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Abstract—Video affective content analysis has been an active re-
search area in recent decades, since emotion is an important compo-
nent in the classification and retrieval of videos. Video affective con-
tent analysis can be divided into two approaches: direct and implicit.
Direct approaches infer the affective content of videos directly from
related audiovisual features. Implicit approaches, on the other hand,
detect affective content from videos based on an automatic analysis
of a user’s spontaneous response while consuming the videos. This
paper first proposes a general framework for video affective content
analysis, which includes video content, emotional descriptors, and
users’ spontaneous nonverbal responses, as well as the relation-
ships between the three. Then, we survey current research in both
direct and implicit video affective content analysis, with a focus on
direct video affective content analysis. Lastly, we identify several
challenges in this field and put forward recommendations for future
research.

Index Terms—Video affective content analysis, emotion recognition,
and content-based video retrieval.

1 INTRODUCTION

R ECENT years have seen a rapid increase in the size
of video collections. Automatic video content anal-

ysis are needed in order to effectively organize video
collections and assist users in quickly finding videos. His-
torically, videos were primarily used for entertainment
and information-seeking. Thus, conventional content-based
video analysis focuses on generic semantic content, such
as news or sports. As online services like YouTube and
Tudou grow, videos have become the medium for many
people to communicate and to find entertainment. These
growing video collections will inevitably influence user-
s’emotional states as they spread information and provide
entertainment. More and more people watch videos in order
to satisfy certain emotional needs (e.g., relieve boredom); it
is therefore necessary to tag videos based on their affective
content. Unlike conventional content-based video analysis,
which typically identifies the main event involved in a
video, video affective content analysis is to identify videos
that can evoke certain emotions in the users. Introducing
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such a personal or human touch into video content analysis
is expected to benefit both the users and businesses that
create, distribute, and host the videos. For example, movie
directors may adapt their editing to optimize the emotional
flow with the help of the detected audiences’ emotional
states. Users could retrieve certain videos by inputting their
emotional demands. Distributors could select the best target
population for their videos based on the affective content.

As a result of these developments, video affective content
analysis is becoming increasingly important. The goal of
video affective content analysis is to automatically tag each
video clip by its affective content. Due to the difficulty
in defining objective methods to automatically assess the
emotions of a video, the research topic of video affective
content analysis has not been thoroughly explored until
recently. In 2001, Nack et al. [1] defined the concept of
Computational Media Aesthetics (CMA) as the algorithmic
study to analyze and interpret how the visual and aural
elements in media evoke audiences’ emotional responses
based on the film grammar. The core trait of CMA is
to interpret the data with the makers’ eyes. Based on the
expected mood, i.e., the emotions a film - maker intends
to communicate to a particular audience with a common
cultural background, Hanjalic and Xu [2] successfully
related audiovisual features with the emotional dimension
of the audience. Earlier research has attempted to infer
the affective content of videos directly from the related
audiovisual features. This kind of research represents the
mainstream research on video affective content analysis and
is referred to as direct video affective content analysis.

In addition to direct approaches, recent research on video
affective content analysis includes inferring the video’s
affective content indirectly based on an analysis of a user’s
spontaneous reactions while watching the video. We refer
to this kind of research as implicit video tagging. Figure 1
summarizes the major components of the two approaches
for video affective content analysis.

Video affective content analysis consists of video con-
tent, users’ spontaneous nonverbal responses, emotional
descriptors, and their relationships [4]. The video content is
represented by various visual and audio features. Emotional
descriptors capture the users’ subjective evaluation of the
videos’ affective content. Two kinds of descriptors are
often used: the categorical approach and the dimensional
approach. The users’ spontaneous nonverbal responses in-
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Fig. 1: Components and two major approaches of video
affective content analysis [3]

clude users’ physiological and visual behavioral responses
while watching videos. The mapping from video content
space to emotional descriptor space can be regarded as
direct video affective content analysis, while the mapping
from users’ spontaneous nonverbal response space to emo-
tional descriptor space takes an implicit approach to video
affective content analysis. We believe that fully exploiting
the three spaces and their relationships is crucial to reducing
the semantic gap between the low-level video features and
the users’ high-level emotional descriptors.

In the sections to follow, we first discuss emotional
descriptors. We then review current techniques for direct
and implicit video affective content analysis, as well as
the existing benchmark datasets for video affective content
analysis. The paper concludes with a discussion of chal-
lenges and future research directions.

To the best of our knowledge, this work is the first
paper to provide a comprehensive review of video affective
content analysis. Previous reviews of this topic include
the recent work by Soleymani and Pantic [5]. This work,
however, only provides a review of implicit tagging, while
this paper covers both implicit and direct approaches.

2 EMOTIONAL DESCRIPTORS

Psychologists have used two major methods to measure
emotion: the discrete approach and the dimensional ap-
proach. According to Ekman [6], emotion can be grouped
into six different categories such as happiness, sadness,
surprise, disgust, anger, and fear. First introduced by Wundt
[7], the dimensional approach divides emotion into 3D
continuous spaces: arousal, valence, and dominance. Based
on these theories, two kinds of emotional descriptors have
been proposed to capture a video’s affective content. One is
the categorical approach, and the other is the dimensional
approach.

Many emotion theorists have claimed that there is a
set of basic emotional categories. However, there is some
argument over which emotions belong in this basic set.
The most frequently used categories in the field of video
affective content analysis are Ekman’s six basic emotion-
s [6], including happiness, sadness, anger, disgust, fear, and
surprise [8], [9], [10], [11], [12], [13], [14], [15], [16], [17].
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Fig. 2: Mapping of the categorical emotions in valence-
arousal space [36]

In addition, other categories, such as amusement [18], [19],
boredom [20], excitement [21], [22], or horror [23], [24],
[25], [26], [20] are also used to describe affective content
of videos for certain applications.

Dimensional views of emotion have been advocated and
applied by a several researchers. Most agree that three
dimensions are enough to describe a subjective response.
However, a consensus has not been reached on the labels
of the dimensions. Valence-arousal-dominance is one set
of labels. Arousal measures the activation level of the
emotion. As a measure of excitement, arousal characterizes
a state of heightened physiological activity and ranges
from passive to active or excited. Valence measures the
degree of pleasure. It represents a “good feeling” or a “bad
feeling”, and it ranges from pleasant to unpleasant. Domi-
nance represents the controlling and dominant nature of the
emotion. It ranges from submissive (or without control) to
dominant (or in control/empowered). Dominance is difficult
to measure and is often omitted, leading to the commonly
used two dimensional approach. Instead of valence-arousal-
dominance, a few work adopt other dimensions. For exam-
ple, Canini et al. [27] proposed to use natural, temporal,
and energetic dimensions. Some works [28], [29] discretize
dimension description into categories, such as positive and
negative valence and high and low arousal. Others [30],
[2], [31], [32], [33], [34], [35] use continuous dimensional
descriptors.

The categorical and dimensional definitions of emotion
are related. In fact, the categorical emotional states can be
mapped into the dimensional space. For example, a relaxed
state relates to low arousal, while anger relates to high
arousal. Positive valence relates to a happy state, while
negative valence relates to depressed or angry state. Anger
is a dominant emotion, while fear is a submissive emotion.
Figure 2 shows the emotional circumplex [36] that plots
the categorical emotions in the valence-arousal (VA) space.

Both discrete and continuous descriptors have their lim-
its. Since emotions are complex and subjective, a small
number of discrete categories may not reflect the subtlety
and complexity of the affective states [37]. A continuous
emotional space may embody more subtle and fuzzy e-
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motions without boundaries. It also avoids the problem
of predefining a number of emotion categories. However,
absolute continuous scores may not be meaningful due to
lack of agreed-upon standards for subjective emotion rating.

3 DIRECT VIDEO AFFECTIVE CONTENT
ANALYSIS

As an emerging area of research, video affective content
analysis is attracting increasing attention from different
fields ranging from multimedia, psychology, entertainment
to computer vision. The first research in direct video affec-
tive content analysis dates back to 2005, when Hanjalic and
Xu [2] proposed a computational framework for affective
video modeling and classification in the arousal and valence
space. Since then, much work has been done in this field.

The framework of direct video affective content analysis
mainly consists of two parts: video feature extraction and
emotion classification/regression. First, several visual and
audio features are extracted from videos to characterize
the video content. Then, the extracted features are fed into
a general purpose classifier or regressor such as Support
Vector Machine (SVM) [15], [23], [12] or Support Vector
Regression(SVR) [27], [30], [38], [39], [31] for emotion
classification or regression. Table 1 and Table 2 provide
an exhaustive summary of direct video affective content
analysis works that respectively use continuous emotion
dimensions or discrete emotion categories, as well as
extracted features, adopted classifiers/regressors, emotion
descriptors, size of the dataset (i.e., the number of video
clips if not explicitly stated), number of annotators, and
experimental results. Below, we review the audio and visual
features used to capture a video’s affective content, as
well as classification methods that map video features to
a video’s emotional descriptors.

3.1 Affective feature extraction

The video content can be captured by various visual and
audio features. Specifically, the affective content of a video
consists of two main categories of data: visual data and
auditory data. The visual data can be further divided into
visual image, print, and other graphics, while the auditory
signal can be divided into speech, music, and environmen-
tal sound. An important issue in video affective content
analysis is the extraction of suitable low-level acoustic
and visual features that effectively characterize different
affective content. Both cinematography and psychological
research show that certain audio-visual cues are related
to the affective content of a video [15]. As a result,
cinematic principles and psychological findings have played
an important role in defining visual and audio features for
characterizing a video’s affective content. In the sections
to follow, we review audio and visual features used for
video affective content characterization, with an emphasis
on cinematic and psychological principles.

3.1.1 Audio features

Audio features are essential in characterizing a video’s
affective content. In fact, Wang and Cheong’s study [15]
shows that audio features are often more informative than
visual ones with respect to affective content characteriza-
tion.

The first step in acoustic feature extraction is audio type
segmentation (also called audio source separation), since
the audio part of a video often contains a mixture of sounds
from different sources. Audio type segmentation divides the
audio part of a video into speech, music, and environmental
sound. Wang and Cheong [15] used two features (chroma
difference and low short time energy ratio) to distinguish
music sound from environmental sound with a simple SVM
for every two-second segment of audio signal. Outside the
field of video affective content analysis, there is research
focusing specifically on audio type segmentation beyond
video affective content analysis. Lu et al. [51] introduced
a technique to segment and classify audio signals into
speech, music, and environmental sounds. Their method
first segments a signal into speech and non-speech using
such features as high zero crossing rate ratio, low short time
energy ratio, linear spectral pairs, and spectrum flux. The
non-speech signal is then further divided into music and
environmental sound using band periodicity, noise frame
ratio, and spectrum flux. Bachu et al. [52] proposed to use
zero-crossing rate and energy features to separate speech
and non-speech signals. More recently, Radmard et al. [53]
proposed a clustering method to separate speech and non-
speech signals based on the analysis of cepstral peak, zero-
crossing rate, and autocorrelation function peak of short
time segments of the speech signal. Zhang and Kuo [54]
proposed to use Zero Crossing Rate (ZCR) to separate
audio signals into music, speech, and environmental sounds.

Given the segmented audio signal, acoustic features
can then be extracted separately from speech, music, and
environmental sound. Due to the predominance of speech
in characterizing a video’s emotion as well as extensive
research in speech emotion recognition, much work has
been invested in speech feature extraction.

For the speech channel, acoustic feature extraction efforts
largely follow the work in speech emotion recognition,
which is an active and well-studied field. Psychological re-
search has shown that psycho-physiological characteristics
like air intake, vocal muscle, intonation and pitch character-
istics vary with emotions [55]. Based on such physiological
studies, prosodic speech features are typically used to
characterize the affective content of an utterance, since
prosody captures the emotional state of the speaker through
its non-lexical elements including the rhythm, stress, and
intonation of speech [22]. Typical prosodic speech features
include loudness, speech rate, pitch, inflection, rhythm, and
voice quality. Some speech features are more informative
in capturing speech emotions. For example, a study by
Scherer and Zentner [56] shows that tempo and loudness are
powerful signals of emotional meaning. Xu et al. [48] show
that pitch is significant for emotion detection, especially for
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TABLE 1: Direct video affective content analysis using continuous emotion dimension

References Features Regressors Emotion de-
scriptors

♯Video
clips

♯Annotators Results

Canini et
al. [27]

A: sound energy, low-energy ratio, ZCR, spectral rolloff, spectral
centroid, spectral flux, MFCC, subband distribution, beat his-
togram, rhythmic strength,
V: color, lighting key, saturation, motion, shot length,shot type
transition rate

SVR natural,
tempo-
ral,and
energetic
dimension

75 almost 300 the Kendall’s tau metric,
K∆c = 0.425,
K∆⌢C = 0.467,
K∆⌢w = 0.502

Cui et
al. [30]

A: ZCR, short time energy, pitch, bandwidth, brightness, roll off,
spectrum flux, sub-band peak, sub-band valley, sub-band con-
trast,tempo, rhythm strength, rhythm contrast, rhythm regularity,
onset frequency, drum amplitude
V: motion intensity, shot switch rate, frame predictability, frame
brightness, frame saturation, colour energy

SVR arousal and
valence

655 N/A Variance of absolute error
, Arousal: 0.107, Valence:
0.118

Cui et
al. [38]

A: pitch, tempo, rhythm regularity, sound energy, ZCR, beat
strength, bandwidth, rhythm strength, short time energy,
V: shot switch rate, lighting, saturation, color energy, motion
intensity

SVR and
MLR

arousal and
valence

552 11 Mean absolute error,
Arousal: 0.340, Valence:
0.277

Hanjalic
et al. [40],
[2], [41]

AR: motion activity, density of cuts, sound energy
VA: pitch.

Defined
curves

arousal and
valence

2 N/A The proposed arousal and
valence models can repre-
sent affective video content.

Zhang et
al. [39]

AR: ZCR, short time energy, sub-band Peak, sub-band Valley, sub-
band Contrast, tempo, rhythm strength, rhythm contrast, rhythm
regularity, drum amplitude, motion intensity, short switch rate,
frame brightness.
VA: pitch, sub-band peak, sub-band valley, sub-band contrast, pitch
STD, rhythm regularity, frame brightness, saturation, color energy

SVR arousal and
valence

4000 N/A P for arousal: 0.620,
P for valence: 0.580

Zhang et
al. [31]

AR: motion intensity, short switch rate, zero crossing rate, tempo,
and beat strength.
VA: lighting, saturation, color energy, rhythm regularity, and pitch

SVR arousal and
valence

552 37
(9F,28M)

R: 0.684,
P: 0.701

Zhang et
al. [42]

AR: motion intensity, shot switch rate, sound energy, zero crossing
rate, tempo and beat Strength,
VA: rhythm regularity, pitch, lighting, saturation and color energy

affinity
propaga-
tion

arousal and
valence

156 11
(1F,10M)

Arousal P: 0.929

A: Audio features; V: Visual features; AR: Arousal features; VA: Valence features; P: Precision; R: Recall; F: Female; M: male.

the emotions in speech and music. Sound energy is also an
important speech feature [2], [27].

Further research has shown that certain speech features
are good at capturing certain types of emotions. Continuous
features such as speech energy, pitch, timing, voice quality,
duration, fundamental frequency, and formant are effective
in classifying high or low arousal. This is supported by
findings in [57] and [2], which show that inflection, rhythm,
voice quality, and pitch are commonly related to valence,
while loudness (i.e. speech energy) and speech rate relate
to arousal. For discrete emotions, features like pitch levels
can indicate feelings such as astonishment, boredom, or
puzzlement, while speech volume is generally representa-
tive of emotions such as fear or anger. In addition to time-
domain features, certain spectral speech features are found
to be effective in characterizing speech emotions, since
the speech energy distribution varies with emotion. For
example, happy speech has a high energy at high frequency
range, while sad speech has low energy at the same frequen-
cy range [58]. A study in [59] shows that spectral features,
like Mel-frequency Cepstrum Coefficients (MFCC), are the
most effective features at estimating the continuous values
of emotions in 3D space. For a comprehensive review of
speech features for speech emotion recognition, readers are
advised to refer to [60].

Similar speech features have been employed for video
affective content analysis. Wang and Cheong [15] extracted
12 audio features to capture a film’s affective content, in-
cluding energy statistics, Log Frequency Power Coefficients
(LFPC), MFCC, and zero-crossing rate statistics. Canini et
al. [27] proposed to use low energy ratio and zero crossing
rate to capture sound energy, and to use spectral rolloff,
spectral centroid, spectral flux, and MFCC to capture the

spectral properties of the speech. Xu et al [48] employed
arousal-related features including short energy features and
MFCC, as well as valence-related audio features, such as
pitch. Xu et al. [61] used short time energy for vocal
emotion detection, and MFCC to detect excited and non-
excited moments. Teixera et al. [11] used zero crossing rate,
the irregularity of the spectrum, spectral rolloff, MFCC, etc.

Research on emotion recognition from music [62], [63]
has demonstrated that certain aspects such as music mod-
e, intensity, timbre, and rhythm are important in char-
acterizing musical emotions. Common acoustic features
for music emotion classification are dynamics (i.e., Root-
Mean-Square (RMS) energy), timbre (i.e., MFCCs, spectral
shape, spectral contrast), harmony (i.e., roughness, har-
monic change, key clarity, and majorness), register (i.e.,
chromagram, chroma centroid, and deviation), rhythm (i.e.,
rhythm strength, regularity, tempo, beat histograms), and
articulations (i.e., event density, attack slope, and attack
time) [64]. Zhang et al. [31] employed rhythm-based music-
related features including tempo, beat strength, and rhythm
regularity to analyze affective content of music videos.
Yang and Chen [65] as well as Eerola and Vuoskoski [66]
summarized recent research of emotion and music from the
perspective of both informatics and psychology.

For the environment sound channel, certain sound pat-
terns are often used to induce certain emotions. For ex-
ample, Moncrieff et al. [47] used the changes in sound
energy intensity to detect the four sound energy events,
i.e., surprise or alarm, apprehension, surprise followed by
sustained alarm, and apprehension building up to a climax.
The four sound energy events are further used to distinguish
between horror and non-horror movies.

In summary, acoustic features are extracted from speech,
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TABLE 2: Direct video affective content analysis using discrete emotion categories

References Features Classifiers Emotion descriptors ♯Video
clips

♯Annotators Results

Arifin et
al. [18],
[19]

A: tempo histogram, daubechies wavelet cumulative his-
togram, MFCC, root mean square energy, spectral flux,
spectral rolloff, ZCR
V: color, salience and visual tempo

4-level DBNs sadness, violence,
neutral, fear,
happiness and
amusement

34 14 Accuracy: 0.860

Canini et
al. [43]

A: audio track energy
V: light source colour, motion dynamics

Define natural, temporal
and energetic curves

warm, cold, dynam-
ic, slow, energetic
and minimal

87 the first
two genres
given by
Internet
Movie
Database

the combination of
the three emotion-
al dimensions is bet-
ter than one dimen-
sion in terms of P-R
curves.

Chan et
al. [44],
[45]

AR: global motion, shot cut rate, audio energy; VA:
colour brightness, colour saturation, pitch;

defined affect curves;
Okapi BM25 model

151 emotional labels 39 8 R: 0.800.

Ding et
al. [24]

A: MFCCs, spectral power, spectral centroid
V: emotional intensity, color harmony, variance of color,
lighting key, texture

Multi-view MIL horror, non-horror 800 N/A F-measure: 0.843

French [46] A: sound energy;
V: object motion of the main object or character.

define the relation be-
tween slapstick and fea-
tures

slapstick or no slap-
stick

16 3 R: 0.750; P: 1.000;

Irie et
al. [14]

A: pitch, short-term energy, MFCCs
V: gravity centers of color, brightness of image, motion
intensity, shot duration

LDA joy, acceptance, fear,
surprise, sadness,
disgust, anger and
anticipation

206 16 subject agreement
rate: 0.855

Kang [8] V: color, motion, shot cut rate HMMs fear, sadness and joy 6 10 Accuracy: 0.876
Kang [9],
[8]

V: color, motion, and shot cut rate AdaBoost + relevance
feedback

fear, sadness and joy 10 10 Accuracy: 0.849

Moncrieff
et al. [47]

A: the dynamics of the sound energy of the audio define rules between
four sound energy
events and features

surprise,
apprehension or the
emphasis of an event,
surprise (followed
by sustained alarm),
builds apprehension
to a climax

4 N/A Positive Support:
0.680, 0.890, 0.930,
0.800

Sun et
al. [10]

AR: motion intensity, shot cut rate and sound energy;
A: speech rate, pitch average, pitch range, sound energy,
silence ratio;
V: camera motion(phase/intensity), shot cut rate, color
features

defined excitement
curves + HMM

joy, anger, sadness
and fear

557 30 R: 0.809,
P: 0.874,
F-Score: 0.840

Teixeira et
al. [11]

A: ZCR, irregularity of the spectrum, spectral rolloff,
tristimulus features, fundamental frequency, MFCC, root
mean square (RMS), energy and the temporal centroid;
V: shot length, motion history image, lighting key, color
activity, color heat and color weight;

HMM sadness, happiness,
anger, fear, disgust
and surprise

346 16
(8F, 8M)

Accuracy: 0.770

Wang et
al. [15]

A: energy; LFPC and its delta; low energy ratio; spectral
roll-off and centroid; MFCC and its delta; ZCR; spectral
flux and normalized version; chroma and its delta; nor-
malized chroma; LSTER; bands statistics; music scale;
V: Shot Duration, lighting key, motion, shot density,
color energy, miscellaneous.

SVMs anger, sad, fear, joy-
ous, surprise, tender,
and neutral

36 3 Accuracy: 0.858.

Watanapa
et al. [22]

A:the average volume difference;
V: average squared motion magnitude, average shot
duration, average percent of pixels in the clip with high
brightness, with dark value, and with cold hue;

multi-sieving NN excitement, joy and
sadness

120 30
(14F,16M)

Accuracy: 0.978

Xu et
al. [23]

Case 1: A: MFCC, energy, delta and acceleration, am-
plitude change of audio signal
Case 2: A: energy, pitch, MFCC and LPCC
Case 3: affective script partitions; A: MFCC, energy,
delta and acceleration

1: SVM + HMM
2: defined relations be-
tween script and poten-
tial affective partition +
HMM
3: defined relations be-
tween AEE and affective
contents

1: horror and non-
horror
2: laughable and
non-laughable
3: 3 intensity level-
s for anger, sadness,
fear, joy, love

1: 80
min-
utes
2: 4
hour
seg-
ments
3:560
min-
utes

1: 5
2: 10
(5F, 5M)
3: 8

1: R: 0.976 P: 0.913
2: R: 0.873, P: 0.884
3: R: 1.000, P: 1.000

Xu et
al. [12]

A: short-time energy, MFCC, pitch;
V: affective script, shot-cut rate, motion intensity, bright-
ness, lighting key, color energy.

affective partition using
scripts + SVM

anger, sadness, fear,
joy

300
min-
utes

5 R: 0.836, P: 0.844

Xu et
al. [48]

AR: shot duration, average motion intensity, short-time
energy, MFCC;
VA: brightness, lighting key, color energy, pitch.

fuzzy c-mean clustering
+ CRF

three level emotion
intensity, fear, anger,
happiness, sadness
and neutral

1440
min-
utes

10 Accuracy: 0.807

Yoo and
Cho [21]

V: average color histogram, brightness, edge histogram,
shot duration, and gradual change rate

IGA action, excitement,
suspense, quietness,
relaxation, and
happiness

300 10 Accuracy: 0.770

Yazdani et
al. [49]

A: ZCR, MFCC;
V: shot boundary, lighting key, color, motion,
∆MFCC

GMM arousal, valence, and
dominance

120 32 Accuracy, arousal:
0.900, valence:
0.750, dominance:
0.720

Yazdani et
al. [50]

A: ZCR, energy, MFCC;
V: lighting key, shot boundary, color, motion. ∆MFCC,
autocorrelation MFCC, LPC, ∆LPC, silence ratio, pitch,
centroid, band energy ratio, delta spectrum magnitude

kNN arousal and valence; 120 32
(16F,16M)

Accuracy: 0.520

A: Audio features; V: Visual features; AR: Arousal features; VA: Valence features; P: Precision; R: Recall; F: Female; M: male.



1949-3045 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TAFFC.2015.2432791, IEEE Transactions on Affective Computing

music, and environmental sound to characterize different
acoustic aspects of the video’s emotion. Speech features
remain the most dominant acoustic features, followed by
music and environmental sounds. For speech features, con-
tinuous prosodic features like speech energy, pitch, and fun-
damental frequency as well as spectral features like MFCC
are most commonly used for characterizing video affective
content. Widely used music features include dynamics,
timbre, harmony, and rhythm. In addition, many audio
features are shared among different audio types including
energy related features [19], [27], [38], [44], [24], [46], [2],
[47], [10], [11], [15], [22], [23], [50], [31], ZCR [19], [27],
[38], [11], [15], [49], [50], [31], MFCC [19], [27], [24],
[11], [15], [23], [49], [50], spectral centroid [27], [24], [50],
spectral rolloff [19], [27], [30], [11], spectral flux [19], [27],
[30], [15], etc. These features are used for both emotional
dimension prediction and emotional category classification.

3.1.2 Visual features
Early video affective content analysis focused on movies’
emotion classification, which drew heavily upon method-
ologies from cinematography. Accepted cinematic rules and
techniques, known as film grammar, are used by directors
to communicate emotional cues to the audience [67], [68].
Well-established film techniques and grammar can be used
to change the visual and sound elements of the movie
in order to invoke or heighten the audience’s emotional
experience. The visual elements which filmmakers typically
manipulate to inject emotion include tempo, lighting, and
color.

Tempo is an important feature of films and has significant
power to attract viewers’ attention and to affect viewers’
emotion intensity [69]. It captures the amount of camera
and subject movement in each shot and between shots.
According to film theorists, motion is highly expressive able
to evoke strong emotional responses in viewers [70], [2]. In
fact, studies by Detenber et al. [70] and Simmons et al. [71]
concluded that an increase of motion intensity on the screen
causes an increase in the audience’s arousal. The tempo of
a movie can also be changed by varying shot properties
such as length and transition rate [72]. Shorter shots create
a high tempo of action development and can induce stress
and excitement on the part of the audiences, while longer
durations create a more relaxed and slow-paced scene [73].
Furthermore, rapid shot changes can better convey dynamic
and breathtaking excitement than a long and slow shot
change [15]. Film tempo can also be changed by varying
the camera position and movement speed in order to inject
different types of emotion into the movie. For example,
when the camera moves from a high shot to a low shot,
the character looks imposing, which gives the feeling of
authority and may create fear on the part of the audience.
Camera shaking with a handheld camera can create feelings
of uneasiness, danger, and stressful anticipation. A quick
pushing of the camera towards the character can induce
surprise and shock, while a smooth camera motion on
the dolly away from the character can make the character
appear lost or abandoned. A zolly camera shot (i.e. a

cinematic technique that moves the camera forward or
backward while changing camera zoom in the opposite
direction) creates an overwhelming sense of foreshadowing
[74], [75].

Lighting, the spectral composition of the light, is an-
other powerful cinematography tool to manipulate visual
elements. Lighting measures the contrast between dark and
light, and influences the appearance of every element in the
scene. Lighting is often exploited by directors to give a con-
notative signature to specifically affect the emotions of the
viewer and to establish the mood of a scene [15]. Two major
aesthetic lighting techniques are frequently employed: high-
key lighting and low-key lighting. The former is often
used to generate the lighthearted and warm atmosphere,
typical of joyous scenes. In contrast, the latter uses dim
lights, shadow play, and predominantly dark backgrounds
to create sad, surprising, frightening, or suspenseful scenes
[76], [15]. Horror movies often use low light levels, while
comedies are often well lit. In addition to brightness, light
and shade are used together in movies scenes to create
affective effects.

Color is also an important film element that can be
changed to affect the viewers’ emotion. Specifically, color
brightness is often used to affect valence while color
saturation is used to influence arousal. Movie directors can
jointly vary the valence and arousal qualities of a scene
by changing the color energy. For instance, a joyous effect
can be manufactured by setting up a scene with high color
energy. Sad or frightening videos commonly consist of gray
frames.

In summary, we can gain insight into film production
rules through the cinematographic theories and principles,
and use this to formulate new visual features to capture
the video’s affective content. Specifically, film grammar
bridges the gap between the high-level semantics of movie
content and low-level audio and visual features. Grammar
and production rules can indicate the intended purpose or
emotions that the director expects to invoke. An understand-
ing of the specific techniques that the movie director uses
allows us to design visual features accordingly. From these
features we can then reverse the director’s intent and hence
the movie’s affective content.

Inspired by film grammar, tempo, lighting and color fea-
tures are extracted to characterize videos’ affective content.
Various features have been proposed to capture a video’s
tempo. Shot is an important film element that can control a
video’s tempo. Shot-related features [14], [11], [22], [48],
[21], [49], [50] include shot duration, shot transition, and
shot type transition. Shot duration represents the length
of a shot. Shot transitions include cuts, fades, dissolves,
and wipes. Shot type transition rate [27], [38], [44], [2],
[8], [10], [15], [12], [21], [31] measures the pace variation
of the employed shot type. Motion is another important
film element that can control a video’s tempo. Motion-
related features includes motion intensity, motion dynamics,
and visual excitement. Motion intensity [30], [38], [14],
[22], [12], [48], [39], [31], [42] reflects the smoothness
of transitions between frames. It can be estimated from
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the intensity difference of two frames [31]. Zhang et al.
[31] propose to use motion intensity and shot change
rate to characterize arousal. Motion dynamics [27], [44],
[46], [2], [8], [10], [11], [15], [50] depends on shot pace,
shot type, camera, and object motion. Visual excitement
represents the average number of pixels changed between
corresponding frames according to human perception. The
change is computed in the perceptually nearly uniform CIE
Luv space [77]. Furthermore, image moving history [78]
and motion vectors encoded in the macroblocks of MPEG
[22] are proposed as motion features. Finally, features
related to camera distance have also been proposed. Wang
and Cheong [15] used average gray level co-occurrence
matrix of a scene as a visual cue to characterize emotional
distance of the scene.

Lighting-related features include light keys, tonality, etc.
The lighting keys [27], [38], [24], [11], [15], [48], [49], [31]
are related to two major aesthetic lighting techniques, i.e.,
chiaroscuro and flat lighting. The former is characterized
by strong contrast between light and shadowed areas, and
the later reduces the emphasis of the contrast between
light and dark. Thus, for each frame the first descriptor
measures the median of the pixels’ brightness, while the
second uses the proportion of pixels with a lightness below
a shallow threshold [15]. Zhang et al. and Xu et al. [31],
[48] proposed to use lighting keys to characterize arousal.
Watanapa et al. [22] proposed to use tonality (the proportion
of brightness to darkness in a scene) to capture the lighting
in the film. Teixeira et al. [11] proposed to use the overall
level of light and the proportion of shadows to capture
lighting.

To better represent the movie’s color, color features are
typically computed in the HSV (Hue, Saturation, and Value)
space, since psychological studies have shown that humans
can better perceive emotions in HSV space than others
[22], [79]. Typical color features include color saturation,
dominant color, color layout, color energy, color heat,
color activity, and color weight [18], [19], [27], [43],
[24], [14], [8], [9], [8], [10], [11], [21], [49], [50]. Color
saturation refers to the intensity of color. A dominant color
is the most obvious color in an image, while color layout
describes the spatial distribution of color in an image. Color
energy [27], [38], [44], [14], [15], [22], [12], [48], [21],
[31], [42] captures the perceptual strength of the color,
and is affected by saturation, brightness, and location of
different colors in an image. It is defined as the product
of the raw energy and color contrast. Color heat is defined
by the factor of warm/cool. Color activity is determined
by the colour difference between a test colour and a
medium gray. Colour weight is related to three factors,
i. e. hard/soft, masculine/feminine, and heavy/light. Canini
et al. [27] proposed to extract dominant color, saturation,
color energy, color layout, and scalable color from MPEG7
video encoding. Zhang et al. [31] characterized valence
using color saturation and color energy. Teixeira et al.
[11] adopted color heat, color activity, and color weight
to characterize a video’s color.

Printed scripts can be an important clue to analyze video

affective content, since scripts provide direct access to the
video content. However, only recently, scripts have been
introduced into emotional analysis. Xu et al. [12] proposed
a two-step affective content retrieval method using scripts.
First, video segments with continuous scripts are grouped
as one partition, whose emotional labels are determined by
emotional words in this script partition. Second, Support
Vector Machine classifiers are applied to video features for
affective partition validation.

3.2 Direct mapping between video content and
emotional descriptors
Video features may be mapped to emotional descriptors
using a classifier for categorical descriptors or a regressor
for dimensional descriptors.

3.2.1 Classifications
Many machine learning methods have been investigated to
model the mapping between video features and discrete
emotional descriptors, including support vector machines
(SVMs) [80], multi-layer feed-forward neural networks
(NNs) [22], Adaboost [8], Gaussian Mixture Models (G-
MMs) [49], K-Nearest Neighbor (KNN) [50], Hidden
Markov Models (HMMs) [10], [61], Dynamic Bayesian
Networks (DBNs) [81], and Conditional Random Fields
(CRFs) [48].

A classifier is divided into static or dynamic based
on temporal information. Multi-layer feed-forward neural
networks [22], SVMs [15], [23], [12] and GMMs [49] are
used for static modeling. NNs are known to be effective
for nonlinear mappings, and achieve good performance
given effective features. For example, Watanapa et al. [22]
proposed to classify movie clips into excitement, joy, or
sadness using a two stage sieving artificial neural net-
work, in which the first stage specialized in filtering the
excitement class and the second stage classified joy and
sadness. One problem with NN is its blackbox nature.
Users typically do not understand its internal working
mechanism. Another commonly used classifier is SVM.
Because of its simplicity, its max-margin training method,
and its use of kernels, SVM has achieved great success in
many fields including video affective content analysis. One
problem with SVM is that its selection of kernel function
remains heuristic and ad hoc. Wang et al. [15] adopted
a specially adapted variant of SVM to classify films into
anger, sadness, fear, joy, surprise, and neutral.

Both SVM and NN are deterministic approaches. GMM
is a probabilistic approach based on a convex combination
of multivariate normal densities. GMMs explicitly model
multi-model distributions, and are effective for emotion
classification since they can capture the joint density func-
tion of multiple emotion categories in the feature space,
with one Gaussian mode for each emotion category. Yaz-
dani et al. [49] proposed to use GMM for affective content
analysis of music video clips. During training, the expec-
tation maximization algorithm is utilized, and leave-one-
video-out cross-validation is adopted to find the number
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of Gaussian mixtures. Finally, eight Gaussian mixtures are
created to describe each class. There is still no good way
for GMM to determine the optimum number of Gaussian
components. It is typically solved through trial and error or
cross-validation.

SVM, NN, and GMM use the input features to perform
classification only. They do not perform any feature se-
lection. In contrast, Adaboost performs feature selection,
constructs a weak classifier with each selected feature,
and combines the weak classifiers to perform the final
classification. As a way of dimensionality reduction, fea-
ture selection can improve not only classification accuracy
but also efficiency. This is important for video affective
content analysis since the input feature space may be
large. Kang [8] extracted several visual features and then
used an AdaBoosting algorithm to select highly meaningful
features to classify emotional events. Other feature selection
methods have been proposed in addition to Adaboost.
Canini et al. [27] employed a filtering-based approach to
select the most relevant features in terms of their mutual
information to the video’s affective content. Teixeira et al.
[11] performed a sensitivity study to evaluate how much
each basic feature contributes to the final emotion detection
by removing the features one at a time and observing the
performance of the model.

K-Nearest Neighbor is an effective and simple non-
parametric method for classification. It has been successful-
ly applied to many pattern recognition problems. Yazdani
et al. [50] used KNN to classify music video clips into
high, low, or neutral arousal; or positive, neutral, or negative
valence.

Traditional single-instance learning methods such as
SVM and NN require the researcher to label each training
instance. However, for some videos, the emotional labels
may be ambiguous or hard to ascertain. Multi-Instance
Learning (MIL) [82] was introduced to handle these cases.
Instead of labeling each instance as positive or negative,
a set of instances, called a bag, are collectively labeled
as positive or negative, with the assumption that all in-
stances in a negative bag are negative samples and at least
one instance in a positive bag is positive. A classifier is
trained to classify positive and negative samples from a
collection of labeled bags. MIL can hence perform learning
without explicitly labeling each positive instance. Wang et
al. [83] proposed to recognize horror video scenes using
MIL, where the video scene is viewed as a bag and each
shot is treated as an instance of the corresponding bag.
Experimental results on their constructed dataset, including
100 horror and 100 non-horror video scenes collected
from the Internet, demonstrate the superiority of multi-
instance learning over single-instance learning for horror
video scene recognition. Conventional MIL assumes the
instances in a bag are independent. Therefore, it ignores
contextual cues. To solve this, Ding et al. [24] further
proposed a multi-view multi-instance learning model for
horror scene recognition by using a joint sparse coding
technique that simultaneously takes into account the bag
of instances from the independent view as well as the

contextual view.
Some works also employ unsupervised cluster techniques

for affective video analysis, since affective states vary from
person to person and it is difficult to pre-define the number
and types of affective categories for a video. Xu et al. [48]
adopted fuzzy c-mean clustering on arousal features to
identify three levels of emotional intensity by checking the
distances between sample points and each cluster center.
Zhang et al. [42] used affinity propagation to cluster Music
Television (MTV) videos with similar affective states into
categories based on valence features and arousal features.

While the static models try to capture the mapping
between input features and video emotions, they cannot ef-
fectively capture the dynamic aspects of emotion. Modeling
emotion dynamics is important since emotion evolves over
time. Hidden Markov Model (HMM) is the most widely
used dynamic graphical model, partially due to its simple
structure and its efficient learning and inference methods.
Sun and Yu [10] proposed a recognition framework based
on Video Affective Tree (VAT) and HMM. Four 2-state
HMMs were used to model and classify joy, anger, and
sadness. Kang [8] proposed to use HMM to map low-
level audio-visual features to high-level emotional events by
capturing the temporal patterns in the video data for each
emotional state. Two HMMs of different topologies were
created to classify emotions into four states: fear, sadness,
joy, and normal. Xu et al. [84] developed a four-state HMM
to classify audio emotional events such as laughing or
horror sounds in comedy and horror videos.

The simple and restrictive topology of HMM, however,
limits its representation power. In addition, determining
the number of hidden states is heuristic. The Dynamic
Bayesian network (DBN) is a generalization of HMMs
that is also used to model video dynamics. Arifin and
Cheung [18], [19] constructed an n-level DBN for affective
classification in a three-dimensional space, i.e., Pleasure-
Arousal-Dominance. Dynamic Bayesian networks are used
to regress the emotion in the 3D emotional space from
the video features. The emotional dimensions are then
translated into emotion categories. Hybrid graphical models
have also been proposed. Teixeira et al. [11] proposed
to detect pleasure, arousal, and dominance coefficients as
well as six emotion categories using two Bayesian network
topologies, a hidden Markov model and an autoregressive
hidden Markov model. Their system first extracts a set
of low-level audiovisual features from video shots, and
then feeds them into two Bayesian networks to estimate
the values of pleasure, arousal, and dominance for each
video segment. After that, a set of models are then used to
translate the resulting Pleasure-Arousal-Dominance values
into emotion categories.

Despite its powerful representation capability, DBN’s
complex learning and inference methods may limit its
practical utility. One common problem with the existing
dynamic models including HMM and DBN is that they
only model local dynamics due to the underlying Markov
assumption. The overall or global dynamic pattern of a
time series of visual and audio signal is important in
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distinguishing between different emotions. Recent works
in computer vision have begun to investigate this issue,
including modeling global and high order dynamics of
facial video for action unit recognition [85] and the global
dynamics of body joint angle trajectories for human action
recognition [86].

3.2.2 Regression
If the emotional descriptor is continuous, a regressor is used
to map the features to the continuous emotional dimensions.
One approach is to manually define the mapping function
between low-level features and dimensional emotional de-
scriptors. For example, Hanjalic and Xu [2] directly mapped
the motion intensity, cut density, and sound energy onto the
arousal dimension, and the pitch-average to the pleasure
dimension by defining an analytic time-dependent function,
which uses video frames for the time dimension. Chan and
Jones [45] used pitch to measure the magnitude and sign
of valence, and audio energy to model arousal.

Other than manually defining the mapping functions
between the features and emotional dimensions, another
approach is to use general regression, such as polynomial
regression [38], neural network [22], or support vector
regression [27], [43], [30], [38], [39], [31], [42] to learn
the mapping functions from data. For example, Zhang et
al. [39], [31] adopted support vector regression to map mo-
tion intensity, short switch rate, zero-crossing rate, tempo,
and beat strength to arousal dimension, as well as lighting,
saturation, color energy, rhythm regularity, and pitch to
valence dimension. Compared with Zhang et al.’s work,
Cui et al. [30], [38] extracted another three audio features
from music videos, i.e., short time energy, bandwidth,
and rhythm strength, and they further employed multiple
linear regression and support vector regression with dif-
ferent kernels including exponential Radial Basis Function
(RBF), Gaussian RBF, and linear and polynomial kernels
for valence and arousal estimation. Instead of using valence
and arousal, Canini et al. [27], [43] proposed to use natural,
temporal, and energetic dimensions. They first extracted
twelve visual features, sixteen audio features and three
grammar features. Then, they employed an information
theory-based filter, the minimum-Redundancy Maximum-
Relevance scheme (mRMR), to select the most relevant fea-
tures. After that, they compared three regressive procedures,
i.e., polynomial combination, feed-forward neural network
trained by a back-propagation algorithm, and support vector
regression, for predicting the three dimensions.

3.3 Middle-level Representation

Most of the existing methods of video affective analy-
sis directly map low-level video features to emotions by
applying a machine learning method. However, there is
a semantic gap between low-level features and high-level
human perception of emotions, since features describe only
low-level visual and audio characteristics of videos, while
emotion is a high-level perception concept. In order to
bridge the gap between the low-level features and the

high-level emotions, recent work has introduced a middle-
level representation between the video features and the
video’s affective content. These methods construct mid-
level representations based on low-level video features and
employ these mid-level representations for affective content
analysis of videos.

Middle-level representation can be defined manually or
learned automatically from data. Xu et al. [23] proposed
a three-level affective content analysis framework by in-
troducing a mid-level representation to capture primitive
audio events such as horror sounds, laughter, and textual
concepts (e.g., informative keywords). The middle-level
representation is constructed from the low-level visual
and audio features. The video’s affective content is then
inferred from the middle-level events and concepts instead
of directly from the video features. Similarly, Canini et al.
[27] exploited film connotative properties as the middle-
level representations. Based on connotative properties and
their relationships to users’ personal affective preferences,
users’ subjective emotions are then predicted. Xu et al. [48]
employed a hybrid emotion representation using both di-
mensional and categorical approaches. They first clustered
both audio and visual features into three arousal intensities
(i.e., high, medium, low). Using the arousal intensities
as the middle-level representations, a CRF model further
classified the emotion into types: fear, anger, happiness,
sadness, and neutral.

Instead of manually defining the middle-level repre-
sentations, methods have also been developed to learn
the middle-level representations automatically. Acar et al.
[87] proposed to learn a middle-level representation using
Convolutional Neural Networks (CNNs). The middle-level
representations were learned from low-level video features
including MFCC and color features. The learned middle-
level representations, coupled with multi-class SVMs, are
then used for affective music video classification. Their
experiments show that the learned mid-level audiovisual
representations are more discriminative and provide more
precise results than low-level audio-visual ones. Irie et
al. [14] proposed to automatically capture and learn the
middle-level representations using the Latent Topic Driven
Model (LTDM), a variant of the Latent Dirichlet Allocation
(LDA) model. Audiovisual features are extracted from the
video shots and then fed into the LTDM model to automat-
ically learn the primitive affective topics via LDA learning
methods. A video’s affective content is then estimated
based on the affective topics as well as their distributions.
In their recent work [14], Irie et al. extended their previous
work by representing movie shots with Bag-of-Affective
Audio-Visual Words and then applied the same LTDM
architecture to generate the emotional topics as the middle-
level representations, and to link the topics to emotions.

3.4 Data fusion

The two modalities in a video, i.e., visual and audio,
can be fused for video affective content analysis. Data
fusion can be performed in two levels: feature level and
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decision level. Feature-level fusion combines audio and
video features and feeds them jointly to a classifier or
regressor for video affective content analysis. Decision-
level fusion, also called classifier fusion, combines the
results from different classifiers. Through decision-level
fusion, we can combine the merits of several classifiers
while avoiding their respective limitations.

Most current works adopt feature-level fusion by con-
catenating audio and visual features as the input of a
classifier [27], [30], [38], [24], [14], [8], [9], [8], [10],
[15], [22], [12], [48], [49], [50], [39], [31], [42]. Acar et al.
[87] used decision-level fusion to learn the separate middle-
level representation for each modality using CNNs and
fused them in the decision level. In addition to performing
feature-level and decision-level fusion separately, hybrid
methods have also been proposed to combine feature-level
and decision-level fusion. Teixeira et al. [11] proposed to
use HMM and autoregressive HMM to fuse the visual and
audio features from both feature level and decision level.
Their experimental results on 346 video clips demonstrated
that decision-level fusion showed more balanced results
compared to the feature-level fusion. Yazdani et al. [49]
proposed a hybrid multilevel fusion approach, which takes
advantage of both feature-level fusion and decision-level
fusion. In addition to the audio and video modalities, a
joint audio and video modality derived from feature fusion
forms an additional modality. The final decision is granted
using the sum rule over the tagging results of the three
modalities. Experimental results on the music video clips
used to construct the DEAP database demonstrated the
superiority of the proposed hybrid fusion to both feature-
level and decision-level fusion.

While feature-level fusion by simple feature concatena-
tion is easy to implement and can be effective, it may
not possible for certain features of different types and/or
ranges. Feature normalization should be performed in these
cases prior to concatenating features. Furthermore, feature-
level fusion may create a high-dimensional feature vector
that require more training data and computational cost.
Decision-level fusion, on the other hand, can be more
effective in these cases, since decision-level fusion deals
with each type of feature independently, and only combines
their classification results. In fact, decision-level fusion via
classifier fusion is a well-established technique in pattern
recognition and has achieved superior performance in many
applications. More work should be done in this area for
video affective content analysis. Finally, a hybrid fusion
strategy should also be considered, since it often performs
better than either feature-level or decision-level fusion
alone.

3.5 Personalized video affective content analysis

Most video affective content analysis work focuses on
understanding the generic content of the video, independent
of the users. It is assumed that emotional reactions to
a video are homogeneous across viewers. Such an as-
sumption is unrealistic. According to the appraisal theory
[88], [89], emotions are produced based on a person’s

subjective evaluation of a stimulus event (e.g., video) which
is relevant to his/her major concerns. This suggests that
people’s emotions towards a video will vary, since each
person’s evaluation of the video stimulus may be different,
depending on how important the video affective content is
to his or her central concerns. Moreover, according to the
appraisal theory, each person varies in his or her ability to
regulate emotion. This variation in regulation may lead to
differences in expressing and responding to emotions. As a
result, a viewer may deny, intensify, or weaken his or her
true emotion. This could cause problems with the integrity
of the reported emotion labels.

Given this understanding, Hanjalic and Xu [2] showed
that there are two kinds of emotional descriptors: the
expected emotion and the actual emotion. The expected
emotion is the emotion that the video makers intended to
communicate to a viewer. It can be thought of as a video’s
generic emotion label. In contrast, the actual emotion is the
emotional response of a particular user to the video. It is
context-dependent and subject-specific, and it varies from
one person to another. It is an individual emotion. The goal
of personalized affective content analysis is to estimate a
video’s personal affective label.

Recent research is moving towards user-
specific/personalized video affective content analysis.
In fact, this kind of personalized affective analysis
is gaining increasing attention in many user-oriented
applications, since personalized affective analysis can
achieve better performance and improve usability. Zhang
et al. [31] introduced an integrated system for personalized
music video affective analysis by incorporating a user’s
feedback, profile, and affective preference. Canini et al.
[27] exploited film connotative properties as middle-level
representations. A film’s connotative properties capture
conventions that help invoke certain emotions in the
viewers. The user’s subjective emotional response is
predicted based on connotative properties and their
relationships to the user’s personal affective preferences.
Yoo and Cho [21] adopted an interactive genetic algorithm
to realize individual scene video retrieval. Wang et al. [90]
employed a Bayesian network to capture the relationships
between the video’s common affective tag and the user’s
specific emotion label, and used the captured relationship
to predict the video’s personal tag. Soleymani et al. [91]
tackled the personal affective representation of movie
scenes using the video’s audiovisual features as well as
physiological responses of participants to estimate the
arousal and valence degree of scenes. Finally, implicit
video tagging, which we will discuss in the next section,
infers a video’s affective content based on the user’s
spontaneous non-verbal responses. Since the response to
the same video can vary between users, implicit video
tagging is more personal and subjective.

4 IMPLICIT VIDEO AFFECTIVE CONTENT
ANALYSIS
Unlike the direct approach, in which the emotional tagging
of a video is inferred from the visual and audio features,
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implicit video affective content analysis performs automatic
analysis of users’ reactions to infer the video’s affective
content. Pantic and Vinciarelli [92] are the first to introduce
the concept of implicit human-centered tagging.

Currently, implicit video affective content analysis main-
ly adopts users’ physiological signals and spontaneous vi-
sual behaviors, since most emotion theories [93][94] agree
that physiological activity is an important component of
emotional experience, and facial expression is the primary
channel for emotion communication. Physiological signals
reflect unconscious body changes, and are controlled by
the sympathetic nervous system (SNS), while facial be-
haviors can be adopted voluntarily or involuntarily. Thus,
physiological signals provide more reliable information for
emotions compared to facial behaviors. However, to obtain
physiological signals, users are required to wear complex
apparatuses, while only one remote visible camera is need-
ed to record facial behaviors. Furthermore, physiological
signals are sensitive to many artifacts, such as involuntary
eye-movements and irregular muscle movements. These
body conditions rarely disturb users’ facial behaviors. Such
freedom of motion makes users feel comfortable to express
their emotions. Therefore, compared with physiological
signals, spontaneous visual behavior is more convenient
and unobtrusive to measure, although it is susceptible to
environmental noise, such as lighting conditions, occlusion,
etc..

Recently, Soleymani and Pantic [5] have reviewed
human-centered implicit tagging on images, videos, and
search results. In the sections below, we review current
research of implicit video content analysis. Unlike their
survey, which lists all work together [5], we categorize
current research into three groups based on adopted modal-
ities: physiological signals, spontaneous visual behavior,
and both. Table 3, Table 4, and Table 5 list the current
research of implicit video affective content analysis from
physiological signals, visible behavior, and both modalities
respectively, together with adopted modalities and features,
classifiers, emotion descriptors, the size of used datasets
(i.e., the number of video clips if not explicitly stated),
the number of subjects, and experimental results.

4.1 Implicit video affective content analysis using
physiological signals

Some researchers have focused on implicit video af-
fective content analysis using physiological signals, in-
cluding electroencephalography (EEG), electrocardiogra-
phy (ECG), electromyography (EMG), skin temperature
(ST), Galvanic Skin Response (GSR or Electrodermal Re-
sponse: EDR; or Electrodermal Activity: EDA), Heart Rate
(HR), and Blood Volume Pulse (BVP), as shown in Table
3.

Money and Agius [26] are among the first to investi-
gate whether users’ physiological responses can serve as
summaries of affective video content. Five physiological
response measures, i.e. GSR, respiration, BVP, HR and ST,
were collected from 10 subjects during their watching of

three films and two award-winning TV shows. By assessing
the significance of users’ responses to specific video sub-
segments, they demonstrated the potential of the physiolog-
ical signals for affective video content summaries. Based on
their study, they [101] further proposed Entertainment-Led
Video Summaries (ELVIS) to identify the most entertaining
video sub-segments. Soleymani et al. [91] analyzed the
relations between video content, users’ physiological re-
sponses, and emotional descriptors with valence and arousal
using correlation analysis and linear relevance vector ma-
chine. Experimental results on a dataset of 64 scenes from
eight movies watched by eight participants demonstrated
that in addition to video features, subjects’ physiological
responses (i.e., GSR, EMG, blood pressure, respiration,
and ST) could provide affective ranking to video scenes.
Fleureau et al. [97] proposed a two-stage affect detector
for video viewing and entertainment applications. They first
recognized affective events in the videos, and then use
Gaussian processes to classify the video segments as posi-
tive or negative using GSR, heart rate, and electromyogram.
Three realistic scenarios, including mono-user, multi-user,
and extended multi-user simulations, were conducted to
evaluated the effectiveness of the detector on a dataset of 15
video clips viewed by 10 users. Chêne et al. [96] proposed
a user-independent video highlight detection method using
inter-users’ physiological linkage, which is calculated from
EMG, BVP, EDA, and skin temperature. Experiments on a
dataset 26 scenes viewed by eight users demonstrated the
validity of the proposed system.

While these researchers verified the feasibility of several
physiological signals as implicit feedback, other researchers
focused on only one or two physiological signals. For
example, Canini et al. [32] investigated the relationship be-
tween GSR and arousal of videos using correlation analysis.
Their experiments on a dataset of eight subjects watching
four video clips demonstrate a certain dynamic correlation
between arousal indicated by GSR and video content.
Smeaton and Rothwell [104] tried to detect film highlights
from viewers’ HR and GSR by comparing the physiological
peaks and the emotional tags of films. Their experiments on
a database of six films viewed by 16 participants showed
high correlation between subjects’ physiological peaks and
emotional tags of videos, and the catalysis of music-rich
segments in stimulating viewer response. Toyosawa and
Kawai [105] proposed heart rates for video digesting. They
determined the attention level of each segment through
deceleration of heart rate and the high frequency com-
ponent of heart rate variability. Their experiments on a
dataset collected from 10 subjects during watching three
videos demonstrated the effectiveness of the proposed two
attention measures for arousing and event-driven contents,
but not for story centric videos and monotonous videos
with weak arousal and neutral valence. Chen et al. [13]
proposed XV-Pod, an emotion aware affective mobile video
player, to select videos based on the recognized users’
emotional state from GSR and heart flux. Their empirical
study on four participants watching funny and upsetting
video clips demonstrated that GSR and Heat Flux are two
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TABLE 3: Implicit video affective content analysis from physiological signals

References Modalities and features Analysis methods Emotion descriptors ♯Video
clips

♯Subjects Results

Abadi et
al. [95]

MEG Naive Bayesian Classifier arousal and valence 32+40 7
(3F,4M)

Accuracy: music videos: 0.657;
movies: 0.656

Canini et
al. [32]

GSR analyze the relations be-
tween arousal and feature
using correlation coefficient

continuous arousal 4 8 GSR correlates with affective
video features. Subjective s-
cores correlates with GSR

Chêne et
al. [96]

EMG, BVP, EDA, ST sliding-window correlation
+ SVM

highlights 26 8 Accuracy: 0.782

Chen et
al. [13]

GSR, and heat flux Decision Tree happiness, sadness and bore-
dom

8 4 Accuracy: 0.928

Fleureau et
al. [97]

GSR, facial EMG, PPG Gaussian Process Classifiers valence 15 10
(2F,8M)

Specificity: 0.859; Sensitivity:
0.872; Accuracy: 0.873

Kierkels et
al. [34]

ECG, GSR, respiration, ST 2D Gaussian probability
distribution.

arousal 64 7 P: 0.400

Koelstra et
al. [98]

N400 ERP ANOVA correct or incorrect tag 49 17
(5F,12M)

congruent and incongruent tags
can be distinguished by N400
activation.

Koelstra et
al. [99]

GSR, BVP, respiration, ST,
EMG and EOG

SVM arousal and valence 70 6 Accuracy: 0.855

Krzywicki
et al. [100]

middle-wave infrared image analyze the relations be-
tween temperature pattern
changes and visual and au-
ditory stimuli

amusement, anger, guilt, hap-
piness, interest, joy, embarrass-
ment, fear, sadness,shame, sur-
prise, unhappiness, love, pride,
confusion, contempt, and dis-
gust

3 10
(4F,6M)

there exist explicit thermal re-
sponses from the face due to
physiological emotion

Money et
al. [25],
[26]

EDR, HR, BVP, RR, respi-
ration rate and amplitude

Define percentile rank user
response values

action/sci-fi, horror/thriller,
comedy, drama/action, and
drama/comedy

5 10
(4F,6M)

percentile rank user response
values:80%

Money et
al. [101]

EDR, HR, BVP, RR, respi-
ration rate and amplitude;

proposed ELVIS technique, comedy, horror/comedy, and
horror

3 60 percentage overlap scores:
0.460

Soleymani
et al. [102],
[91], [35]

GSR, BVP, RSP, ST, EMG
zygomaticus and frontalis,
eye blinking rate

linear relevance vector ma-
chine

continuous valence and arousal 64 8
(3F,5M)

Mean squared error: VA: 0.014,
AR: 0.027.

Soleymani
et al. [103]

EEG SVM and Linear Discrimi-
nant Analysis

three-level arousal and three
level valence ; relevant or non-
relevant

MAHNOB-
HCI

50 F1: 0.890 for arousal, 0.830 for
valence; Accuracy: 0.830

Smeaton et
al. [104]

HR and GSR compare the physiological
peaks with the emotional
descriptors

Salway’s 21 emotion types 6 16 people experience similar and
measurable physiological re-
sponses to emotional stimuli in
films.

Toyosawa et
al. [105]

HR define two attention mea-
sures from heart activity

valence and arousal 3 10 P: 0.430

Yazdani et
al. [17]

EEG Bayesian Linear Discrimi-
nant Analysis

joy, sadness, surprise, disgust,
fear, and anger

24+6 8 Accuracy: 0.802

good indicators of users’ emotional response with arousal
and valence. They further proposed to recognize emotions
from GSR and heart flux using decision tree. Yazdani et
al. [17] proposed to perform implicit emotion multi-media
tagging through a brain-computer interface system based
on a P300 event-related potential (ERP). The experimental
results on a dataset of 24 video clips and six facial
expression images watched by eight subjects showed the
effectiveness of their system. Furthermore, naive subjects
who have not participated in training phase can also use
the system efficiently.

Instead of using contact and intrusive physiological sig-
nals, Krzywicki et al. [100] analyzed facial thermal signa-
tures, a non-intrusive physiological signal, in response to
emotion-eliciting film clips. By comparing the distribution
of facial temperatures to the summarized video clip events
from a dataset of 10 subjects viewing three film clips,
they concluded that different facial regions exhibit different
thermal patterns, and that global temperature changes are
consistent with stimulus changes. Abadi et al. [95] intro-
duced the magnetoencephalogram (MEG), a non-invasive
recording of brain activity, to differentiate between low
versus high arousal and low versus high valence using naive
Bayes classifier. They collected MEG responses from seven

participants watching 32 movie clips and 40 music videos.
The experimental results verified the feasibility of MEG
signal for encoding viewers’ affective responses.

Other than analyzing affective content of videos, Koelstra
et al. [98] attempted to validate video tags using an N400
ERP. The experimental results on a dataset with 17 subjects,
each recording for 98 trials, showed a significant difference
in N400 activation between matching and non-matching
tag.

Although the studies described above explored phys-
iological signals to analyze the affective content of a
video, their purposes (i.e., summarization [26], [105], re-
trieval [91], highlight detection [96], and tagging [104],
[106]) are not the same. In addition, they used different
methods for emotion dimension prediction, such as lin-
ear relevance vector machine [91], and emotion category
classification, such as decision tree [13], Gaussian process
classifiers [97] and SVM [96], [106] etc.

These studies illustrate the development of methods for
using physiological signals in the implicit video affective
content analysis. However, to acquire physiological signals,
subjects are usually required to wear several contact appara-
tuses, which may make them feel uncomfortable and hinder
the real application of these methods.
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Recently, great progress has been made in wearable
devices and remote sensing, such as Motorola Moto 360,
Microsoft Kinect, and Google Glass. These advanced sen-
sors may reduce the intrusiveness of traditional physiolog-
ical sensors and cameras. We believe that video affective
content analysis will attract more attention as these built-in
sensors become available.

4.2 Implicit video affective content Analysis using
spontaneous visual behavior

Some researchers have focused on implicit video affective
content analysis from human spontaneous facial behavior,
as shown in Table 3.

Joho et al. [107] proposed to use viewers’ facial ac-
tivities for highlight detection. The experimental results
on a dataset of six participants watching eight video clips
suggested that compared with the activity in the lower part
of the face, the activity in the upper part of the face is
more indicative of personal highlights. Zhao et al. [20]
extracted viewers’ facial expressions frame by frame, and
then obtained the affective curve to describe the process
of affect changes. Through the curve, they segmented each
video into affective sections.

Rather than focusing on subjects’ whole facial activity,
Ong and Kameyama [16] analyzed affective video content
using viewers’ pupil sizes and gazing points. Katti et
al. [33] employed users’ pupillary dilation response for
affective video summarization and storyboard generation.

Peng et al. [109] proposed to fuse the measurements
of users’ eye movements and facial expressions for home
video summarization. Their experimental results on eight
subjects watching five video clips verified that both eye
movements and facial expressions can be helpful in video
summarization.

In addition, two studies demonstrate the feasibility of
using facial responses for content effectiveness evaluation.
McDuff et al. [108] proposed to classify liking and desire
to watch again automatically from spontaneous smile re-
sponses. Yeasin et al. [111] employed the recognized facial
expressions to detect interest levels.

Most studies of implicit video affective content analysis
assume that the expressions displayed by the subjects
accurately reflect their internal feelings when they watched
the videos. Therefore, most researchers have directly used
the recognized expression as the emotional descriptor of
the videos. However, users’ internal feelings and displayed
facial behaviors are not always the same, evern though
they are related [112], since expressions of emotion vary
with person and context. Wang et al. [90] employed a
Bayesian network to capture the relationship between facial
expressions and inner personalized emotions, and thus
improved the performance of video emotion tagging.

All these studies have demonstrated the potential for us-
ing spontaneous visual behavior for implicit video affective
content analysis. Their purposes cover summarization [33],
[107], [109], [110], [113], recommendation [109], [114],
and tagging [16], [108], [111], and the used modalities

include facial expression [107], [109], [114], [109], [110],
[108], [111], click-through action [109], [114], and eye
movement [16], [33], [109], [110], [109]. In addition, they
used different methods for facial expression recognition,
including eMotion (a facial expression recognition soft-
ware) [109], [114], SVM [109], [110], Bayesian net-
works [107], [115], HMM [111] and hidden conditional
random field [20].

4.3 Hybrid methods
In addition to using physiological signals or visual behavior
signals independently, there is also work that combines
the two modalities. Table 5 summarizes the related hybrid
methods. Koelstra et al. [28] proposed to use both facial
expressions and EEG signals for video affective content
analysis in the valence-arousal space. Experimental results
on the MAHNOB dataset [116] demonstrated that both
feature-level and decision-level fusion methods improve
tagging performance compared to single modality, suggest-
ing the modalities contain complementary information. The
same conclusion is also reached by Soleymani et al. [117],
[29], who proposed to recognize emotions in response
to videos by fusing users’ EEG signals, gaze distance,
and pupillary response from both feature-level fusion and
decision-level fusion. As well as analyzing affective content
of videos, Arapakis et al. [118] verified the feasibility
of topic relevance prediction between query and retrieved
results from audiences’ facial expression and peripheral
physiological signals such as GSR and skin temperature.

5 BENCHMARK DATABASE

Most video affective content analysis research requires
emotion-induced video databases. Constructing a bench-
mark video database for emotion tagging and analysis is
a key requirement in this field. However, as seen in Table
1 to Table 5, we find that most current works constructed
their own databases to validate their methods.

For direct video affective content analysis, Baveye et
al. [119] proposed the LIRIS-ACCEDE, which is com-
posed of 9800 video clips extracted from 160 movies
shared under Creative Commons licenses. Therefore, this
database is publicly available without copyright issues.
1,517 annotators from 89 different countries participated
in the rating-by-comparison experiments on crowdsourcing.
FilmStim [120] is another database including 70 film ex-
cerpts annotated by 364 participants using 24 emotional
classification criteria. The MediaEval 2010 Affect Task
corpus [121] was constructed for boredom detection. It
includes 126 videos between two and five minutes in length,
which are selected from a travelogue series called My Name
is Bill, created by filmmaker Bill Bowles. The videos,
the extracted speech, and the available metadata including
the episodes’ popularity and the ground truth annotations
obtained from the crowdsourcing platform Mechanical Turk
are provided. Recently, Tarvainen et al. [122] constructed a
dataset consisting of 14 movie clips 1-2.5 minutes in length,
rated by 73 viewers with 13 stylistic attributes, 14 aesthetic
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TABLE 4: Implicit video affective content analysis from visible behavior

References Modalities and features Analysis methods Emotion descriptors ♯Video
clips

♯Subjects Results

Joho et
al. [107]

facial expressions Naive Bayesian Classifiers highlights 8 6
(3F, 3M)

F-score: 0.350

Katti et
al. [33]

pupil and eye gaze define the relation between
the arousal and pupillary di-
lation

continuous arousal 5 20 Verify the
effectiveness of
pupillary dilation
for affective
video content
analysis

McDuff et
al. [108]

feature points and local binary pat-
ter features

Naive Bayesian, SVM, H-
MM, and Hidden-state and
Latent Dynamic CRF

liking and desire to watch
again

3 6729 AUC: 0.800,
0.780

Ong et
al. [16]

pupil features and gazing points
features

K-means cluster neutral, happiness and hor-
ror

133 6
(3F, 3M)

Accuracy: 0.719

Peng et
al. [109],
[110]

head motion, center of an eyeball,
two corners of the eye and the
upper eye lid and facial expression

define the relations between
interest and features

interested or not interested 5 8
(2F, 6M)

The proposed
Interest Meter
can recognize
shot clips that
interest subjects.

Wang et
al. [90]

head motion and facial expression SVM + BN happiness, disgust, fear, sur-
prise, anger, sadness

NVIE about 100 Accuracy: 0.548

Yeasin et
al. [111]

facial expression HMM + k-NN arousal, valence and stance 488 97 Accuracy: 0.909

Zhao et
al. [20]

facial expression hidden CRF comedy, tragedy, horror,
moving, boring, exciting

100 10
(4F, 6M)

Accuracy: 0.854

TABLE 5: Implicit video affective content analysis from both physiological signals and visible behavior

References Modalities and features Analysis methods Emotion descriptors ♯Video
clips

♯Subjects Results

Arapakis et
al. [118],
[109], [114]

facial expressions, ST, GSR,
click-through, HR, accelera-
tion, heat flux

SVM; KNN relevant and irrele-
vant

200 hour
videos

24
(10F,14M)

Accuracy: 0.665;
P: 0.662; R: 0.676

Koelstra et
al. [28]

EEG, facial expression Gaussian Naive
Bayesian classifier

discrete valence,
arousal and control

MAHNOB-
HCI

30 Accuracy: arousal: 0.800, valence:
0.800, control: 0.867

Soleymani et
al. [117], [29]

pupil diameter, gaze distance,
eye blinking, EEG.

feature-level: SVM;
decision-level:
probabilistic model

three level arousal
and three level va-
lence

20 24 Accuracy: feature-level:(0.664,
0.584), decision-level:(0.764,
0.685);
F1: feature-level: (0.650, 0.550),
decision-level: (0.760, 0.680)

attributes, and temporal progression of both perceived and
felt valence and arousal.

For implicit video affective content analysis, Koelstra
et al. constructed DEAP (Database for Emotion Anal-
ysis using Physiological signals) [35]. It includes elec-
troencephalogram and peripheral physiological signals (i.e.,
GSR, respiration, ST, ECG, BVP, EMG, and electroocu-
logram (EOG)), collected from 32 participants during 40
one-minute long excerpts of music videos. It also in-
cludes frontal face videos from 22 participants. The videos
are annotated in terms of the levels of arousal, valence,
like/dislike, dominance, and familiarity. The MAHNOB-
HCI [116] database consists of face videos, speech, eye
gaze, and both peripheral and central nervous system
physiological signals from 27 subjects during two exper-
iments. In the first experiment, subjects self-reported their
emotional responses to 20 emotion-induced videos using
arousal, valence, dominance, and predictability as well
as emotion categories. In the second experiment, subjects
assessed agreement or disagreement of the displayed tags
with the short videos or images. The NVIE (Natural Visible
and Infrared Facial Expression) database [123] is another
multimodal database for facial expression recognition and
emotion inference. It contains both posed expressions and
video-elicited spontaneous expressions of more than 100
subjects under three illumination directions. During the

spontaneous expression collection experiments, the partici-
pants self-reported their emotion experience to the stimuli
video according to six basic emotion categories, namely
happiness, disgust, fear, sadness, surprise, and anger. None
of the three databases provide the stimulus videos to the
public due to copyright issues. However, researchers can
directly obtain the information from the database construc-
tors. Recently, Abadi et al. [124]proposed DECAF (a multi-
modal dataset for DECoding user physiological responses
to AFfective multimedia content) database. The database
comprises synchronously recorded MEG data, near-infra-
red facial videos, horizontal Electrooculogram (hEoG),
ECG, and trapezius-Electromyogram (tEMG) peripheral
physiological responses from 30 participants watching 40
one-minute music video segments and 36 movie clips.
Participants report their assessment of valence and arousal
ratings for music and movie clips.

6 CHALLENGES AND RECOMMENDATIONS
FOR FUTURE DIRECTIONS

Although much work has been conducted on video affective
content analysis in recent years, and great progress has been
made, video affective content analysis remains in its infan-
cy. There are many challenges in three aspects: emotion
annotation for emotional descriptors, feature extraction (i.e.,
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representation) for characterizing video affective content
as well as measurements of users’ physiological or visual
behavior response, and relations among video content,
users’ response and emotional descriptors. In this section,
we briefly discuss the challenges and potential solutions in
each of these areas.

6.1 Emotional descriptors
Almost all research of video affective analyses adopt self-
reported data for the ground truth labels. However, the
emotion of the subjects is very difficult to obtain, and even
self-reports are not always reliable due to many problems
such as cognitive bias [125]. Recently, Healey’s work [126]
indicated that triangulating multiple sources of ground truth
information, such as in situ rating, end-of-day rating and
third party rating, leads to a set of more reliable emotion
labels. We may refer to this work to obtain ground truth
emotion labels in future research.

Most present research has assumed that there is only
one emotional descriptor or point in emotional dimensional
space for a video. However, it is very hard to find videos
that induce a high level of a single emotional category
without the presence of other emotions, either in day-to-
day living or inside the laboratory. Research [127], [128]
demonstrates that when users watch amusing videos, they
often feel amused, happy, and surprised simultaneously. The
videos that induce anger may also induce some degree
of disgust, sadness, fear, and/or surprise, but not high
levels of happiness. Therefore, emotional annotation should
accommodate the simultaneous presence of multiple emo-
tions. Furthermore, the co-existent and mutually exclusive
relations among emotions should be exploited during video
affective content analysis [34], [129].

Finally, there is also the issue of video granularity. The
smallest analyzable unit for current video affective content
analysis can be a shot, a scene, or an arbitrary segmentation.
Some research uses a shot as the smallest analyzable unit.
The assumption is that emotions do not change during
a shot. Subsequently, for each shot, there should be one
characteristic emotion that the audience is expected to feel.
However, a shot (i.e., an uninterrupted run of a camera
take) may not be adequate to convey a concept and/or
induce a well-defined emotional state in the user, since its
average length is short. Instead, a scene in a movie depicts a
self-contained high-level concept. That is why some works
chose scene as the elementary unit. However, emotions may
change across scenes [130]. Other works adopted arbitrary
segmentation as the elementary unit. The length of the
segments varies from several seconds to several minutes.
Since the duration of users’ emotional state varies with the
stimulus videos and users, the granularity of video affective
content analysis may also vary. An adaptive emotion change
model may be helpful to select the proper granularity.

6.2 Feature representation for video content and
users response
Current research uses hand-crafted features to represent
the video’s affective content. Most existing features are

inspired by cinematic principles and concepts, while most
features for characterizing users’ emotional responses are
inspired by psychological research. Since the relationship
between the low-level video features and users’ emotional
responses is still not well understood, and may varies by
task and by individual, it may be better to automatical-
ly learn features from data instead of using the hand-
crafted features. Deep learning [131] has been quite ef-
fective in learning feature representation. It has achieved
excellent performance in several fields including computer
vision [132], speech recognition [133], and brain-computer
interfaces [134]. Unlike shallow learning, the advantages
of deep learning include hierarchical data representations
of features at different levels of abstraction that match
better with the human visual cortex, and are more tolerant
to image variation including geometric and illumination
variation, yielding greater predictive power. Therefore, fu-
ture research should investigate deep learning or other
feature learning methods to learn more effective features
to characterize video’s affective content and to characterize
user’s emotional responses.

Moreover, instead of performing purely data-driven fea-
ture learning, we should not ignore years of research when
deriving hand-crafted video features based on cinematog-
raphy and physiology. This can be accomplished by in-
corporating cinematographic and physiological knowledge
into current data-based feature learning methods. This line
of research has achieved promising results in several areas
including brain-computer interaction (BCI) [135] and rep-
resents a brand new direction to pursue for video affective
content analysis.

Furthermore, video affective content analysis via a
middle-level representation is a promising direction to
pursue in the future. This research can be applied to both
direct and implicit video affective content analysis. Middle-
level representation can better bridge the semantic gap be-
tween the low-level features and high-level users’ emotions.
Through middle-level representation, the relationships be-
tween video features and emotion descriptors as well as
users’ spontaneous responses and emotion descriptors can
be better modeled, leading to more accurate predictions as
demonstrated by the existing work in this area. In addition
to further extending the existing middle-level representa-
tions, one possible new direction in this area is to combine
the manually defined middle-level representation with the
automatically learned middle-level representation so that
semantically meaningful middle-level representations can
be learned from the data.

6.3 Hybrid analysis

Present direct video affective content analysis approaches
involve mapping from video content to emotional descrip-
tors. Implicit video affective content analysis approaches
map users’ spontaneous responses to emotional descriptors.
Little research considers the relationships among video
content, users’ spontaneous responses, and users’ emotional
states simultaneously. We believe that fully exploiting the
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three aspects and their relationships is crucial to reducing
the semantic gap between the low-level video features and
the users’ high-level emotional descriptors. Thus, hybrid
analysis from both video content and viewers’ responses
may improve tagging performance [3]. Furthermore, since
subjects may be uncomfortable by wearing sensors to detect
their body changes or being observed by cameras during the
actual tagging, it is more practical to employ users’ phys-
iological responses during model training only [136]. In
actual tagging, only video features would be used, without
measuring user response [136]. The study of learning using
information that is available only during training, i.e., the
privileged information [137], will be a potential solution.
This may be referred to as implicit hybrid analysis.

6.4 Personalized video affective content analysis
Since assessment of the affective content of a video varies
greatly from person to person, it is increasingly necessary
to perform personalized video affective content analysis.
This requires the individualization of the current affective
analysis models by incorporating a user’s personal profile
and affective preferences into the models. As mentioned
above, such a personalized affective analysis can achieve
better performance and improve usability. One potential
solution to better model individual emotion is the multi-task
learning technique. With multi-task learning, the personal
emotion for one viewer can be regarded as a single task
representing an individual factor, while multiple individual
emotion models for multiple viewers share common fac-
tors. By learning the multiple individual emotion models
simultaneously and exploiting their commonality, multi-
task learning can lead to an improved individual emotion
model.

6.5 Context and prior knowledge
Present research has ignored the contextual nature of emo-
tion. However, the same viewer can experience different
emotions in response to the same video depending on the
context, including time, temperature, mood [138], degree
of familiarity, motivation, and social context. Important
contextual factors should be incorporated into the emo-
tional analysis process. One possible approach is to use
probabilistic graphical models, which can fully integrate
contextual information and observable evidence for emo-
tional analysis [139].

In addition to context, current analysis ignores some
prior knowledge that is readily available, particularly dur-
ing training. For example, current video affective content
analysis does not consider gender differences in response
to emotional stimuli. The neurophysiological study by C.
Lithari et al. in [140] proved that there are gender differ-
ences in response to emotional stimuli. This observation
may provide prior knowledge in video affective content
analysis. For example, the prior probability of emotions
for male and female subjects may be different for the same
videos. Thus, gender differences could be exploited during
training as privileged information [137] to produce a better

classifier or regressor, or be exploited as prior information
during testing to improve the performance of video affective
content analysis.

6.6 Actor-centered video affective content analy-
sis
Existing video affective content analysis focuses on generic
video elements, but both generic video elements and actor-
related specific video elements can affect the viewers’
emotions. Less work has been done on actor properties
and their effect on viewers’ emotions. Actor attributes are
important since viewers may empathize with and attach
emotions to the actors in the videos. In fact, study of film
syntax suggests the performance of actors and actresses,
including actor-related attributes such as gesture or facial
expression, can effect a viewer’s emotion. Actor-centered
video affective content analysis is, in particular, important
for user-generated videos since ordinary users usually do
not have the expertise to apply various film grammars to in-
troduce viewers’ emotions. Srivastava et al. [141] addressed
the recognition of emotions of movie characters. Low-level
visual features based on facial feature points are employed
for facial expression recognition, whereas lexical analysis
of dialog is performed in order to provide complementary
information for the final decision. Actors in a video typi-
cally express their emotions through non-verbal behaviors
such as facial expression and body gestures. Actor-centered
video affective content analysis can therefore benefit from
the large body of research on human expression and body
gesture recognition in computer vision.

6.7 Benchmark Database
Almost all studies of video affective content analysis adopt
their own individually developed corpus, typically with
small size and little information on context and individ-
ual emotional descriptors. Creating a larger scale high-
quality database is a prerequisite to advance algorithm
development for video affective content analysis [119].
However, it is not only time-consuming but also difficult,
since emotions are subjective and context-dependent, and
emotional labels are usually collected from viewers’ self-
reports. Soleymani et al. pointed out three critical factors
for affective video corpora: the context of viewer response,
personal variation among viewers, and the effectiveness
and efficiency of corpus creation [142]. In order to model
emotional responses that vary with context and across
videos, the database should include a large number of
responses collected from a very large and representative
population. Online systems and crowdsourcing platforms
(e.g., the Mechanical Turk) may be exploited to recruit
large numbers of viewers with a representative spread
of backgrounds to watch videos and provide contextual
information on their emotional responses. Both the common
and personalized emotion tags should be collected. Finally,
we briefly discuss the annotation reliability issue. Data
labeling and annotation is a subjective process and the
results may vary with the expertise level of the annotators.
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Poor annotation could adversely affect the subsequent video
affective content analysis. To improve annotation quality
and consistency, multiple annotators should be employed
and the final annotation results should reflect the consensus
among different annotators, through triangulating multiple
sources of ground truth information [126] or more sophis-
ticated techniques such as the MACE technique introduced
in [143] that uses an unsupervised item-response model to
infer the underlying true annotation from different individ-
ual annotators. This issue deserves further investigation in
the video affective content analysis community.

7 CONCLUSION

In this paper, we provide a thorough review of current
research of video affective content analysis. We first lay
out the major components for video affective content
analysis, This is followed by a discussion of different
emotion theories and their definitions of emotions as well
as the relationships among emotion definitions. We review
related work for two major video affective content analysis
approaches with a focus on the direct video affective con-
tent analysis. For direct video affective content analysis,
we review the audio and visual features used to characterize
the video’s affective content. We, in particular, focus on
the video features inspired by the cinematic principles and
physiological studies. We classify video features into differ-
ent categories and compare their strengths in characterizing
different aspects of video emotion and different types of
video emotion. We then review different types of models
that map video features to a video’s affective contents. We
group the models into static models and dynamic models,
as well as probabilistic models and deterministic models,
and compare their respective strengths and weaknesses.
In addition to discussing well-established topics, we also
discuss emerging topics on middle-level representations and
personalized video affective content analysis. For implicit
video affective content analysis, we provide a review of
video affective tagging from physiological signals, visual
behavior, and both. We also review the available bench-
mark databases for both direct and implicit video affective
content analysis.

Finally, we identify research issues, future directions
and possible solutions for several areas of video affective
content analysis. For emotion data annotation, we point
out the need for providing multiple emotion labels for
each video due to the simultaneous presence of multiple
emotions. We also recommend capturing and exploiting the
relationships among multiple emotions to improve emotion
recognition performance.

We also identify a few research issues for direct video
affective content analysis. For video feature representa-
tion, we propose to investigate the latest deep learning
paradigm to automatically learn video features to effec-
tively characterize a video’s affective content. We further
propose to augment the data-driven deep learning with
the established physiological and cinematic knowledge in
order to avoid over-fitting and to improve the generalization

ability of the learnt features. Furthermore, to better bridge
the semantic gap between video features and its emotional
content, we recommend further research on the middle level
representation. Specifically, we propose a hybrid middle
level representation that combines manually derived mid-
level representation with those learnt automatically from
the data. Since the affective preferences vary with users,
video affective content analysis should be personalized
to fit to each person’s specific affective preferences. For
personalized video affective content analysis, we propose to
use multi-task learning methods to perform individualized
video affective content analysis. Finally, to perform affec-
tive content analysis on user-created videos, we propose to
focus on actor-specific video features since the traditional
physiologically and cinematically inspired features for films
and movies may not be applicable to amateur videos.

For the implicit video affective content analysis,
future research should focus on using less intrusive
wearable sensors to acquire physiological signals as
well as on combining sensors of different modalities
to measure user’s spontaneous responses.
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