
101IEEE Signal Processing Magazine | January 2018 |

Siqi Nie, Meng Zheng, and Qiang Ji

Deep learning for visual understanding:
Part 2

1053-5888/18©2018IEEE

The Deep Regression Bayesian Network and Its Applications
Probabilistic deep learning for computer vision

Deep directed generative models have attracted much atten-
tion recently due to their generative modeling nature and
powerful data representation ability. In this article, we

review different structures of deep directed generative models
and the learning and inference algorithms associated with the
structures. We focus on a specific structure that consists of lay-
ers of Bayesian networks (BNs) due to the property of captur-
ing inherent and rich dependencies among latent variables. The
major difficulty of learning and inference with deep directed
models with many latent variables is the intractable inference
due to the dependencies among the latent variables and the
exponential number of latent variable configurations. Current
solutions use variational methods, often through an auxiliary
network, to approximate the posterior probability inference. In
contrast, inference can also be performed directly without using
any auxiliary network to maximally preserve the dependencies
among the latent variables. Specifically, by exploiting the sparse
representation with the latent space, max-max instead of max-
sum operation can be used to overcome the exponential number
of latent configurations. Furthermore, the max-max operation
and augmented coordinate ascent (AugCA) are applied to both
supervised and unsupervised learning as well as to various
inference. Quantitative evaluations on benchmark data sets
of different models are given for both data representation and
feature-learning tasks.

Introduction
Deep learning has become a major enabling technology for
computer vision. By exploiting its multilevel representation
and the availability of big data, deep learning has led to dra-
matic performance improvements for certain tasks. Among
different deep-learning architectures, convolutional neural
networks (CNNs) have achieved the most significant devel-
opment and are being widely employed in computer vision
in recent years. CNNs, however, are typically discrimina-
tive models and they are built mainly for discriminative
tasks, such as classification. For generative modeling, the
model needs capture the underlying data distribution as well

Digital Object Identifier 10.1109/MSP.2017.2763440
Date of publication: 9 January 2018

©Istockphoto.com/zapp2photo

102 IEEE Signal Processing Magazine | January 2018 |

as the mechanisms used to generate data,
including the uncertainties in the data and
in the data generation process. CNNs are
therefore not directly suitable for genera-
tive modeling. The latest development in
generative adversarial networks (GANs)
[8] can perform effective data generation.
Based on combining a discriminative CNN
with a generative deconvolutional neu-
ral network, GANs produce remarkable
performance in generating realistic data.
Since GANs employ a simple standardized
random vector to model data uncertainty;
they remain mostly deterministic and cannot fully model the
uncertainties in data.

In this article, we focus on fully probabilistic deep directed
generative models for deep learning under uncertainty that
can simultaneously perform data generation and classification
tasks. Based on probability theories, deep probabilistic gen-
erative models offer a probabilistically grounded framework
to represent, learn, and predict under uncertainty. There ex-
ist several types of probabilistic deep generative models, most
notably, deep Boltzmann machines (DBMs) [29] [Figure 1(c)]
and deep belief networks (DBNs) [11] [Figure 1(b)]. While gen-
erative in nature, these models, for the sake of simplicity in
inference, typically assume latent variables are independently
given data. Such an assumption weakens their data modeling
and representation power. In contrast, deep directed generative
models consist of layers of BNs as shown in [Figure 1(a)]. Com-
pared to DBMs and DBNs, the deep directed generative model
enjoys several advantages due to its unique way of capturing
dependencies. First, it specifically models the data generation
process and allows straightforward ancestry sampling, where
a node is sampled following a topological order, starting from

its ancestors until its descendants. Second,
there is no intractable partition function that
has plagued the undirected models. Last,
but most importantly, latent nodes in the
deep directed generative models are depen-
dent on each other given inputs (because of
the “explaining away” principle) while it is
not the case for DBN and DBM. This char-
acteristic of the deep directed generative
models endows them a powerful ability in
modeling the complex pattern in data.

Learning and inference in deep directed
generative models is challenging, mainly

due to the intractable computation of the posterior probability
of the latent variables and the exponential number of latent con-
figurations (for binary latent variables). Various approximations
such as variational inference algorithms [2], [8], [10], [15], [21],
[26] have been proposed to address these challenges. They all
use an auxiliary feed-forward network to approximately solve
the intractable posterior probability inference problem. These
approximations typically assume the joint latent variable dis-
tribution given data can be factorized. The factorized distri-
bution, while simplifying learning and inference, sacrifices
the dependencies among the latent variables for efficiency.
They inevitably enlarge the distance to the true posterior and
weaken the representation power of the model. This negates a
major advantage of the directed graphical models. Moreover,
the existing methods avoid the exponential number of latent
configurations, as they mostly deal with real latent nodes.

Alternatively, the posterior inference can be solved directly,
without resorting to any other network. Furthermore, efficient
learning and inference methods can be designed to maximally
preserve the dependencies among the latent variables. Specifi-
cally, for learning, data marginal log-likelihood can be maxi-
mized directly through a max-max operation to overcome the
exponential number of latent configurations. For inference,
posterior probability inference can be performed through the
pseudo-likelihood, which also preserves dependencies of la-
tent variables. Furthermore, improved maximum a posteriori
(MAP) inference can be achieved by combining the coordi-
nate ascent (CA) method with the variational method.

Related work
In general, there are three types of deep probabilistic genera-
tive models: fully directed, hybrid, and fully undirected. The
DBN [Figure 1(b)] has a hybrid structure, where the top two
layers are connected with undirected links and all other lay-
ers are connected with directed links. The DBM [Figure 1(c)]
has a fully undirected structure such that every two consecu-
tive layers are connected using undirected links. In this article,
we focus on the fully directed deep generative models due to
their unique representation power. Depending on the structure
and the type of variables, the directed generative models have
several variants. The most commonly used structure consists
of multiple layers [Figure 1(a)], in which only the bottom layer
represents the visible variables. The connections are directed

Figure 1. Graph representation of (a) DRBNs, (b) DBNs, and (c) DBMs,
where arrows represent directed links and line segments represent un-
directed links. Directed links capture the causal or one-way dependency
between the connected nodes, while the undirected links capture the
mutual dependencies among the connected nodes.

H 3

w 3

w 2

w 1

w 3

w 2

w 1

w 3

w 2

w 1

H 2

H 1

X

H 3

H 2

H 1

X

H 3

H 2

H 1

X

(a) (b) (c)

The major difficulty of
learning and inference
with deep directed models
with many latent variables
is the intractable inference
due to the dependencies
among the latent variables
and the exponential
number of latent variable
configurations.

103IEEE Signal Processing Magazine | January 2018 |

from the upper layer to the lower layer, and no
connection within each layer is allowed.

Depending on the types of variables, deep
directed generative models can be categorized
into deep sigmoid belief networks (SBNs) [21],
[24], [31], deep Poisson factor analysis (DPFA)
[6], deep factor analyzers (DFAs) [34], and
deep Gaussian mixture models (DGMMs)
[36]. The deep SBN contains binary latent and visible variables,
and the conditional probability is defined using a sigmoid func-
tion. The DPFA models discrete variables (e.g., word count in
documents) using binary latent variables. Dirichlet prior z and
gamma prior i are placed to describe a Poisson distribution of
input data. The DFA consists of continuous latent and mixtured
types of variables. The DGMM is an extension of the Gauss-
ian mixture model (GMM), while each latent node represents
a linear operation to compute the mean and covariance matrix
for the Gaussian distribution.

In this article, we focus on the deep directed generative
model with binary latent variables. Compared to earlier SBN
works [21], [24], [31], the deep directed generative models rep-
resent an extension in both representation and learning and
inference methods. In terms of representation, it allows for dif-
ferent input and output types (discrete, continuous, and hybrid),
while SBN only uses binary input. For learning, DRBN allows
both unsupervised and supervised layer-wise and global learn-
ing, while SBN work only includes layer-wise unsupervised
learning. For inference, DRBN allows the use of different
algorithms such as the pseudo-likelihood method for posterior
probability inference and AugCA method for MAP inference,
while the literature for SBNs generally use variational methods
for inference.

For deep directed generative models, computing the poste-
rior becomes intractable due to dependencies among the latent
variables. To address this issue, one approach is to design a spe-
cial prior to make the latent variables conditionally indepen-
dent such as the complementary prior [11] for DBNs, wherein
the posterior probability for each latent variable can be com-
puted individually. Another popular approach is to replace the
true posterior distribution with a factorized distribution as an
approximation, known as variational methods. The mean field
theory [31] for learning SBNs makes the latent variables total-
ly independent. A set of variational parameters is learned to
minimize the Kullback–Leibler (KL) divergence between the
true posterior and the approximate one. Another approximate
inference algorithm is the Markov chain Monte Carlo method,
which can be used to estimate the posterior probability of both
latent variables and parameters. One example is the learning
and inference for deep latent Gaussian models [14].

To extend the traditional variational methods, recent works
typically use an auxiliary network to address the computation-
al challenge with posterior probability inference. Specifically,
the wake-sleep algorithm [13] augments the SBNs with a feed-
forward recognition network for efficient inference. Mnih and
Gregor [21] propose a variational inference network with dis-
crete latent variables to perform efficient inference. Rezende

et al. [26] and Kingma and Welling [15]
introduced a recognition model to effi-
ciently approximate posterior probabil-
ity inference. The deep generative model
can be learned by jointly optimization of
the parameters for both generative and
the recognition models. Ranganath et al.
[25] introduces a new method to reduce

the variance of the noisy gradients for varational based deep
model learning. The overall structure of [2] is similar to [15],
by building connections between the recognition model and
generative model rather than learning them independently.

All of these approaches use a feed-forward model to per-
form posterior probability inference. The feed-forward models
all assume the posterior probability can be factorized. The pos-
terior probability inference is, hence, approximate. In contrast,
posterior probability inference can be done via CA without
the help of any auxiliary network or variational distribution,
therefore, during learning, we do not need to assume condi-
tional independence among the latent variables. Moreover,
by initializing the CA method with the inference result from
a variational method, the AugCA method can produce better
reconstruction results than the existing variational models.

One of the latest development in deep generative modeling
is the GAN [8], [10], which employs both a discriminator and
a generator. The generator is a deep generative model, which is
trained to generate realistic synthetic data. The discriminator
is a neural network trained to discriminate synthetic data from
real data. The two networks compete against with each other
until the discriminator is maximally confused. Specifically,
Han et al. [10] uses a nonlinear factor analyzer as the genera-
tor network. By performing the alternating backpropagation,
the generator network can be learned to generate realistic im-
ages, sequences, and sounds. Despite its impressive generative
performance, GANs are essentially a deterministic model as
the data uncertainty is modeled by a standard random vector.
Hence, they cannot effectively capture the probabilistic distri-
bution of the data. Furthermore, GANs can only perform data
generation tasks and cannot perform classification tasks. By
combining a variational autoencoder with a GAN, Larson et
al. [16] introduced a novel metric for similarity measurement
when reconstructing the training samples during parameter
updating, which achieves better generalization performance.
Variational autoencoders and GANs are further combined in
[20], with a clear theoretical justification and the ability for
arbitrary complex inference.

Deep regression BNs

Regression BNs
To construct a deep directed generative model, a BN is used
as the building block. A BN is parameterized by the condi-
tional probability for each node, given its parents. The number
of parameters for each node increases exponentially with the
number of parents of each node. To scale up to models with a
large number of latent variables, regression BNs (RBNs) are

Compared to DBMs and
DBNs, the deep directed
generative model enjoys
several advantages due
to its unique way of
capturing dependencies.

104 IEEE Signal Processing Magazine | January 2018 |

employed to limit the number of parameters linearly with the
number of connections [27].

The RBN consists of two layers: one visible layer X of
dimension nd and one latent layer H of dimension ,nh as
shown in Figure 2(a). Every latent variable connects to every
visible variable with a directed edge. For continuous data
vector { , ..., }X X X Rn

n
1 d

d!= and binary latent variables
{ , ..., } { , }H H H 0 1n

n
1 h

h!= in which each node takes value
0 or 1, the prior and conditional probabilities of the model are
defined as

	 () sigm(),P H d1j j= = � (1)

	 | ~ | , ,H h hwP X x x bNi i i i
T

i i
2v= = +^ ^h h � (2)

where sigm() / (())expa a1 1= + - is the sigmoid function;
(| ,)aN 2n v represents the Gaussian distribution with mean

n and variance 2v . [, ...,]W w wn
T

1 d= is the weight matrix,
wij is the weight of the link connecting nodes Hj and ,Xi
where { , , ..., }, { , , ..., }i n j n1 2 1 2d h= = . [, ...,]d d dn T

1 h= and
[, ...,]b b bn T

1 d= are the bias parameters for H and X respec-
tively, and [, ...,]n T

1
2 22

dv v v= are the conditional variances for
X . This generative model can be viewed as a diagonal GMM
with the number of components exponential in the number of
latent variables. For binary data, the prior probability of the
latent node remains the same and the conditional probability is

	 () () .| H h hwP X b1 sigmi i
T

i= = = + � (3)

Through the parameterization in (2), the mean of a Ber-
noulli node is the sigmoid function of linear combination of all

nodes in the previous layer. The RBN can be seen as a probabi-
listic generalization to the neural network, where the value of
nodes in the current layer is the nonlinear transformation (e.g.,
via a sigmoid activation) of the linear combination of all nodes
in the previous layer. With the prior and conditional distribu-
tions, the joint distribution for X and H is

	 (, |) (|) (| ,),x h hP P h P x
j

n

j j
i

n

i i
1 1

h d

H H H=
= =

% % � (4)

where iH and jH denote the parameters for the ith visible node
and jth latent node. { , , , }.W b dvH = Plugging the parameter-
ization in (1) and (2) into (4) yields

	 (, |)
() ()

((, |))
,

exp
exp

x h
x h

P
d

E
2 1/n

i
i

j
j

2d vr
H

H
=

+

-

^ h% % � (5)

where

	
(, |)

()

() .

hx w h

d h w h

E
x b x b
2

2
1

i

i i

i i

i i

i
i
T

T

ii
i
T

2

2

2

2
2

v v

v

H =
-

-
-

- +

/ /

/
�

(6)

Similarly, we can produce the joint probability for the
RBN with binary input by combining (3) with (1). The energy
function in (6) is very similar to the energy function for the
Gaussian–Bernoulli restricted Boltzmann machine (GRBM)
[12] in (7).

	 (,)
()

.x h w h d hE
x b x
2 i

i i

i i

i

i
i

T
2

2

2RBM
v v

=
-

- -/ / � (7)

Comparing the two equations, it is clear that the energy func-
tion for RBN has an extra term [the last term of (6)]. This
extra term explicitly captures the relationship among latent
variables. This represents a major representation difference
between RBNs and RBMs.

Deep RBNs
By stacking multiple RBNs, we are able to construct a deep
directed generative model with L latent layers, called deep
RBNs (DRBNs) [Figure 2(b)]. Let , , ,H l L1l f= denote the
binary latent variables in layer ,l and .H X0 = Denote the
parameters between layer Hl 1- and Hl as { , }.W bl l lH = Top
layer parameters are .d The prior probability for a variable of
the top layer is

	 () sigm() .P H d1j
L

j= = � (8)

The conditional probability for the remaining layers is

(|) (), .H hwhP H b l L1 2sigm l
j
l l l

j
lT

j
l1 # #= = = +- � (9)

The conditional probability (|)hxP 1 for the bottom
two layers is the same as in (2) or (3), depending on the

w

H

X

HL

wL

w2

w1

H2

H1

X

. . .

wL

w2

w1

HL

H2

H1

X

. . .

Y

(a)

(b) (c)

Figure 2. A graph representation of (a) an RBN, (b) a DRBN without
labels, and (c) a DRBN with labels.

105IEEE Signal Processing Magazine | January 2018 |

type of the input data. The joint probability for all vari-
ables is

	 (, , ..., |) (|) () (|) .h h h h h hx xP P P PL L

l

L
l l1 1

2

1H =
=

-% � (10)

By fully capturing the joint probability distribution of input
data and latent variables, the DRBN can accurately capture
three types of dependencies among different variables: depen-
dencies among input variables, dependencies among hidden
variables, and interactions between hidden and input variables.
Because of its explicit capture of these dependencies, com-
pared with DBNs and DBMs, DRBNs can better capture the
data distribution. Compared with the GANs, DRBNs explicitly
capture the underlying probabilistic data distribution and can
perform both data modeling and prediction tasks.

Comparison with deep neural networks
Compared with deep neural networks (DNNs), DRBNs consist
of layers of RBNs. Each hidden layer of the BN hence captures
the distribution of the input data at different levels. In contrast,
DNNs consist of layers of perceptions and each hidden layer
summarizes the sufficient statistics (such as the mean) of the
input at different levels. Therefore, the main difference between
DRBNs and DNNs is that the DRBN captures the probabilistic
distribution of the data, while the DNN captures mean statis-
tics of the data. Based on this understanding, DRBNs repre-
sent a generalization to the DNN, and the DRBN becomes a
DNN if the conditional variance for each latent node becomes
zero. The DRBN is therefore more powerful
in data representation, in particular in rep-
resenting the uncertainties in the data. On
the other hand, the power in representation
also leads to challenges in DRBN learning
and inference and in its ability to scale up.
DNNs are much better than DRBNs in effi-
cient inference and learning, and in scaling up to a large model.
This explains why, so far, DNNs remain the dominant deep
model architecture. But the promise of DRBNs in data repre-
sentation deserves further research to address its challenges.

DRBN learning

Unsupervised learning
We first discuss the unsupervised RBN learning and then
extend it to DRBN learning. The goal of unsupervised param-
eter learning for an RBN is to estimate the parameters H given
a set of data samples .{ }xD m

m
M

1= = To maximally preserve
the dependencies among the latent variables,it would be better
to directly maximize the marginal log-likelihood instead of its
surrogate (such as its lower bound), i.e.,

	

(|)

(, |) .

logargmax

argmax log x

P

P h

D*

hm

m

H H

H

=

=

H

H
/ / �

(11)

Maximizing the marginal likelihood has two computational
challenges: 1) computing the posterior probability (|)h xP is

intractable even for one configuration h due to the dependen-
cies among elements of h and 2) there are exponential number
of terms in the summation over .h To address these two chal-
lenges, H can be estimated by replacing the max-sum opera-
tion in (11) with the max-max operation in (12), i.e.,

	

(|)

(, |) .

logargmax

argmax log max x h

P

P

D*

hm

m.

H H

H

=
H

H
/ �

(12)

The rational for replacing the max-sum with max-max
operation is based on the empirical observation that the distri-
bution of (|)h xP m is very sparse, with its energy concentrated
on a few configurations of h near its maximum. The max-
max operation may be achieved iteratively in two steps. First,
for each training sample ,xm we obtain h*m that maximizes
(, |),h xP m

t 1H - given current parameters ,t 1H - i.e.,

	 (, |) .h hargmax xP*

h

m m
t 1H= - � (13)

Second, given ,h*m tH can be estimated by maximizing
(, |),log x hP *

m m tH/ i.e.,

	 (, |) .hargmax log xP* *
t

m

m m
tH H=

H
/ � (14)

The two steps iterate until convergence. Equation (13) can
be solved through the AugCA method to be discussed in the
section “MAP Inference.” Equation (14) can be solved in

closed form solution for continuous input
or through stochastic gradient ascent for
binary input.

Learning a DRBN with multiple latent
layers consists of two steps: layer-wise
pretraining and global fine-tuning. Layer-
wise pretraining is a bottom-up procedure.

When learning the parameters lH for the lth layer, the param-
eters below are frozen, and the input to the lth layer is ,H* l
which is obtained though (| ,) .H H Hargmax P*

H
l l l l1 1l H= - -

Given its input, lH can be learned the same way using the
RBN learning method. The layer-wise learning does not con-
sider the interactions among the layers. A global fine-tuning
can then be performed. Initialized by the parameters learned
by layer-wise learning, the global fine-tuning procedure
simultaneously refines the parameters at different layers such
that parameters in the higher layers can influence those in
the lower layers. Specifically, global fine-tuning updates the
parameters H in all layers by maximizing the marginal likeli-
hood of the data, i.e.,

(|)

(, , |) .h h

arg max log

arg max log max

x

x

P

P

*

, ,h h

m

m

m

m L1
L1

f.

H H

H

=

f

H

H

/

/

Equation (15) can be solved through two step iteration as
for (12).

The promise of DRBNs
in data representation
deserves further research
to address its challenges.

106 IEEE Signal Processing Magazine | January 2018 |

Supervised learning
For applications where labels ym are given for each sample xm
as shown in Figure 1, supervised learning can be performed.
For classification tasks,discriminative supervised learning can
be performed. The objective function is modified to maximize
the log posterior probability of the labels,

	

(| ,)

(| ,)

(, | ,) .h

argmax log

argmax log

argmax log

x

x

P

P y

P y

Y D*

h

m m

m

m

m m

H H

H

H

=

=

=

H

H

H

/

/ /

�

(15)

We encounter the same computational challenges in solving
(15). This challenge can be alleviated by replacing the max-
sum operation with the max-max operation (16), i.e., which can
be solved similarly through the two-step iteration process

	 (, | ,) .h xargmax log max P y*

hm

m mH H=
H
/ � (16)

Like unsupervised learning, (16) can be applied to both
layer-wise and global DRBN learning. To achieve a good ini-
tialization of parameters, the generative model is first trained
in an unsupervised manner. The objective function is then
changed to the supervised one, and parameters are tuned in a
supervised manner.

DRBN inference
Given a DRBN with known parameters, there are three types
of inferences: posterior probability inference, MAP inference,
and likelihood inference. In this section, we discuss efficient
methods for these three types of inferences.

Posterior probability inference
The posterior inference is to compute the posterior probabil-
ity of the latent variables given the input data, i.e., to compute
(|) .h xP Because of the dependencies among ,h directly

computing (| ,)h xP H is computationally intractable when the
dimension of h is high. The pseudo-likelihood method offers
an efficient solution to this problem by replacing the condi-
tional likelihood with a more tractable objective. The pseudo-
likelihood method considers the following approximation:

	 (| ,) (| , ,),h hx xP P h
j

j j.H H-% � (17)

where { , , , , , }.h h h h hj j j n1 1 1 hf f=- - + In this approximation,
conditioning is added over additional variables. The condi-
tional pseudo-likelihood can be factorized into local condi-
tional probabilities, which can be computed in parallel. The
pseudo-likelihood approximation, however, requires an ini-
tialization of .h

MAP inference
MAP inference is to estimate the most likely hidden layer con-
figuration ,h* given an input ,x i.e., (|) .h hargmax xP*

h=
Directly performing MAP inference is computationally

intractable as we need enumerate all possible hidden layer
configurations. The CA method was introduced to overcome
this challenge, by iteratively maximizing one latent variable
at a time. From an initial state of the latent vector ,h()0 the CA
method updates one latent variable by fixing all other vari-
ables iteratively,

	 | , .hargmax xh P h() ()

h
j
t

j j
t1

j

=
+

-^ h � (18)

This iterative updating rule guarantees that the posterior
probability (|)h xP will only increase until convergence due
to the inequality: (, |) (|) .h hx xP h Pj

t
j

t t1 $+
- As a greedy

approach, the CA method may get stuck in a local optimum.
Thus, the initialization for (18) is crucial to ensure a configu-
ration with high quality. To address this issue, the variational
inference approach may be employed to learn an inference
network [21] from the DRBN. The inference result from the
inference network is used as initialization for the CA, yielding
the AugCA method.

The inference network method [21] approximates the pos-
terior using only one set of parameters for all data samples by
defining a feed-forward network for (| ,) .h xQ z The inference
network also assumes independencies among latent variables
given input data

	 (| ,) (| ,) .h x xQ q h
j

j jz z=% 	 (19)

Each individual probability is defined using a sigmoid function,

	 (| ,) sigm .x xq h v sj j ij
i

i jz = +c m/ � (20)

The parameters { , }v sz = are learned by minimizing the
average KL divergence ((| ,) | | (| ,))h hx xKL Q Pz H over all
of the training samples. Similarly, the optimization is through
the expected log-likelihood due to the intractable (| ,),h xP H

	 (| ,)
(| ,)
(, |)

.h x h x
h x

argmax logQ
Q
P*

hx
z z

z

H
=

z
// � (21)

The CA method requires the computation of (P h jt =
| ,)x h1 j

t 1
-
- for each .j Naive computation can become prohibi-

tive, given a large number of hidden variables. Taking discrete
input data as illustration, according to (4), the computation of
joint probability requires N Nh d+ times of multiplication of
the exponential terms. This can become very expensive when
Nd and Nd are large, since each time, only one element of
h is changed and the probabilities for other elements re
main the same. An efficient procedure to recursively compute

| ,hxP h 1j
t

j
t 1= -
-^ h can be written as

	

| ,

, , , ,
, ,

, ,
, ,

,

x h

x h x h
x h

x h
x h

P h

P h P h
P h

P h
P h

1

1 0
1

1
0
1

1

j
t

j
t

j
t

j
t

j
t

j
t

j
t

j
t

j
t

j
t

j
t

j
t

1

1 1

1

1

1

=

= + =

=

+
=

=

=

=

-
-

-
-

-
-

-
-

-
-

-
-

^

^

^

^

^
^

h

h

h

h

h
h

�

(22)

107IEEE Signal Processing Magazine | January 2018 |

where the probability ratio can be further written as

	
, ,
, ,

() () ·

.

x h
x h

wexp exp

exp

exp

P h
P h

d x

w h b

w h w b

0
1

1

1

,,

, ,,

j
t

j
t

j
t

j
t

j i j

i n n
t

in n j
n

i n n
t

i j in n j
n

i

1

1

1
1

1
1
h

h

=

=
=

+ +

+ + +

!

!

-
-

-
-

-

=

-

=
`
`

^
^

j
j

h
h

% /
/ �

(23)

The first two terms in (23) are constant for a given .x
They need be computed only once. For the last term, either
the numerator or denominator can be retrieved from the last
iteration, depending on the last value of .h jt 1- This means we
only need compute either the numerator or denominator in
each iteration. This cuts the computational time by half com-
pared to the naive computation. Furthermore, the term within
the exponential term can be retrieved and updated from last
iteration by one addition or subtraction. Then the probability
ratio in (23) can be obtained by nd times of multiplication. As
a result, computation time for each iteration is constant, involv-
ing one addition or subtraction and nd times of multiplication.
The overall complexity of the CA method is (),O n n nd h i which
is linear in the size of the input data, the number of latent vari-
ables ,nh and the number of iterations .ni

Likelihood inference
The likelihood inference is to compute the marginal probabil-
ity of the visible variables, i.e., () .xP Since

	 () (|) () .hx x xP P P
h

=/ � (24)

By replacing the sum operation with the max operation,
we have

	 () (|) () (,) .h hmax maxx x x xP P P P
h h

. = � (25)

It again can be computed by f i rst computing h* =

(|)hargmax xPh using the AugCA method. This can then be
followed by easily computing (,) .hxP *

Algorithm evaluation
As discussed in the section “Related Work,” the DRBN’s
learning method is different from variational methods,
which use a factorized variational distribution to approxi-
mate the true posterior probability inference. In contrast,
the DRBN directly maximizes the marginal log-likelihood
through a max-max operation To demonstrate the advantage
of such a learning algorithm, we performed experiments to
compare three learning methods: max-max learning, varia-
tional learning [21], and the exact learning method in terms
of their ability in data representation under different number
of latent nodes.

For this experiment, we trained the RBN networks on
60,000 training samples of MNIST data set [17] (binarized
according to [23]). During learning, we respectively use the
max-max operation, the variational method [21], and the exact

method (only for a small network) to approximate the mar-
ginal log-likelihood. For a fair comparison, the hyperparam-
eters for each method are optimally tuned.

After learning, the mean log-likelihood of all training
samples for RBNs learned with the three methods are sum-
marized in Table 1. It is clear from Table 1 that the max-max
method produces an average log-likelihood very close to the
exact method and is much better than the variational method.
This demonstrates the improved accuracy of the max-max
method in data representation over the variational methods
for a small network.

We further evaluate these methods for larger networks.
For a network with a large number of hidden nodes, the
exact method cannot be completed as the summation over h
becomes computationally intractable. Hence, we only give the
mean data log-likelihood in Figure 3 for the max-max method
and the variational method under a different number of hid-
den nodes. The estimate mean data log-likelihood is com-
puted the same way as in Table 1. We also include the mean
log-likelihood of the exact learning method for small RBNs
with five and ten hidden nodes. From the curves in Figure 3,
we can see that the data log-likelihood evaluated on RBN
learned with the max-max method is consistently higher than
the variational method, especially when the network is small.
This not only demonstrates further the advantage of the max-
max learning method over the variational learning method
but also proves the validity of replacing max-sum operation
by the max-max operation.

Table 1. A comparison of training data log-likelihood
(a small network with five hidden nodes).

Variational [21] Max-Max Exact

−206.0620 −170.7570 −170.5416

–120

–130

–140

–150

–160

–170

–180

–190

–200

–210
E

st
im

at
e

M
ar

gi
na

l L
og

-L
ik

el
ih

oo
d

0 10 20 30 40 50 60
Number of Hidden Nodes

Training Log-Likelihood of Variational
Learning and Max-Out Learning Method

70 80 90 100

Variational Method
Max-Out Method
Exact Method

Figure 3. The average log-likelihood for the RBN learned with different
learning methods under a different number of hidden nodes. Red line: max-
out learning, blue line: variational learning, and green line: exact learning.

108 IEEE Signal Processing Magazine | January 2018 |

Applications
To demonstrate the effectiveness of the DRBN models, we will
apply the DRBN to different computer vision tasks to dem-
onstrate its capability for both data representation and feature
learning for classification.

Data representation
First, we quantitatively compare the DRBN with other genera-
tive models in terms of peak signal-to-noise ratio (PSNR) in
several image restoration and denoising tasks. Then, we evalu-
ate the generative representation power of different models in
terms of generating synthetic data.

The first task is image restoration, which is to restore an
image from its corrupted version. It is shown that a higher like-
lihood of patches leads to better denoising on whole images
[40]. Therefore, we train a DRBN model on the 8 × 8 patches
from the Berkeley data set [19], which contains 200 training
and 100 testing images. One million training and 50,000 test-
ing patches are randomly sampled from 200 training and 100
test images, respectively. A DRBN with two latent layers is
used, with each layer containing 50 latent variables respective-
ly. The total training epochs are 100. With a learned DRBN as
a prior model, we use the expected patch log likelihood (EPLL)
[40] framework to perform image restoration. The EPLL of an
image x is defined as

	 () (),x ylogPEPLLP
i

i=/ � (26)

where { }yi represents all the overlapping patches in the image.
Given a corrupted image ,x+ the cost we use to reconstruct the
image with patch prior P is

	 (|) | | | | () .x x xx xf
2

EPLLP P
2m= - -

+ + � (27)

It is difficult to directly optimize the complicated cost
function. We employ the half-quadratic slitting method [7]
with m set to ,106 following the settings in [40]. To perform
image inpainting, we superimposed some sentences on the
clean image as the noise. During optimization, both the CA
and AugCA methods were used to perform MAP inference for
each patch. Typically the CA and AugCA converge after three
iterations, and initialization affects the final configuration of
latent variables but not posterior likelihood. We compared
DRBN to three state-of-the-art approaches with generic priors:
field of experts (FoE) [28], KSVDG [5], and the GMM [40]
with full covariance matrix. The quantitative results on the 100
test images are given in Table 2. The DRBN outperforms all
other approaches in terms of PSNR values.

An example is given in Figure 4, where (a) represents an
original image, (b) a corrupted image, (c) a restored image
using the GMM as a prior model, and (d) a restored image
using the DRBN as a prior model. The PSNR values for
(c) and (d) are 26.31 and 29.80, respectively. It can be seen
that using the GMM prior, some parts of the letters in the
corrupted image remain in the restored image, especially
if the background color is white. The DRBN model com-
pletely removes the letters, and the PSNR values show sig-
nificant improvement.

The second task for image representation is face restora-
tion, where we use DRBN to restore a given cropped image.
For this task, we put two kinds of noise on the face images
from the Multi-PIE data set: random noise and block occlu-
sion, where 40% of the pixels are corrupted by random noise
with a standard deviation of 0.4, following the same procedure
as [35]. For the latter, 12 × 12 blocks are superimposed on a
random part of the 32 × 32 faces with Gaussian random noise,
following the same procedure as [35]. The same MAP infer-
ence methods—CA and AugCA—are applied. Also, results
from the inference network (IN) [21] is compared with CA and
AugCA. The baseline methods include the robust Boltzmann
machine (RoBM) [35], GRBM [12], and robust PCA (RPCA)
[38]. PSNR is employed to quantitatively evaluate different
methods. The result is given in Table 3. The AugCA method
outperforms all other methods in terms of PSNR values. In
the cross-subject setting, the RBN generalizes well to unseen
subjects. Some examples of the reconstructed faces are given
in Figure 5.

Next we demonstrate the DRBN’s image reconstruction abil-
ity. In the image restoration task presented in Figure 5, images
are restored using trained DRBN models from given corrupted
images. Unlike the image reconstruction task, given an image ,x
we first perform MAP inference to obtain the most likely latent

Table 2. PSNRs for different image inpainting methods
on Berkeley data set.

Method PSNR

KSVD [5] 24.13

FoE [28] 24.79

GMM [40] 25.71

DRBN (CA) 29.42

DRBN (AugCA) 33.46

(a) (b)

(c) (d)

Figure 4. An example of the image inpainting experiment, (a) original image,
(b) corrupted image, (c) restored image using the GMM, and (d) restored
image using the DRBN. (Images used with permission from [19].)

109IEEE Signal Processing Magazine | January 2018 |

representation h* and then obtain the reconstructed image xt
via | .x x hargmax p *

x=t tt ^ h
Figure 6 presents some examples. For the Multi-PIE data

set [9], we trained the RBN with 200 latent variables; all face
images are cropped and resized to 32 × 32 pixels. Similarly,
we trained different RBNs on MNIST [17], UnityEye [4], and
CAS-PEAL [3] data sets, respectively. When training the RBN
on the MNIST data set, the number of hidden nodes is 50 for
one hidden layer with the learning rate set to 0.01. For both
the UnityEye and CAS-PEAL data sets, total hidden nodes are
200, image size is 60 × 36 and 30 × 30 accordingly. From the
images in Figure 6, we can see that the DRBN is able to
effectively capture data distribution and can produce good
image reconstruction.

The last task for assessing the DRBN’s data representation
capability is through image generation. For this task, we use
a pretrained DRBN model in the image reconstruction task.

To generate realistic and meaningful images, we sample the
latent variables from its prior probabilities. Given the values of
the hidden nodes, images can be generated from sampling the
conditional probability of visible nodes given latent variables.
Examples of generated images from the Multi-PIE and CAS-
PEAL data sets are shown in Figure 7.

(a)

(b)

(c)

(d)

Figure 6. Examples of the image reconstruction for (a) Multi-PIE, (b)
CAS-PEAL, (c) MNIST, (and d) UnityEye.

(a)

(b)

Figure 5. Examples of face restoration from (a) random noise and (b)
block occlusion. Top rows: original images; middle rows: corrupted
images; and bottom rows: reconstructed images. (Images used with
permission from [9].)

Table 3. PSNRs for different denoising methods on Multi-PIE data set.

Method Random Noise Block Occlusion

RPCA 22.53 20.14

GRBM 23.18 21.45

RoBM 27.15 24.32

RBN (CA) 28.60 27.21

RBN (IN) [21] 27.89 26.21

RBN (AugCA) 29.23 27.45

Figure 7. An example of the image generation experiment. Generated
images from (a) Multi-PIE and (b) CAS-PEAL.

(a)

(b)

110 IEEE Signal Processing Magazine | January 2018 |

Feature learning for regression
In this section, we applied the discriminative supervised learn-
ing for feature learning using the DRBN. Given the learned
DRBN model, features in the top layer can be extracted via
MAP inference. The extracted features will then be used for
regression tasks. We study head-pose estimation (HPE) and
eye-gaze estimation task with regression, respectively.

The HPE task is to predict three head-pose angles (roll,
pitch, and yaw) through a regression function. The Boston Uni-
versity head-pose data set is used; the cropped faces are resized
to 15 × 15 pixels. Two latent layers are used, with 50 latent vari-
ables each. The MAP configuration of the top layer is obtained
through the IN, CA, and AugCA methods and is used as the
features for a linear regression model. We compare the DRBN
to three state-of-art model-based algorithms 1) three-dimen-
sional (3-D) deformable HPE (3D-Deform) [37], 2) deformable
model fitting (DMF) [30], and 3) monocular HPE (MHPE)
[22] and one learning-based algorithm, distance vector field
with CNNs (DVF+CNNs) [1], with the mean absolute errors
(MAEs) reported in Table 4. The DRBN achieves comparable
performance comparing to these competing algorithms. Note
that the resolution of the face image used in the DRBN is much
smaller (15 × 15 pixels) than other models (typically 320 ×
240 pixels), and no 3-D information is used. This indicates
the potential of using the DRBN for HPE in extremely low-
resolution images.

For the task of eye-gaze estimation, we choose the MPII data
set [39] because it covers a wide range of recording locations and
times, illuminations, and eye appearances. The data set contains

213,659 images from 15 subjects. The goal of our experiment is
to map the eye images to the pitch and yaw eye-gaze angles. The
size of the cropped eye image is 36 × 60, yielding a 2,160-dimen-
sion vector. The DRBN has a 2160-200-200 structure. To evaluate
different models, we use the “within-data set leave-one-subject-
out evaluation,” in which the eye images from one subject are
used for testing and all the other images are used for training. The
regression accuracies of different inference algorithms for each
angle are given in Table 5. As competing algorithms, we include
the CNN [39], k-nearest neighbor (kNN) [33], adaptive linear
regression (ALR) [18], and support vector regression (SVR) [32].
The DRBN achieves comparable performance in terms of the
mean average errors, demonstrating its effectiveness to capture
the inherent patterns in the eye images. The experiment results
show that DRBNs are able to learn high-quality features for
regression tasks. Experimental results in the sections “Data Rep-
resentation” and “Feature Learning for Regression” show that
the DRBN can perform both generative and discriminative tasks,
even though its discriminative performance may not match state-
of-the-art CNN models.

Summary
In this article, we review different structures of deep directed
generative models and their learning and inference algorithms.
We focus on a specific version of deep generative models—the
DRBN. Compared to other deep-learning models, the DRBN can
better capture the data distribution because of its ability to explic-
itly capture the dependencies among the latent variables Various
algorithms are reviewed and compared, including the efficient
inference and learning methods of replacing the max-sum opera-
tion with the max-max operation and the augmented CA method
for MAP inference. Extensive experiments on benchmark data
sets for both data generation and classification tasks are present-
ed, including image restoration, face reconstruction, HPE, and
eye-gaze estimation. These experiments demonstrate the com-
petitive performance of DRBNs for both data representation and
feature-learning tasks.

Authors
Siqi Nie (niesiqi@gmail.com) received his bachelor’s degree in
electronic engineering from Tsinghua University, Beijing, China,
in 2011 and his Ph.D. degree in electrical, computer, and sys-
tems engineering from Rensselaer Polytechnic Institute, Troy,
New York, in December 2016. His research focuses on machine
learning and its applications in computer vision. Specifically, he
is interested in efficient learning and inference algorithms in
probabilistic graphical models, including deep Bayesian net-
works and restricted Boltzmann machines. He has published
more than ten conference and journal papers in the Conference
and Workshop on Neural Information Processing Systems, the
Association for the Advancement of Artificial Intelligence,
Computer Vision and Image Understanding, and International
Journal of Approximate Reasoning. Currently, he is a research
scientist at Facebook.

Meng Zheng (zhengm3@rpi.edu) received her B.S. and
M.S. degrees from the Department of Information and

Table 4. MAE of head pose angles in the BU data set.

Method Yaw Pitch Roll

DMF 5.2 4.5 2.6

3D-Deform 4.3 6.2 3.2

MHPE 5.0 3.7 2.9

DVF+CNN 4.3 3.7 2.6

DRBN (IN) [21] 4.8 3.8 3.7

DRBN (CA) 5.4 5.8 3.5

DRBN (AugCA) 4.6 3.5 3.3

Table 5. Regression errors for eye-gaze estimation
in the MPII data set.

Method Yaw Pitch MAE Std.

SVR [32] — — 6.6 0.6

ALR [18] — — 7.9 1.0

kNN [33] — — 7.2 0.8

CNN [39] — — 6.3 1.0

DRBN (IN) 5.8 3.7 7.6 1.1

DRBN (CA) 5.4 3.8 7.8 1.3

DRBN (AugCA) 4.9 3.6 7.1 1.2

111IEEE Signal Processing Magazine | January 2018 |

Electronics, Beijing Institute of Technology, China, in 2013 and
2016, respectively. She is currently a Ph.D. student in the
Department of Electrical, Computer, and Systems Engineering at
Rensselaer Polytechnic Institute, Troy, New York.

Qiang Ji (qji@ecse.rpi.edu) received his M.S. degree from
the University of Arizona, Tucson, in 1993, and his Ph.D. degree
from the University of Washington, Seattle, in 1998, both in
electrical engineering. He is currently a professor with the
Department of Electrical, Computer, and Systems Engineering at
Rensselaer Polytechnic Institute (RPI). From 2009 to 2010, he
served as a program director at the National Science Foundation
(NSF), Arlington, Virginia, where he managed NSF’s computer
vision and machine-learning programs. Currently, he serves as
the director of the Intelligent Systems Laboratory at RPI. His
research interests are in computer vision, probabilistic graphical
models, machine learning, and their applications in various
fields. He has published more than 200 papers in peer-reviewed
journals and conferences and has received multiple awards for
his work. He is an editor of several related IEEE and internation-
al journals and he has served as a general chair, program chair,
technical area chair, and program committee member for numer-
ous international conferences/workshops. He is a Fellow of the
IEEE and the International Association for Pattern Recognition.

References
[1] S. Asteriadis, K. Karpouzis, and S. Kollias, “Visual focus of attention in non-cali-
brated environments using gaze estimation,” Int. J. Comput. Vis., vol. 107, no. 3, pp.
293–316, May 2014.

[2] B. Philip, “An architecture for deep, hierarchical generative models,” in Proc.
Neural Information Processing Systems Conf., 2016, pp. 4826–4834.

[3] B. Liu, D. Zhou, X. Zhang, and W. Gao, “Introduction of the JDL large-scale
facial database,” in Proc. 4th Chinese Conf. Biometrics Recognition, 2003, pp.
118–121.

[4] L. Morency, P. Robinson, E. Wood, T. Baltrušaitis, and A. Bulling, Eds., “Learning
an appearance-based gaze estimator from one million synthesised images,” in Proc.
ACM Symp. Eye Tracking Research Applications, 2016, pp. 131–138.

[5] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations
over learned dictionaries,” IEEE Trans. Image Process., vol. 15, no. 12, pp. 3736–3745,
Dec. 2006.

[6] Z. Gan, C. Chen, R. Henao, D. Carlson, and L. Carin. “Scalable deep Poisson fac-
tor analysis for topic modeling,” in Proc. Int. Conf. Machine Learning, Lille, France,
2015, pp. 1823–1832.

[7]. D. Geman and C. Yang, “Nonlinear image recovery with half-quadratic regulariza-
tion,” IEEE Trans. Image Process., vol. 4, no. 7, pp. 932–946, July 1995.

[8] G. Ian, P.-A. Jean, M. Mehdi, X. Bing, W.-F. David, O. Sherjil, C. Aaron, and B.
Yoshua, “Generative adversarial nets,” in Proc. Neural Information Processing
Systems Conf., Montreal, Canada, 2014, pp. 2672–2680.

[9] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, “Multi-Pie,” Image Vis.
Comput., vol. 28, no. 5, pp. 807–813, May 2010.

[10] H. Tian, L. Yang, Z. Song-Chun, and W. Ying Nian, “Alternating back-propaga-
tion for generator network,” in Proc. Assoc. for the Advancement of Artificial
Intelligence, 2017, pp. 1976–1984.

[11] G. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief
nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, July 2006.

[12] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with neural
networks,” Science, vol. 313, no. 5786, pp. 504–507, July 2006.

[13] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal, “The “wake-sleep” algorithm
for unsupervised neural networks,” Science, vol. 268, no. 5214, pp. 1158–1161, May
1995.

[14] M. D. Hoffman, “Learning deep latent Gaussian models with Markov chain Monte
Carlo,” in Proc. Int. Conf. Machine Learning, 2017, pp. 1510–1519.

[15] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in Proc. Int.
Conf. Learning Representations, Banff, Canada, 2014.

[16] A. B. L. Larsen, S. K Sønderby, H. Larochelle, and O. Winther, “Autoencoding
beyond pixels using a learned similarity metric,” in Proc. 33rd Int. Conf. Machine
Learning, 2016, pp. 1558–1566.

[17] L. Bottou, Y. Bengio, Y. LeCun, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[18] L. Feng, S. Yusuke, O. Takahiro, and S. Yoichi, “Adaptive linear regression for
appearance-based gaze estimation,” IEEE Trans. Pattern Anal. Machine Intell., vol.
36, no. 10, pp. 2033–2046, Oct. 2014.

[19] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented nat-
ural images and its application to evaluating segmentation algorithms and measuring
ecological statistics,” in Proc. 8th IEEE Int. Conf. Computer Vision, vol. 2, Vancouver,
Canada, 2001, pp. 416–423.

[20] M. Lars, N. Sebastian, and G. Andreas, “Adversarial variational bayes: Unifying
variational autoencoders and generative adversarial networks,” arXiv Preprint
arXiv:1701.04722, 2017.

[21] A. Mnih and K. Gregor, “Neural variational inference and learning in belief net-
works,” in Proc. 31st Int. Conf. Machine Learning, Beijing, China, 2014, pp. 1791–
1799.

[22] L. Morency, J. Whitehill, and J. Movellan, “Monocular head pose estimation
using generalized adaptive view-based appearance model,” Image Vis. Comput., vol.
28, no. 5, pp. 754–761, May 2010.

[23] I. Murray and R. R. Salakhutdinov, “Evaluating probabilities under high-dimen-
sional latent variable models,” in Proc. Neural Information Processing Systems Conf.,
Vancouver, Canada, 2009, pp. 1137–1144.

[24] R. M. Neal, “Connectionist learning of belief networks,” Artif. Intell., vol. 56, no. 1,
pp. 71–113, July 1992.

[25] R. Rajesh, G. Sean, and B. David, “Black box variational inference,” in Proc.
Artificial Intelligence Statistics Conf., 2014, pp. 814–822.

[26] D. J. Rezende, S. Mohamed, and D. Wierstra. “Stochastic backpropagation and
approximate inference in deep generative models,” in Proc. 31st Int. Conf. Machine
Learning, Beijing, China, 2014, pp. 1278–1286.

[27] F. Rijmen, “Bayesian networks with a logistic regression model for the conditional
probabilities,” Int. J. Approx. Reason, vol. 48, no. 2, pp. 659–666, June 2008.

[28] S. Roth and M. J. Black. “Fields of experts: A framework for learning image pri-
ors,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, vol. 2, 2005, pp.
860–867.

[29] R. Salakhutdinov and G. E. Hinton. “Deep Boltzmann machines,” in Proc. Conf.
Artificial Intelligence Statistics, Clearwater Beach, FL, 2009, pp. 448–455.

[30] J. Saragih, S. Lucey, and J. Cohn, “Deformable model fitting by regularized land-
mark mean-shift,” Int. J. Comput. Vis., vol. 91, no. 2, pp. 200–215, Jan. 2011.

[31] L. K. Saul, T. Jaakkola, and M. I. Jordan, “Mean field theory for sigmoid belief
networks,” J. Artif. Intell. Res., vol. 4, no. 61, pp. 76, Jan. 1996.

[32] T. Schneider, B. Schauerte, and R. Stiefelhagen,“Manifold alignment for person
independent appearance-based gaze estimation,” in Proc. 22nd Int. Conf. Pattern
Recognition, Stockholm, Sweden, 2014, pp. 1167–1172.

[33] S. Yusuke, M. Yasuyuki, and S. Yoichi, “Learning-by-synthesis for appearance-
based 3D gaze estimation,” in Proc. IEEE Conf. Computer Vision Pattern
Recognition, Columbus, OH, 2014, pp. 1821–1828.

[34] Y. Tang, G. E. Hinton, and R. Salakhutdinov, “Deep mixtures of factor analysers,”
in Proc. 29th Int. Conf. Machine Learning, Edinburgh, Scotland, 2012, pp. 505–512.

[35] T. Yichuan, S. Ruslan, and H. Geoffrey, “Robust Boltzmann machines for recog-
nition and denoising,” in Proc. 25th IEEE Conf. Computer Vision Pattern
Recognition, Providence, RI, 2012, pp. 2264–2271.

[36] A. van den Oord and B. Schrauwen, “Factoring variations in natural images with
deep Gaussian mixture models,” in Proc. Neural Information Processing Systems
Conf., Montreal, Canada, 2014, pp. 3518–3526.

[37] F. Vicente, Z. Huang, X. Xiong, F. De la Torre, W. Zhang, and D. Levi, “Driver
gaze tracking and eyes off the road detection system,” IEEE Trans. Intell. Transp. Syst.,
vol. 16, no. 4, pp. 2014–2027, Aug. 2015.

[38] W. John, G. Arvind, R. Shankar, P. Yigang, and M. Yi, “Robust principal compo-
nent analysis: Exact recovery of corrupted low-rank matrices via convex optimization,”
in Proc. Neural Information Processing Systems Conf., Vancouver, Canada, 2009, pp.
2080–2088.

[39] Z. Xucong, S. Yusuke, F. Mario, and B. Andreas, “Appearance-based gaze estima-
tion in the wild,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, Boston,
MA, 2015, pp. 4511–4520.

[40] D. Zoran and Y. Weiss, “From learning models of natural image patches to whole
image restoration,” in Proc. IEEE Int. Conf. Computer Vision, Barcelona, Spain, 2011,
pp. 479–486.

� SP

