 0.67 0.09 0.05 1.00 0.00 0.01 0.13 0.00 0.03 0.29 0.04
AU15 0.21 0.11 0.20 0.03 0.01 0.06 0.05 0.00 1.00 0.45 0.01 0.15 0.16 0.01 0.01
AU17 0.28 0.15 0.65 0.11 0.19 0.60 0.69 0.02 0.97 1.00 0.08 0.80 0.78 0.03 0.00
AU20 0.26 0.16 0.27 0.22 0.13 0.22 0.03 0.08 0.01 0.03 1.00 0.02 0.00 0.23 0.01
AU23 0.05 0.03 0.23 0.07 0.07 0.29 0.13 0.00 0.09 0.24 0.01 1.00 0.59 0.00 0.01
AU24 0.02 0.03 0.19 0.00 0.04 0.26 0.16 0.02 0.09 0.22 0.00 0.57 1.00 0.00 0.00
AU25 0.71 0.86 0.30 0.91 0.69 0.32 0.17 0.71 0.02 0.04 0.96 0.02 0.00 1.00 1.00
AU27 0.41 0.62 0.01 0.60 0.00 0.00 0.00 0.02 0.01 0.00 0.01 0.02 0.00 0.25 1.00

Table 7
AU recognition on MMI database from example-based view.

AU Accuracy (%)/F1-
score of single task

Accuracy (%)/F1-
score of MTL

Accuracy (%)/F1-
score of MTL + BN

F1- score
in[7]

1 80.42/0.6188 97.91/0.9673 98.56/0.9771 0.850
2 96.15/0.9462 96.79/0.9552 96.79/0.9552 0.822
4 97.27/0.9623 97.59/0.9667 96.63/0.9538 0.828
5 95.18/0.9336 94.22/0.9204 94.22/0.9204 0.825
7 92.46/0.8498 94.06/0.8896 94.22/0.8929 0.810
9 96.47/0.8842 96.63/0.8889 96.63/0.8889 0.959
10 95.35/0.8398 96.15/0.8776 96.31/0.8808 0.877
12 98.56/0.9610 97.91/0.9482 97.91/0.9469 0.958
17 95.35/0.8897 95.83/0.9097 95.83/0.9097 0.828
25 92.78/0.8673 93.10/0.8701 92.78/0.8640 0.795
26 88.12/0.8737 88.28/0.8847 88.12/0.8814 0.885
Ave. 93.46/0.8751 95.32/0.9162 95.27/0.9156 0.858

Table 8
AU dependencies on MMI database.

λj

λi AU1 AU2 AU4 AU5 AU7 AU9 AU10 AU12 AU17 AU25 AU26

AU1 1.00 0.87 0.23 0.67 0.18 0.00 0.05 0.10 0.15 0.77 0.62
AU2 0.74 1.00 0.13 0.80 0.07 0.02 0.02 0.09 0.15 0.85 0.65
AU4 0.20 0.13 1.00 0.24 0.60 0.20 0.27 0.00 0.40 0.47 0.24
AU5 0.55 0.79 0.23 1.00 0.17 0.13 0.11 0.04 0.13 0.83 0.60
AU7 0.20 0.09 0.77 0.23 1.00 0.23 0.23 0.00 0.34 0.49 0.34
AU9 0.00 0.05 0.43 0.29 0.38 1.00 0.43 0.00 0.38 0.76 0.52
AU10 0.10 0.05 0.60 0.25 0.40 0.45 1.00 0.05 0.30 0.85 0.45
AU12 0.17 0.17 0.00 0.08 0.00 0.00 0.04 1.00 0.00 0.83 0.46
AU17 0.21 0.24 0.62 0.21 0.41 0.28 0.21 0.00 1.00 0.45 0.21
AU25 0.33 0.43 0.23 0.43 0.19 0.18 0.19 0.22 0.14 1.00 0.66
AU26 0.41 0.51 0.19 0.47 0.20 0.19 0.15 0.19 0.10 1.00 1.00

Table 9
Label-based AU recognition results on CK+ and MMI databases.

Database Evaluation metric Single Task MTL MTL+BN

CK+ Macro F1 0.8788 0.9071 0.9148
Micro F1 0.8805 0.9133 0.9172

MMI Macro F1 0.9279 0.9612 0.9584
Micro F1 0.9313 0.9652 0.9632
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measurements are poor.
It should also be noted that the refinement in AU1 contribute the

most of the improvement in recognition, in both single task and MTL.
Specifically, the F1-score is increased by 0.2125 for single task on the
MMI database, and 0.0833 for multi-task on the CK+ database. The
strong co-occurrence relationship might be the reason. It is clear that
AU2 and AU1 are always linked in the structure learnt from both
databases. The dependency tables (Table 6, 8) also correspond to this
relationship. Both of the structure and dependency lead to the stability
of these BN models learnt from them.

4.2.4. Comparison with related work for AU classification
Although many studies have been done on AU classification, and

achieved good performance, only a few work exploits the dependencies
among AUs. One representative work is Tong et al. [29], who propose
to use a dynamic Bayesian network (DBN) to model the relationships
among different AUs and their temporal evolutions for AU classifica-
tion and conduct the experiments on the CK database. Therefore, it is
not exact fair to compare the performance on the CK database with that
on the CK+ database. Furthermore, Tong et al. [29] adopted the true

skill score as the evaluation metric. True skill score, also called as
Hansen Kuiper Discriminant, is the difference between the positive rate
and the false positive rate. We adopted F1-score as the evaluation
metric in our paper. Tong et al. [29] used DBN to exploit dynamic
patterns in AUs, which is not the focus of our paper. Therefore, we do
not compare our work with theirs directly. However, we conduct
similar experiment on CK+ database using the learned BN model to
improve the AU recognition from single task. The results are listed in
the second column of Table 5. Comparing the fourth and the second
column in Table 5, we can find that our proposed method considering
AU relations from both labels and features performs better than Tong
et al. [29]s′ work.

There exist lots of AU classification studies considering each AU
individually, which evaluate on the CK+ database. We report the
comparison of the proposed method with the current work in
Table 5. Comparing the experimental results of our method and those
of [14], we find that the accuracies of 8 AUs increase. Furthermore, the
average accuracy of our method is larger than that of [14], demonstrat-
ing the superiority of our method.

We also compared the results from the most recent research on the
MMI database [7] with ours. Our average F1-score is about 5% higher
than that of [7]. Specifically, the F1-scores of 8 AUs increase, which
shows the advantage of our approach.

4.3. Experimental results and analyses for AU intensity estimation

4.3.1. Analyses of AU intensity estimation on the McMaster database
and the DISFA database

Table 12 provides the AU intensity prediction results on the
McMaster database. From Table 12, we can find the following:

First, compared with single task method, AU intensity prediction
using MTL increases the average correlation by 0.009 and decreases
the average MSE by 0.001, which demonstrates the effectiveness of our
method. Using MTL decreases the MSE for almost every AU except for
AU4. The results show that our proposed multi-task AU intensity
estimation with the facial-region grouping strategy can benefit from
feature-level AU relations to improve the prediction performance.
Specifically, the correlation for AU4 is significantly improved by
0.083. Furthermore, the performance of its group partner — AU6 are
also improved, for the correlation increased by 0.004 and MSE
decreased by 0.006.

Second, comparing the result of our method with the one of MTL,
all the AUs except for AU12 have improvement in correlation and the
average correlation is increased by 0.033. Most AUs improve in ICC
and the average ICC is increased by 0.032. It appears that BN can
improve multi-task. Specifically, we can find that AU7 increased in
correlation by 0.08 compared with MTL as shown in Table 12. Table 12
also shows that the results refined by BN become worse in the mean
square error. From Table 2, we can find the samples in different
intensity level in the McMaster database have uneven distribution.
Therefore, MSE sometimes is not effective for evaluating the perfor-

Table 10
Cross database AU recognition on the structure learnt from CK+ database.

AU in
MMI

Accuracy
(%)/F1-score of
single task

Accuracy
(%)/F1-score of
single task + BN

Accuracy
(%)/F1-score
of MTL

Accuracy
(%)/F1-score of
MTL + BN

1 80.42/0.6188 88.92/0.8313 97.91/0.9673 97.91/0.9673
2 96.15/0.9462 96.15/0.9462 96.79/0.9552 96.15/0.9467
4 97.27/0.9623 97.27/0.9623 97.59/0.9667 97.59/0.9667
5 95.18/0.9336 95.18/0.9336 94.22/0.9204 94.22/0.9204
7 92.46/0.8498 91.97/0.8418 94.06/0.8896 94.06/0.8896
9 96.47/0.8842 96.47/0.8842 96.63/0.8889 96.63/0.8889
12 98.56/0.9610 98.56/0.9610 97.91/0.9482 97.91/0.9482
17 95.35/0.8897 95.35/0.8897 95.83/0.9097 95.83/0.9097
25 92.78/0.8647 92.78/0.8673 93.10/0.8701 93.10/0.8701
Ave. 93.85/0.8789 94.74/0.9019 96.00/0.9240 95.93/0.9231

Table 11
Cross database AU recognition on the structure learnt from MMI database.

AU in
CK+

Accuracy
(%)/F1-score of
single task

Accuracy
(%)/F1-score of
single task + BN

Accuracy
(%)/F1-score
of MTL

Accuracy
(%)/F1-score of
MTL + BN

1 84.82/0.6875 84.99/0.6920 87.18/0.6783 87.02/ 0.7616
2 92.75/0.7795 92.75/0.7795 93.76/0.8213 93.42/0.8186
4 80.27/0.6139 80.78/0.6250 73.86/0.6301 75.38/0.6075
5 89.88/0.6341 91.23/0.7111 90.73/0.6893 91.06/0.7337
7 83.98/0.3949 82.46/0.3882 82.8 /0.5565 81.28/0.5110
9 89.71/0.3297 89.71/0.3297 97.30/0.8889 97.30/0.8889
12 90.22/0.7456 90.22/0.7456 90.22/0.7852 90.56/0.7879
17 87.86/0.8182 88.03/0.8203 85.67/0.7826 85.83/0.7824
25 88.53/0.8828 88.53/0.8828 88.53/0.8308 82.97/0.8308
Ave. 87.56/0.6540 87.63/0.6638 87.78/0.7403 87.20/ 0.7469

Table 12
AU intensity prediction on McMaster database .

AU CORR/ICC/MSE of single task CORR/ICC/MSE of MTL CORR/ICC /MSE of MTL + BN CORR/MSE of LT-all[10]

4 0.118/0.269/0.147 0.201/ 0.301/0.159 0.202/0.309/0.217 0.03/0.51
6 0.364/0.524/0.659 0.368/0.523/0.653 0.386/0.541/0.753 0.60/1.06
7 0.392/0.514/0.301 0.397/ 0.525/0.316 0.478/0.642/0.361 0.11/1.19
9 0.109/0.172/0.080 0.103/0.156/ 0.078 0.135/0.214/0.250 0.10/0.27
10 0.257/0.392/0.069 0.240/0.347/ 0.068 0.292/0.435/0.209 0.15/0.28
12 0.381/0.561/0.800 0.392/0.556/0.778 0.365/0.519/0.801 0.60/1.12
20 0.064/0.088/0.067 0.073/ 0.091/0.065 0.103/0.080/0.058 0.09/0.19
25 0.427/0.563/0.237 0.429/0.559/0.236 0.447/ 0.615/0.338 0.18/0.72
26 0.036/0.030/0.341 0.031/ 0.033/0.339 0.085/0.024/0.280 0.01/0.50
Ave. 0.239/0.346/0.300 0.248/0.343/0.299 0.277/ 0.375/0.363 0.208/0.649
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mance. For example, if the AU4 is all predicted as 0, the MSE is 0.145
which is the smallest but the results provide no information. However,
this situation will fail in calculating the correlation indicating that the
predicted results are meaningless.

Table 13 shows the AU intensity prediction results on the DISFA
database. From Table 13, we can find the following:

First, comparing with single task method, AU intensity prediction
with MTL increased the average correlation by 0.015 and the average
ICC by 0.026. Specifically, the ICC and correlation of almost half AUs
are increased by using MTL, and the rest of AUs are nearly the same.
This demonstrates that the proposed method using the facial-region
grouping procedure can improve the performance by modeling feature-
level AU relation. It's worth noting that the correlation for AU4 is
greatly improved by 0.236, and the ICC for AU4 and AU5 is improved
by 0.265 and 0.127 respectively. The performance of their group
partner, AU6, is also improved with 0.013 improvement in correlation
and ICC.

Second, the proposed method outperforms MTL. Specifically, the
ICC of half AUs is increased, and thus the average ICC increased by
0.04. Furthermore, the correlation of half AUs is increased, from 0.019
to 0.29, and the average MSE is also reduced by 0.484. This shows that
the label dependencies modeled by BN can successfully improve the
correlations between predicted AU intensities and ground-truth.

Fig. 5 and 6 show the learned BN structure from the McMaster
database and the DISFA database respectively. Table 14, 15 list all the
dependencies. From the learned BN structure and the dependency
table, the label pairs whose conditional probabilities are top ranked or
bottom ranked are linked in the BN in most cases. For example, we can
find that P AU AU( 6| 9) is 0.9 in Table 14 indicating that there are strong
co-occurrence relationship between AU6 and AU9 and there is link
from AU9 to AU6. The learned BN in Fig. 5 modeling this relationship
improves the AU6 and AU9 prediction performance by 0.018 and 0.032
in correlation. And we can also find that P AU AU( 4| 9) is 0.83 in
Table 15 indicating that there are strong co-occurrence relationship

between AU4 and AU9 and there is a link from AU4 to AU9. The
learned BN in Fig. 6 modeling this relationship improves the AU4 and
AU9 prediction performance in correlation by 0.058 and 0.019, and
increased ICC by 0.182 and 0.06 respectively.

4.3.2. Comparison with related work for AU intensity estimation
Among the few studies on AU intensity estimation, three works

[13,22] exploit the dependencies among AUs using DBN [13] or MRF
[22] or generative latent tree [10]. The first two works did not report
the experimental results on the McMaster database, while the last work
conducted experiments on both databases. Therefore, we compare our
work with Kaltwang et al.'s [10]. From Table 12, we can find that our
proposed method can achieve better performance with higher correla-
tion and lower MSE on the McMaster database, further demonstrating
the advantage of our method.

For the DISFA database, from Table 13, we can find the ICCs of our
method are higher than those of [10] in most cases. However, the
correlation of our method is slightly lower than theirs. These shows our
method can achieve comparable performance with Kaltwang et al.'s
[10]. Since Kaltwang et al. adopted all the images of the DISFA
database in their experiments, the number of AUs with lower intensity
in their experiments is much larger than ours. Therefore, the MSE may
not be an effective metric.

5. Conclusion

In this paper, we tackle the problem of AU recognition and AU
intensity estimation by exploiting the relations of AUs from both
shared features and target labels, which carry crucial top-down and
bottom up evidence for improving AU analysis, but has not been
thoroughly exploited yet. First, we formulate the AU analyses task into
MTL problem with face-region grouping strategy. It is different from
the traditional method where all the AUs share the same features space,
or none AUs share feature space. Second, we construct the relations
among AUs' labels with structural and parameter learning using BN.
Finally, we further improve the result of MTL using the learned BN.
The results for AU classification and AU intensity estimation show our
approach treating AU analyses as a MTL problem outperforms tradi-
tional single task methods, and the co-occurrence or exclusive relation-
ship among AUs could also be obtained by BN and that improves the
recognition and estimation results. The cross database AU recognition
experiments demonstrate the generalization ability of label-level de-
pendency captured by BN.
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Table 13
AU intensity prediction on DISFA database .

AU CORR/ICC/MSE of single task CORR/ICC/MSE of MTL CORR/ICC/MSE of MTL+BN CORR/ICC/MSE of LT-all[10]

1 0.264/0.231/3.306 0.283/ 0.249/4.280 0.243/ 0.249/0.817 0.41/0.32/0.44
2 0.513/0.428/1.506 0.399/0.346/2.933 0.689/0.284/1.673 0.44/0.37/0.39
4 0.415/0.374/3.246 0.651/ 0.639/ 2.350 0.709/ 0.821/1.836 0.5/0.41/0.96
5 0.239/0.167/0.332 0.296/ 0.294/0.429 0.445/0.104/1.686 0.29/0.18/0.07
6 0.462/0.451/1.838 0.475/ 0.464/ 1.801 0.600/0.229/1.563 0.55/0.46/0.41
9 0.406/0.399/2.161 0.385/0.381/2.344 0.404/0.441/1.883 0.32/0.23/0.31
12 0.638/0.629/2.015 0.631/0.622/2.056 0.460/ 0.861/0.731 0.76/0.73/0.4
15 0.279/0.279/1.225 0.273/0.273/ 1.220 0.127/ 0.457/0.773 0.11/0.07/0.17
17 0.449/0.436/1.140 0.449/ 0.438/ 1.121 0.309/ 0.689/3.066 0.31/0.23/0.33
20 0.135/0.128/1.262 0.122/0.114/1.272 0.040/0.003/1.614 0.16/0.09/0.16
25 0.680/0.679/1.466 0.677/0.677/1.472 0.281/ 0.840/2.184 0.82/0.8/0.61
26 0.139/0.132/2.782 0.158/ 0.152/ 2.705 0.262/0.144/0.352 0.49/0.39/0.46
Ave. 0.385/0.361/1.857 0.400/ 0.387/1.999 0.381/ 0.427/1.515 0.43/0.36/0.39

Table 14
AU dependencies on McMaster database.

λj

λi AU4 AU6 AU7 AU9 AU10 AU12 AU20 AU25 AU26

AU4 1.00 0.58 0.30 0.18 0.16 0.41 0.03 0.24 0.07
AU6 0.11 1.00 0.38 0.07 0.08 0.83 0.05 0.15 0.09
AU7 0.10 0.62 1.00 0.07 0.06 0.61 0.06 0.15 0.10
AU9 0.45 0.90 0.56 1.00 0.39 0.57 0.05 0.46 0.07
AU10 0.32 0.89 0.36 0.31 1.00 0.55 0.13 0.62 0.18
AU12 0.06 0.67 0.30 0.03 0.04 1.00 0.02 0.10 0.08
AU20 0.04 0.42 0.28 0.03 0.10 0.20 1.00 0.40 0.19
AU25 0.11 0.35 0.21 0.08 0.13 0.30 0.12 1.00 0.20
AU26 0.04 0.23 0.17 0.01 0.04 0.25 0.06 0.23 1.00
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Table 15
AU dependencies on DISFA database.

λj

λi AU1 AU2 AU4 AU5 AU6 AU9 AU12 AU15 AU17 AU20 AU25 AU26

AU1 1 0.67 0.29 0.05 0.04 0.11 0.06 0.01 0.02 0.01 0.23 0.15
AU2 0.88 1 0.23 0.08 0 0.01 0.06 0 0.005 0.01 0.12 0.07
AU4 0.20 0.12 1 0.004 0.14 0.35 0.03 0.09 0.23 0.07 0.40 0.12
AU5 0.78 0.91 0.09 1 0 0 0 0.03 0 0.04 0 0.01
AU6 0.04 0 0.22 0 1 0.21 0.64 0.03 0.01 0.09 0.81 0.06
AU9 0.17 0.01 0.83 0 0.33 1 0.01 0.11 0.04 0.09 0.56 0.10
AU12 0.03 0.02 0.02 0 0.30 0.003 1 0 0 0 0.95 0.04
AU15 0.04 0 0.64 0.01 0.17 0.34 0 1 0.26 0.16 0.43 0.12
AU17 0.05 0.01 0.84 0 0.01 0.06 0 0.13 1 0.08 0.05 0.04
AU20 0.05 0.05 0.62 0.02 0.51 0.33 0 0.19 0.20 1 0.59 0.27
AU25 0.08 0.03 0.19 0 0.25 0.11 0.65 0.03 0.01 0.03 1. 0.16
AU26 0.24 0.09 0.26 0 0.09 0.09 0.14 0.04 0.02 0.07 0.77 1
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