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By using the knowledge of facial structure and temperature distribution, this paper proposes an
automatic eye localization method from long wave infrared thermal images both with eyeglasses and
without eyeglasses. First, with the help of support vector machine classifier, three gray-projection
features are defined to determine whether a subject is with eyeglasses. For subjects with eyeglasses, the
locations of valleys in the projection curve are used to perform eye localization. For subjects without
eyeglasses, a facial structure consisting of 15 sub-regions is proposed to extract Haar-like features. Eight
classifiers are learned from the features selected by Adaboost algorithm for left and right eye,
respectively. A vote strategy is employed to find the most likely eyes. To evaluate the effectiveness of
our approach, experiments are performed on NVIE and Equinox databases. The eyeglass detection results
on NVIE database and Equinox database are 99.36% and 95%, respectively, which demonstrate the
effectiveness and robustness of our eyeglass detection method. Eye localization results of within-
database experiments and cross-database experiments on these two databases are very comparable with
the previous results in this field, verifying the effectiveness and the generalization ability of our
approach.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Face and facial expression recognition, which are the primary
communication functions of humans, have drawn growing atten-
tion in the research areas related to human–computer interaction
and psychology. In the recent years, considerable progress has
been made in the field of face and facial expression recognition
using visible images and videos [1–3]. However, most of the
existing methods are not robust enough for employment in
uncontrolled environments. Illumination change is the most
important factor, because it can significantly influence the appear-
ance of visible images. Nevertheless, long wave thermal infrared
(IR) images, which record the temperature distribution, are not
sensitive to illumination condition [4,5]. Thus, IR-based face and
facial expression recognition algorithms may improve the recogni-
tion performance in uncontrolled environments, and can be
regarded as a crucial complementarity to visible face and facial
expression recognition [5–9]. As eye is one of the most significant
features of human face, automatic eye localization is required for
face and expression recognition in thermal spectrum. Despite of
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much progress in eye detection for visible images [10], there has
been little progress for eye detection for thermal images. Since the
thermal camera acquires absolute temperature values of a face, the
geometric and appearance features of thermal images are more
blurred than visible images, although, recent work on camera
focus can significantly reduce blur effect caused by the tempera-
ture accuracy [11,12]. So, it is more difficult to perform eye
localization from infrared thermal images [13]. Most existing
research either manually marks the eyes [7] or automatically
detects them in a co-registered visible image [9,14], making the
realistic use of thermal infrared imagery alone impossible.

Even though some geometrical features and appearance fea-
tures are lost in thermal images, infrared thermal images retain
the information of the basic facial structure and the temperature
distribution of face. For instance, eye regions are almost symme-
trical, the eyebrows and the nose are usually cold [15,16], and the
cheek is warm. The distinction between the intensity of back-
ground and that of face is significant in most cases, since the
emissivity of human skin is different from that of other material.
The regions of eyeglasses are dark, because thermal radiation is
opaque to eyeglasses.

According to the above knowledge, we propose an automatic
eye localization method from long wave infrared thermal images
with and without eyeglasses. Since eyeglasses are opaque in the
thermal infrared spectrum and therefore show black in thermal
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images, it is necessary to perform eye localization on samples with
eyeglasses and without eyeglasses separately. First, we perform
eyeglass detection. Three features are defined to describe the
valleys in the gray-level integration projection curve caused by
eyeglasses. Then, a Support Vector Machine (SVM) is used to
distinguish the samples with or without eyeglasses. For samples
with eyeglasses, projection curve is used to localize the eye
centers. For eye localization on samples without eyeglasses, we
firstly detect the face region according to the temperature diver-
sity between the facial area and the background. In the training
phase, Haar features [17,18] are extracted to represent the intensity
feature information of facial regions. We use eight kinds of feature
sets to seek the best description of the intensity variation. A facial
structure consisting of 15 sub-regions is proposed, and then eight
kinds of Haar-like features, including two edge features, four liner
features, one center-surrounding feature and one diagonal feature,
are extracted from these sub-regions. After that, the AdaBoost
algorithm is used to select features from each Haar-like feature
sets in each sub-region. The selected features from 15 sub-regions
are then combined to form a feature vector, based on which, eight
SVM classifiers are trained. The structure parameters of the 15
sub-regions are also calculated from the training samples. In the
testing phase, the structure of 15 salient sub-regions is used by
sliding on the left/right half part of the face, and eight feature
vectors are extracted. A voting strategy is used to determine
whether the pixel is an eye or not. The pixel with the largest vote
is declared an eye.

The proposed eye localization method is evaluated on the
thermal sub-database of Natural Visible and Infrared Expression
(NVIE) database [19] and Equinox database [20,21]. Both within
database and cross-database experiments are conducted, demon-
strating the effectiveness and generalization ability of our approach.

The remainder of this paper is organized as follows. Related
works are introduced in Section 2. Section 3 provides the details of
our eye localization method, including eyeglass detection, eye
localization on samples with eyeglasses and without eyeglasses.
Section 4 introduces the experimental conditions and results.
Section 5 concludes the paper.
2. Related works

Depending on the wavelength, infrared images can be divided
into Short Wave InfRared images (SWIR, 950–1700 nm), Medium
Wave InfRared images (MWIR, 3000–5000 nm), and Long Wave
InfRared images (LWIR, 8000–14,000 nm). Our work belongs to
the category of eye detection from the long wave infrared thermal
images. There exist several works of eye location from short wave
[22,23] and middle wave [13,22] infrared images. Eye detection
from short wave infrared images is relatively easier since most of
the eye features are visible. As noted in [13], eye detection from
middle wave infrared images is, however, challenging. This is
because in the middle wave infrared domain limited features can
be extracted from the eye region. Except for eyelashes and eye-
brows, other important eye features such as irises, pupils, and
superficial blood vessels of the conjunctiva are unclear. For the
long wave infrared thermal images used in our paper, eye detec-
tion is even more challenging since even eyelashes and eyebrows
are difficult to detect. Thus, the eye localization in the long wave
infrared images conducted in this paper is more challenging than
all these works. To the best of our knowledge, only one work deals
with the eyeglass detection in long wave infrared thermal images
[24,4], and three works [14,15,25] have been reported to detect
facial components from long wave infrared thermal images with-
out eyeglasses.
Due to the imaging theory of infrared thermal images, the
eyeglasses are opaque, which block the temperature information
of the eyes region [4]. The presence or absence of the eyeglasses
may affect the performance of the facial temperature based
recognition task [5,26]. For example, Wang and Liu [26] have
conducted a series of experiments on Equinox Database to validate
the influence of eyeglass on infrared facial recognition. The study
shows that recognition results are poor while conducting cross-
corpus face recognition experiment on datasets with and without
eyeglasses, while good and relative stable recognition results can
be achieved on a database, in which all the subjects with eye-
glasses on or off. Thus, eyeglass detection is necessary in our eye
localization task from infrared thermal images, since eye detection
is the first step in most face recognition task. Heo et al. [4,24]
proposed a eyeglass detection method using Ellipse Fitting. Since
the eyeglasses regions in thermal face images are symmetric and
elliptic, the most similar ellipses can be seen as the eyeglass
regions. First, a thermal image was binarized. Then, the data points
in the binary image were connected using the Freeman chain
coding with 8-connectivity. A non-iterative ellipse-fitting algo-
rithm was applied to each set of connected components to
produce an ellipse. The two most similar ellipses within the face
region were detected as the possible eyeglasses. The authors
conducted their eyeglass detection experiment on the thermal
images selected from the Equinox database, and achieved the
eyeglass detection accuracy of 93.79%.

For eye localization from thermal images without eyeglasses,
the first work is performed by Selinger and Socolinsky [14]. They
first located face region using a boosted tree-like class-cover catch
digraph classier with a maximum rejection bias [27]. Then eye
locations were searched in the upper half of the face area using a
boosted cascade of Haar-like feature classifiers. The mean absolute
error (Mean) and the standard deviation (StDev) of the error in the
x- and y-coordinates for the left and right eyes were used to
evaluate the performance of their method. They conducted the
experiment on the samples without eyeglasses from Equinox
database.

The second work is conducted by Trujillo et al. [15], who extracted
interest points based on the intensity features to represent facial
components. They used Harris features and k-means clustering to
detect eyes and mouth regions. They evaluated their approach on
a gallery set composed of 30 individuals with 3 expressions
(i.e. surprise, happiness, and anger) and 3 poses from OCTBVS
database. Since the main purpose of their work was to recognize
facial expression from thermal images, the detailed experimental
results on eyes and mouth detection were not provided.

The third work is performed by Martinez et al. [25]. They
presented an automatic method for detecting eyes, nostrils, and
mouth in facial thermal imagery. The detection of eyes and nostrils
was performed using SVM and Gentle Boost algorithm based on
Haar-like features. Then a region of interest (ROI) for mouth detection
was selected based on the detections of the eyes and nostrils. Patch
entropy and self-similarity [28] were combined to detect the mouth
open/close states and their positions. Their approach was evaluated
on their own database including 78 images of 22 subjects, and got a
correct detection rate for eyes of 83%.

The studies above illustrate the development of eye detection
from thermal images. However, no research has considered eye
localization from thermal images with and without eyeglasses
simultaneously. Thus the existing study cannot be directly applied
to real situation, where we cannot know whether the subjects
wear eyeglasses or not in advance. Thus, in this paper, we first
propose the method to recognize whether there exist eyeglasses.
For samples without eyeglasses, we propose a facial structure
consisting of 15 sub-regions to fully capture the temperature
distribution around the eyes for robust eye localization.
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3. Methods

In this section, we introduce the main process of our eye
localization method consisting of eyeglass detection, eye localization
from images with eyeglasses, and eye localization from images
without eyeglasses. The framework of our method is shown in Fig. 1.

3.1. Eyeglass detection

Glasses are opaque in the thermal infrared spectrum, and
therefore show black in thermal images. Thus the intensity of
the eyeglass region is much lower than other regions of the
images. It causes valleys in the gray-level integration projection
curves. Thus, we define three features as shown in Fig. 2.

First, the original thermal image is converted into grayscale
image I, and the horizontal integration projection Ph(I) of image I is
calculated according to Eq. (1).

PhðIÞ ¼ ∑
W

x ¼ 1
Iðx,yÞ ð1Þ

where Iðx,yÞ represent the gray value of point (x,y) in grayscale
image, and W is the width of this image. As shown in Fig. 2(b), the
horizontal projection curve generates obvious valleys at the eye-
glass regions. Thus, we define the first feature R1 to describe this
valley V1 as shown in Eq. (2),

R1ðV1Þ ¼
HvðV1Þ2
WvðV1Þ

ð2Þ

where Hv and Wv are the height and width of this valley, as shown
in Fig. 2(b). If R1 is larger than a threshold, the position of this
valley is likely to be the vertical position of eyeglass (Yv). We select
this region as the region of interest as shown in Fig. 2(c).

Second, the Otsu threshold algorithm [29] is employed to
generate the binary image of this region, as shown in Fig. 2(c).
Similar to Eq. (1), the vertical projection of the binary image can be
Fig. 1. Framework of eyeglass de

Fig. 2. Glass detec
represented by

PvðBÞ ¼ ∑
H

y ¼ 1
Bðx,yÞ ð3Þ

where Bðx,yÞ represents the binary value of point (x,y) in the
binary image, and H is the height of this image.

Third, the x-coordinates (x̂l and x̂r) of two maximum vertical
valleys (VVl and VVr) are selected to represent the horizontal
central coordinates of left and right eyeglasses, which are shown
in Fig. 2(c). In order to represent the horizontal effect of eye-
glasses, another parameter R2, is calculated by adding the R1
features of these two valleys VVl and VVr,

R2ðVVl,VVrÞ ¼ R1ðVVlÞþR1ðVVrÞ ð4Þ
In addition, the x-coordinate (xc) of the peak of vertical

projection curve is also calculated, which is shown in Fig. 2(c).
Generally, xc is the midline position of ROI, because the tempera-
tures of two eyes' centers are lower than that of both sides. Then,
we divide the ROI into two sub-regions through xc. Similar to
Eq. (1), the y-coordinates (ŷl and ŷr) of the maximum horizontal
valleys (HVl and HVr) of these two sub-regions' horizontal projec-
tion curves are obtained separately. Then, similar to R2, another
feature named R3 is calculated by adding the R1 features of valleys
HVl and HVr as following:

R3ðHVl,HVrÞ ¼ R1ðHVlÞþR1ðHVrÞ ð5Þ
Finally, based on these three features, the SVM classifier with

polynomial kernel function is adopted to recognize the samples
with or without eyeglasses.

3.2. Eye localization

Through eyeglass detection, all the samples will be classified as
samples with eyeglasses and samples without eyeglasses. For the
samples with eyeglasses, their eye locations can be determined by
(x̂l , ŷl ) and (x̂r , ŷr ) calculated from Section 3.1. For the samples
tection and eye localization.

tion process.
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without eyeglasses, the details of eye localization method are
introduced as follows.

3.2.1. Face detection
In order to reduce the search area of eyes, we first detect the

face automatically. In most cases, the temperatures of human faces
are different from those of the environment, so it is feasible to
detect a face from thermal images. The Otsu threshold algorithm
[29] is adopted to binarize infrared thermal images. Then the
horizontal and vertical projection curves are calculated from
binarization images, according to Eqs. (1) and (3). After that, the
largest gradient of the projection curve is used to detect the face
boundary automatically. Finally, face images are normalized to
Hf �Wf , in which Hf and Wf are the height and width of face
images. In order to enhance the detail of the thermal face,
histogram equalization is applied to the normalized face.

3.2.2. Feature extraction and selection
The geometrical and appearance features of eyes in thermal

images are so weak that it is even difficult to detect eyes precisely
by human beings in some cases. Therefore, it is very important to
find useful characteristics in thermal images for eye localization.
To do this, an average thermal face is calculated from the training
database, as shown in Fig. 3. From the average face, we find the
temperature distributions on different facial regions are different,
which is further analyzed by an Analysis of Variance (ANOVA) on
the mean of sub-regions' temperature in Section 4.3. For example,
eyebrows and nose are the coldest region on a human face [16],
the cheek is warm, and the left and right eyes are symmetric and
are slightly cold. To extract useful features from these areas, we
identify a structure of 15 sub-regions around them, as shown in
Fig. 3. For the left eye, we assume the center of sub-region 1 is
located in the left eye. Then the center of sub-region 6 is the right
eye, and the center of sub-region 11 is nose. The centers of other
sub-regions are determined by L and S, which are the horizontal
distance between two eyes and the vertical distance between eyes
and nose, respectively, as shown in Fig. 3. It is similar for the right
eye. During the training phase, the centers of sub-regions 1, 6 and
Fig. 3. Fifteen sub-regions on the average face.
11 are manually located, and the mean and variance of L and S can
be computed from all the training samples, which will be used in
the testing phase.

Then, eight kinds of Haar-like feature sets, including two edge
features (Fig. 4(a)), four line features (Fig. 4(b)), one center-
surrounding feature (Fig. 4(c)) and one diagonal feature (Fig. 4(d))
are extracted from each sub-region with size of m�m [18].

Since the feature dimension of each Haar-like set is very large,
feature selection is required. Motivated by the work of Viola and
Jones [17], we use AdaBoost algorithm to select the most repre-
sentative features from each Haar-like feature set. Then the
selected features from 15 sub-regions for the same Haar-like set
are linearly combined. SVM with linear kernel is used as the eye
classifier. Since there are eight Haar-like feature sets, eight left eye
classifiers and eight right eye classifiers are trained for left and
right eye localization, respectively.

3.2.3. Testing method
In the testing phase, the face is detected and normalized first by

the method described in Section 3.2.1. When detecting the left eye,
we focus on the upper left part of the face by a sampling step of n
pixels. The sampled pixels are regarded as the left eye candidates.
Then eight kinds of Haar-like feature vectors are extracted from 15
sub-regions centered around the assumed left eye coordinates,
based on the structure obtained from the training phase. After
that, the candidate is voted by eight well learned classifiers using
the corresponding feature vectors, respectively. The pixel with the
most votes is declared as the detected left eye coordinates.
A similar process is performed for the right eye localization.
4. Experiments

4.1. Experimental conditions

Two thermal facial image databases, NVIE [19] database and
Equinox [20] database, are adopted in this study. The NVIE
database contains both spontaneous and posed expressions of
215 subjects (157 males and 58 females), recorded simultaneously
by a visible camera and an infrared thermal (wave band 8−14 μm,
resolution: 320�240) camera, with illumination provided from
three different directions. The posed database also includes
expression images with and without eyeglasses. The Equinox
database contains four kinds of images, visible, LWIR (8−12 μm,
resolution: 240�320), MWIR (3−5 μm), and SWIR (0:9−1:7 μm),
with illumination provided from three different directions, front,
left, and right, and three expressions on every condition. Since the
method we propose is performed on infrared thermal images, the
thermal sub-database of NIVE and LWIR samples of Equinox are
selected.

We conduct our eye localization experiment in two different
ways, within database experiment and cross-database experiment.
Within database experiment means training and testing on the
same database. In contrast, we conduct our cross-database experi-
ment by training on the NVIE database, but testing on the Equinox
database, or training on the Equinox database but testing on the
NVIE database, to verify the robustness and effectiveness of our
method.
Fig. 4. Haar-like feature sets. (a) Edge features; (b) line features; (c) center-
surrounding feature; (d) diagonal feature.
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While performing the within experiment of glass detection on
the NVIE database, the training set is composed by 1632 images
with eyeglasses and 1602 images without eyeglasses, regarding as
AbsMeanErrorx ¼
∑N

i ¼ 1jx̂i−xij
N

AbsMeanErrory ¼
∑N

i ¼ 1jŷi−yij
N

StDevx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i ¼ 1ðjx̂−xij−AbsMeanErrorxÞ2
N

s
StDevy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i ¼ 1ðjŷ−yij−AbsMeanErroryÞ2
N

s
8>>>><
>>>>:

ð7Þ

Table 1
K–S test results on samples with and without eyeglasses

Sig. R1 R2 R3

NVIE database 0.00 7.5371e−190 0.00
Equinox database 6.04e−82 4.452e−89 6.04e−82

Table 2
Groups of facial sub-regions

Group 1 2 3 4 5 6 7 8 9

Sub-region 1, 6 2, 7 3, 8 4, 9 5,10 11 12 13,15 14
the positive samples and negative samples, respectively. All of
which are selected from the infrared posed expression database of
the NVIE database. The infrared spontaneous expression database
of NVIE is regarded as the testing set, including 128,557 infrared
images (93,027 with eyeglasses, 35,550 without eyeglasses) from
215 subjects. While for Equinox database, 320 images are selected
as the training set, composed by 160 with eyeglasses and 160
without eyeglasses. The remaining images are selected as the
testing images.

After the samples with eyeglasses are screened out, we per-
formed our eye localization experiment on samples with eye-
glasses. For the samples without eyeglasses, we first conduct our
eye localization experiment training on NVIE database [19]. A set
of 2067 infrared thermal frontal face images from NVIE database
are used as training samples, consisting of 1669 posed images and
398 first frame of spontaneous expression image sequences.
During training, the centers of sub-regions 1, 6, and 11 of the
structure are manually labeled, thus for each image, a set of 15
sub-regions is obtained, which is used as the positive samples for
localizing left and right eye in the training phase. The same
amount of negative samples are randomly selected from non-eye
areas with the same structure of 15 points as positive samples.
These samples are used to train eight classifiers for left eye and
right eye, respectively. The remaining 35,550 thermal images
without eyeglasses from NVIE database are used as the test
samples to validate the effectiveness. The eye localization experi-
ment conducted on the Equinox database contains a training set
and a testing set both with 420 images. In the training phase, we
find that, after face localization and normalization, L is about half
of the face width for most samples, while S varies slightly.
We suppose S obeys Gaussian distribution, and obtain its mean
Sm and variance Sv from training samples. In the testing phase, L is
set toWf =2. S is set to Sm, Smþ2Sv, Sm-2Sv, respectively. Thus, three
kinds of 15 sub-region structures are used during testing. The
sampling step, n during testing phase is set to 2 pixels.

In our experiments, the width of face Wf is normalized to be 50,
and the height Hf is resized by the same scaling. The resolutions of
Haar base detector and sub-region are both 12�12, thus 11,781
features, consisted of eight Haar-like features sets, are extracted
from each sub-region.

For images with eyeglasses, we use the eye detection rate to
measure the effectiveness of our approach. For images with-
out eyeglasses, motivated by the work of Martinez [25] and
Selinger [14], we use two parameters to measure the effectiveness
of our eye localization approach. One is error, which is the
displacement from automatically located centers of the target eyes
to the true (manually annotated) center [25], defined as

erreye ¼ maxð∥Pl−P̂ l∥,∥Pr−P̂ r∥Þ
∥Pl−Pr∥

ð6Þ

where, Pl and Pr are the true coordinates of the left and right eye,
respectively. P̂ l and P̂ r are the automatically detected coordinates
of left and right eyes, respectively. ∥.∥ represents the L2 norm.
The others are the mean absolute error and the standard
deviation of the error [14] in the x- and y-coordinates for the left
and right eyes as follows:
where, N is the number of samples, (xi, yi) and (x̂i, ŷi) are the true
and automatic localization coordinates, respectively.

4.2. Analyses of the effectiveness of features on glass detection

To validate the effectiveness of our method on capturing the
features of wearing eyeglasses, we perform two-sample Kolmo-
gorov–Smirnov (K–S) test [30] on the three features (R1, R2, and
R3) extracted from the training set of NVIE database and Equinox
database. Results given in Table 1 show that the significance values
of all these three features are near or equal to zero on both
databases. In other words, these features have significant differ-
ences between samples with and without eyeglasses. Thus,
they can be used as the criterions to classify samples with or
without eyeglasses. The combination of them can achieve good
performance.

4.3. Analyses of the effectiveness of our proposed facial structure

We divide 15 sub-regions into 9 groups according to their
locations and temperature similarities, as shown in Table 2. Then
an ANOVA is performed to analyze the significant difference
among the temperature mean of different groups. Based on the
analysis results, we can see that the mean temperature of all group
pairs except 3 pairs are with significant difference at 0.05 level, as
shown in Table 3. It demonstrates that the proposed structure
captures the characteristics of the temperature variations around
eyes. Thus, it may be helpful for eye localization in thermal images.

4.4. Within database experimental results

4.4.1. Eyeglass detection results and analyses
In our work, the average glass detection rates on NVIE and

Equinox database are 99.36% and 95%, respectively. Several suc-
cessfully localized samples are shown in Fig. 5. Compared with the
detection result of Jingu Heo's method [24], who conducted
experiment on the thermal images selected from the Equinox
database and achieved 93.79% of detection rate, our method is
more effective. Since the projection curve technique we use has no



Table 3
The significant (Sig.) of mean between different region groups

Sig. Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9

Group 1
Group 2 0.00
Group 3 0.00 0.00
Group 4 0.00 0.07 0.00
Group 5 0.00 0.11 0.00 0.00
Group 6 0.00 0.00 0.00 0.00 0.00
Group 7 0.00 0.00 0.00 0.00 0.00 0.00
Group 8 0.00 0.00 0.68 0.00 0.00 0.00 0.00
Group 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fig. 5. Some successfully localized samples with eyeglasses.

Fig. 6. Eye localization results of within database experiments. (a) Train on NVIE, test on NVIE; (b) train on Equinox, test on Equinox.

Table 4
Eye detection experimental performances on samples without eyeglasses.
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complicated calculation, the method we propose is feasible and
effective.
References In this paper Martinez [25]
Method Our method Haar features and GentleBoost

algorithm
Database NVIE Equinox 78 images of 22 subjects

Accuracy
(erro0:15)

86.00% 83.00% 83.00%
4.4.2. Experimental results and analyses of eye localization
from images without eyeglasses

Fig. 6 shows the experimental results of eye localization on the
NVIE and Equinox databases, respectively. From Fig. 6 and Table 4,
we can see that when erroro0:15 is regarded as success, we



Table 5
Means and standard deviations of eye detection errors in within database
experiment.

Errors Test on NVIE, train on NVIE Test on Equinox, train on Equinox
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achieve accurate rate of localization around 86% on NVIE database
and 83% on the Equinox database. Since the number of training
and testing samples from NVIE database vastly exceed that from
Equinox database, it is reasonable that the accurate rate training
and testing on the Equinox database are slightly a little lower than
that on the NVIE database. Some examples of results correspond-
ing to the error accepted (erroro0:15) in both databases are
shown in Fig. 7. As shown in Table 4, compared with the results of
83% achieved by Martinez using Haar features and GentleBoost
algorithm in their database [25], whose image quality is higher
than that of the Equinox database, our results are pretty compe-
titive. The encouraging performances on the NVIE database and
Equinox database demonstrate that our method is effective and
robust to the changes of facial expressions.

The mean and standard deviation of eye localization errors of
training and testing on NVIE database as well as Equinox database
experiments are shown in Table 5, respectively. Comparing the
results on NVIE and Equinox database, we can find that the mean
error testing on Equinox goes up to 2.1286, larger than that of the
error training and testing on NVIE database. The reason for that is
because the training samples from NVIE database are larger than
that from Equinox database. The classifiers trained from former
experiment have a better adaptability than that from the latter.

In order to compare with the results of Equinox databases
in [14], we recalculated the mean and standard deviation after the
outliers, where the detected eye coordinates are at least 10 pixels
away from the ground-truth location, are removed from our set as
in [14]. From the results shown in Table 6, we can see that both the
mean errors and the standard deviations are less than the results
obtained by Selinger in [14]. It validates the effectiveness of the
facial structure consisting of 15 sub-regions proposed in this paper.
Mean StDev Mean StDev

Left x 1.4902 2.3622 1.6405 3.0102
Left y 1.9357 4.6394 2.0524 4.0406
Right x 1.4498 2.3284 1.7881 2.6687
Right y 1.7718 4.0948 2.1286 4.0253

Table 6
Compared with the results of Equinox database in [14].

Errors Test on Equinox, train on Equinox Results reported in [14]

Mean StDev Mean StDev

Left x 1.1160 1.0478 1.9477 2.0254
Left y 1.1788 1.0327 1.5738 1.6789
Right x 1.3243 1.1581 2.8054 2.0702
Right y 1.2872 1.2646 1.5338 1.6821
4.4.3. Cross-database experimental results
To verify the robustness of our eye localization method on

samples without eyeglasses, we conduct the cross-database
experiments on NVIE database and Equinox database separately.

The cross-database experiment results on NVIE database and
Equinox database are shown in Fig. 8. We first use the model
training from NVIE database, to test on the Equinox database. The
results are shown in Fig. 8(a). When erroro0:15 is regarded as
success, we achieve accurate rate of localization around 75%
testing on Equinox database. Since the classifiers are trained on
the NVIE database, it is reasonable and acceptable that the
accurate rate of testing on the Equinox database is lower than
that of testing on the NVIE database. And for the same reason, the
mean and standard deviation, as shown in Table 7, are a little
higher than that of testing on the NVIE database. Besides, the
model training on the Equinox database is also tested on the NVIE
Fig. 7. Some successfully localized samples
database. The results are shown in Fig. 8(b). When erroro0:15 is
regarded as success, the average accurate rate of localization is
around 68% testing on the NVIE database. Since the training set
from Equinox database is much less than that from NVIE database,
it is reasonable that the accurate rates of cross-database experi-
ment testing on the NVIE are lower than that testing on the
Equinox database. The mean absolute errors and the standard
deviation of errors are also computed, as shown in Table 7. From
the table, we can see that the range of the means of errors for
cross-database experiment test on the Equinox (from 1.7833 to
2.9381) is narrower than that of the test on NVIE (from 1.4976 to
4.457). In addition, compared with the means and standard
deviations of errors for within-database experiment given in
Table 5, the values of means and standard deviations of errors
are increased in this cross-database experiment, which is also
acceptable because that biases are exist between different
databases.
5. Conclusions

In this paper, we present an effective method for eye localiza-
tion on long wave thermal infrared samples both with eyeglasses
and without eyeglasses. For eye localization on samples with
eyeglasses, we use the valleys and peaks of projection curves to
without eyeglasses (erro0:15).



Fig. 8. Eye localization results in cross-database experiments. (a) Train on NVIE, test on Equinox; (b) train on Equinox, test on NVIE.

Table 7
Means and standard deviations of eye detection errors in cross-database
experiments.

Errors Train on NVIE, test on Equinox Train on Equinox, test on NVIE

Mean StDev Mean StDev

Left x 1.7833 2.5986 1.4976 2.4733
Left y 2.9381 4.5205 3.9866 6.5674
Right x 2.0595 3.2315 1.5178 2.5488
Right y 2.7619 4.3417 4.457 6.2856
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represent the information of eye regions. For eye localization on
samples without eyeglasses, a structure consisting of 15 sub-
regions is proposed to extract the Haar-like features to capture
the temperature distributions of the eyes and their adjacent facial
regions. Eight classifiers are learned from the combination features
selected by Adaboost algorithm for left and right eye, respectively.
A vote strategy is used to find the most likely eyes. The results of
ANOVA demonstrate that our structure captures the useful char-
acteristics of the temperature distributions around eye. The eye
localization experiments performed on NVIE and Equinox data-
base verify the effectiveness and generalization ability on multi-
expression infrared thermal samples.

Compared with the related four works, our contributions are as
follows: (1) we are the first to perform eye localization on samples
both with eyeglasses and without eyeglasses, providing the
possibility of application. (2) We are the first to define three
parameters to capture the temperature character caused by eye-
glasses, and obtain good performance of eyeglass detection.
(3) Since infrared thermal images reflect the temperature distribu-
tion of human faces, we propose a 15 sub-region structure to
capture both the temperature distribution of the eyes and that of
the adjacent regions for robust eye localization. (4) We evaluate
our eye localization approach of samples without eyeglasses on
the sub-database of NVIE database, including 35,550 images,
which is much larger than the previous three research. The results
show that our methods perform better than the previous methods.
(5) We are the first to evaluate eye detection from thermal images
by a cross-corpus experiment. It demonstrates the generalization
ability of our approach.
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