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The Deep Regression Bayesian Network and Its Applications
Probabilistic deep learning for computer vision 

Deep directed generative models have attracted much atten-
tion recently due to their generative modeling nature and 
powerful data representation ability. In this article, we 

review different structures of deep directed generative models 
and the learning and inference algorithms associated with the 
structures. We focus on a specific structure that consists of lay-
ers of Bayesian networks (BNs) due to the property of captur-
ing inherent and rich dependencies among latent variables. The 
major difficulty of learning and inference with deep directed 
models with many latent variables is the intractable inference 
due to the dependencies among the latent variables and the 
exponential number of latent variable configurations. Current 
solutions use variational methods, often through an auxiliary 
network, to approximate the posterior probability inference. In 
contrast, inference can also be performed directly without using 
any auxiliary network to maximally preserve the dependencies 
among the latent variables. Specifically, by exploiting the sparse 
representation with the latent space, max-max instead of max-
sum operation can be used to overcome the exponential number 
of latent configurations. Furthermore, the max-max operation 
and augmented coordinate ascent (AugCA) are applied to both 
supervised and unsupervised learning as well as to various 
inference. Quantitative evaluations on benchmark data sets 
of different models are given for both data representation and 
feature-learning tasks.

Introduction
Deep learning has become a major enabling technology for 
computer vision. By exploiting its multilevel representation 
and the availability of big data, deep learning has led to dra-
matic performance improvements for certain tasks. Among 
different deep-learning architectures, convolutional neural 
networks (CNNs) have achieved the most significant devel-
opment and are being widely employed in computer vision 
in recent years. CNNs, however, are typically discrimina-
tive models and they are built mainly for discriminative 
tasks, such as classification. For generative modeling, the 
model needs capture the underlying data distribution as well 
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as the mechanisms used to generate data, 
including the uncertainties in the data and 
in the data generation process. CNNs are 
therefore not directly suitable for genera-
tive modeling. The latest development in 
generative adversarial networks (GANs) 
[8] can perform effective data generation. 
Based on combining a discriminative CNN 
with a generative deconvolutional neu-
ral network, GANs produce remarkable 
performance in generating realistic data. 
Since GANs employ a simple standardized 
random vector to model data uncertainty; 
they remain mostly deterministic and cannot fully model the 
uncertainties in data.

In this article, we focus on fully probabilistic deep directed 
generative models for deep learning under uncertainty that 
can simultaneously perform data generation and classification 
tasks. Based on probability theories, deep probabilistic gen-
erative models offer a probabilistically grounded framework 
to represent, learn, and predict under uncertainty. There ex-
ist several types of probabilistic deep generative models, most 
notably, deep Boltzmann machines (DBMs) [29] [Figure 1(c)] 
and deep belief networks (DBNs) [11] [Figure 1(b)]. While gen-
erative in nature, these models, for the sake of simplicity in 
inference, typically assume latent variables are independently 
given data. Such an assumption weakens their data modeling 
and representation power. In contrast, deep directed generative 
models consist of layers of BNs as shown in [Figure 1(a)]. Com-
pared to DBMs and DBNs, the deep directed generative model 
enjoys several advantages due to its unique way of capturing 
dependencies. First, it specifically models the data generation 
process and allows straightforward ancestry sampling, where 
a node is sampled following a topological order, starting from 

its ancestors until its descendants. Second, 
there is no intractable partition function that 
has plagued the undirected models. Last, 
but most importantly, latent nodes in the 
deep directed generative models are depen-
dent on each other given inputs (because of 
the “explaining away” principle) while it is 
not the case for DBN and DBM. This char-
acteristic of the deep directed generative 
models endows them a powerful ability in 
modeling the complex pattern in data.

Learning and inference in deep directed 
generative models is challenging, mainly 

due to the intractable computation of the posterior probability 
of the latent variables and the exponential number of latent con-
figurations (for binary latent variables). Various approximations 
such as variational inference algorithms [2], [8], [10], [15], [21], 
[26] have been proposed to address these challenges. They all 
use an auxiliary feed-forward network to approximately solve 
the intractable posterior probability inference problem. These 
approximations typically assume the joint latent variable dis-
tribution given data can be factorized. The factorized distri-
bution, while simplifying learning and inference, sacrifices 
the dependencies among the latent variables for efficiency. 
They inevitably enlarge the distance to the true posterior and 
weaken the representation power of the model. This negates a 
major advantage of the directed graphical models. Moreover, 
the existing methods avoid the exponential number of latent 
configurations, as they mostly deal with real latent nodes.

Alternatively, the posterior inference can be solved directly, 
without resorting to any other network. Furthermore, efficient 
learning and inference methods can be designed to maximally 
preserve the dependencies among the latent variables. Specifi-
cally, for learning, data marginal log-likelihood can be maxi-
mized directly through a max-max operation to overcome the 
exponential number of latent configurations. For inference, 
posterior probability inference can be performed through the 
pseudo-likelihood, which also preserves dependencies of la-
tent variables. Furthermore, improved maximum a posteriori 
(MAP) inference can be achieved by combining the coordi-
nate ascent (CA) method with the variational method.

Related work
In general, there are three types of deep probabilistic genera-
tive models: fully directed, hybrid, and fully undirected. The 
DBN [Figure 1(b)] has a hybrid structure, where the top two 
layers are connected with undirected links and all other lay-
ers are connected with directed links. The DBM [Figure 1(c)] 
has a fully undirected structure such that every two consecu-
tive layers are connected using undirected links. In this article, 
we focus on the fully directed deep generative models due to 
their unique representation power. Depending on the structure 
and the type of variables, the directed generative models have 
several variants. The most commonly used structure consists 
of multiple layers [Figure 1(a)], in which only the bottom layer 
represents the visible variables. The connections are directed 

Figure 1. Graph representation of (a) DRBNs, (b) DBNs, and (c) DBMs, 
where arrows represent directed links and line segments represent un-
directed links. Directed links capture the causal or one-way dependency 
between the connected nodes, while the undirected links capture the 
mutual dependencies among the connected nodes.
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from the upper layer to the lower layer, and no 
connection within each layer is allowed.

Depending on the types of variables, deep 
directed generative models can be categorized 
into deep sigmoid belief networks (SBNs) [21], 
[24], [31], deep Poisson factor analysis (DPFA) 
[6], deep factor analyzers (DFAs) [34], and 
deep Gaussian mixture models (DGMMs) 
[36]. The deep SBN contains binary latent and visible variables, 
and the conditional probability is defined using a sigmoid func-
tion. The DPFA models discrete variables (e.g., word count in 
documents) using binary latent variables. Dirichlet prior z and 
gamma prior i  are placed to describe a Poisson distribution of 
input data. The DFA consists of continuous latent and mixtured 
types of variables. The DGMM is an extension of the Gauss-
ian mixture model (GMM), while each latent node represents 
a linear operation to compute the mean and covariance matrix 
for the Gaussian distribution.

In this article, we focus on the deep directed generative 
model with binary latent variables. Compared to earlier SBN 
works [21], [24], [31], the deep directed generative models rep-
resent an extension in both representation and learning and 
inference methods. In terms of representation, it allows for dif-
ferent input and output types (discrete, continuous, and hybrid), 
while SBN only uses binary input. For learning, DRBN allows 
both unsupervised and supervised layer-wise and global learn-
ing, while SBN work only includes layer-wise unsupervised 
learning. For inference, DRBN allows the use of different 
algorithms such as the pseudo-likelihood method for posterior 
probability inference and AugCA method for MAP inference, 
while the literature for SBNs generally use variational methods 
for inference.

For deep directed generative models, computing the poste-
rior becomes intractable due to dependencies among the latent 
variables. To address this issue, one approach is to design a spe-
cial prior to make the latent variables conditionally indepen-
dent such as the complementary prior [11] for DBNs, wherein 
the posterior probability for each latent variable can be com-
puted individually. Another popular approach is to replace the 
true posterior distribution with a factorized distribution as an 
approximation, known as variational methods. The mean field 
theory [31] for learning SBNs makes the latent variables total-
ly independent. A set of variational parameters is learned to 
minimize the Kullback–Leibler (KL) divergence between the 
true posterior and the approximate one. Another approximate 
inference algorithm is the Markov chain Monte Carlo method, 
which can be used to estimate the posterior probability of both 
latent variables and parameters. One example is the learning 
and inference for deep latent Gaussian models [14].

To extend the traditional variational methods, recent works 
typically use an auxiliary network to address the computation-
al challenge with posterior probability inference. Specifically, 
the wake-sleep algorithm [13] augments the SBNs with a feed-
forward recognition network for efficient inference. Mnih and 
Gregor [21] propose a variational inference network with dis-
crete latent variables to perform efficient inference. Rezende 

et al. [26] and Kingma and Welling [15] 
introduced a recognition model to effi-
ciently approximate posterior probabil-
ity inference. The deep generative model 
can be learned by jointly optimization of 
the parameters for both generative and 
the recognition models. Ranganath et al. 
[25] introduces a new method to reduce 

the variance of the noisy gradients for varational based deep 
model learning. The overall structure of [2] is similar to [15], 
by building connections between the recognition model and 
generative model rather than learning them independently.

All of these approaches use a feed-forward model to per-
form posterior probability inference. The feed-forward models 
all assume the posterior probability can be factorized. The pos-
terior probability inference is, hence, approximate. In contrast, 
posterior probability inference can be done via CA without 
the help of any auxiliary network or variational distribution, 
therefore, during learning, we do not need to assume condi-
tional independence among the latent variables. Moreover, 
by initializing the CA method with the inference result from 
a variational method, the AugCA method can produce better 
reconstruction results than the existing variational models.

One of the latest development in deep generative modeling 
is the GAN [8], [10], which employs both a discriminator and 
a generator. The generator is a deep generative model, which is 
trained to generate realistic synthetic data. The discriminator 
is a neural network trained to discriminate synthetic data from 
real data. The two networks compete against with each other 
until the discriminator is maximally confused. Specifically, 
Han et al. [10] uses a nonlinear factor analyzer as the genera-
tor network. By performing the alternating backpropagation, 
the generator network can be learned to generate realistic im-
ages, sequences, and sounds. Despite its impressive generative 
performance, GANs are essentially a deterministic model as 
the data uncertainty is modeled by a standard random vector. 
Hence, they cannot effectively capture the probabilistic distri-
bution of the data. Furthermore, GANs can only perform data 
generation tasks and cannot perform classification tasks. By 
combining a variational autoencoder with a GAN, Larson et 
al. [16] introduced a novel metric for similarity measurement 
when reconstructing the training samples during parameter 
updating, which achieves better generalization performance. 
Variational autoencoders and GANs are further combined in 
[20], with a clear theoretical justification and the ability for 
arbitrary complex inference.

Deep regression BNs

Regression BNs
To construct a deep directed generative model, a BN is used 
as the building block. A BN is parameterized by the condi-
tional probability for each node, given its parents. The number 
of parameters for each node increases exponentially with the 
number of parents of each node. To scale up to models with a 
large number of latent variables, regression BNs (RBNs) are 

Compared to DBMs and 
DBNs, the deep directed 
generative model enjoys 
several advantages due 
to its unique way of 
capturing dependencies.
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employed to limit the number of parameters linearly with the 
number of connections [27].

The RBN consists of two layers: one visible layer X  of 
dimension nd  and one latent layer H  of dimension ,nh  as 
shown in Figure 2(a). Every latent variable connects to every 
visible variable with a directed edge. For continuous data 
vector { , ..., }X X X Rn

n
1 d

d!=  and binary latent variables 
{ , ..., } { , }H H H 0 1n

n
1 h

h!=  in which each node takes value 
0 or 1, the prior and conditional probabilities of the model are 
defined as

 ( ) sigm( ),P H d1j j= =  (1)

 | ~ | , ,H h hwP X x x bNi i i i
T

i i
2v= = +^ ^h h  (2)

where sigm( ) / ( ( ))expa a1 1= + -  is the sigmoid function; 
( | , )aN 2n v  represents the Gaussian distribution with mean 

n  and variance 2v . [ , ..., ]W w wn
T

1 d=  is the weight matrix, 
wij  is the weight of the link connecting nodes Hj  and ,Xi  
where { , , ..., }, { , , ..., }i n j n1 2 1 2d h= = . [ , ..., ]d d dn T

1 h=  and 
[ , ..., ]b b bn T

1 d=  are the bias parameters for H  and X  respec-
tively, and [ , ..., ]n T

1
2 22

dv v v=  are the conditional variances for 
X . This generative model can be viewed as a diagonal GMM 
with the number of components exponential in the number of 
latent variables. For binary data, the prior probability of the 
latent node remains the same and the conditional probability is

 ( ) ( ) .| H h hwP X b1 sigmi i
T

i= = = +  (3)

Through the parameterization in (2), the mean of a Ber-
noulli node is the sigmoid function of linear combination of all 

nodes in the previous layer. The RBN can be seen as a probabi-
listic generalization to the neural network, where the value of 
nodes in the current layer is the nonlinear transformation (e.g., 
via a sigmoid activation) of the linear combination of all nodes 
in the previous layer. With the prior and conditional distribu-
tions, the joint distribution for X  and H  is

 ( , | ) ( | ) ( | , ),x h hP P h P x
j

n

j j
i

n

i i
1 1

h d

H H H=
= =

% %  (4)

where iH  and jH  denote the parameters for the ith visible node 
and jth latent node. { , , , }.W b dvH =  Plugging the parameter-
ization in (1) and (2) into (4) yields
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(6)

Similarly, we can produce the joint probability for the 
RBN with binary input by combining (3) with (1). The energy 
function in (6) is very similar to the energy function for the 
Gaussian–Bernoulli restricted Boltzmann machine (GRBM) 
[12] in (7).

 ( , )
( )

.x h w h d hE
x b x
2 i

i i

i i

i

i
i

T
2

2

2RBM
v v

=
-

- -/ /  (7)

Comparing the two equations, it is clear that the energy func-
tion for RBN has an extra term [the last term of (6)]. This 
extra term explicitly captures the relationship among latent 
variables. This represents a major representation difference 
between RBNs and RBMs.

Deep RBNs
By stacking multiple RBNs, we are able to construct a deep 
directed generative model with L  latent layers, called deep 
RBNs (DRBNs) [Figure 2(b)]. Let , , ,H l L1l f=  denote the 
binary latent variables in layer ,l  and .H X0 =  Denote the 
parameters between layer Hl 1-  and Hl  as { , }.W bl l lH =  Top 
layer parameters are .d  The prior probability for a variable of 
the top layer is

 ( ) sigm( ) .P H d1j
L

j= =  (8)

The conditional probability for the remaining layers is

( | ) ( ), .H hwhP H b l L1 2sigm l
j
l l l

j
lT

j
l1 # #= = = +-  (9)

The conditional probability ( | )hxP 1  for the bottom 
two layers is the same as in (2) or (3), depending on the 
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Figure 2. A graph representation of (a) an RBN, (b) a DRBN without 
labels, and (c) a DRBN with labels.
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type of the input data. The joint probability for all vari-
ables is

 ( , , ..., | ) ( | ) ( ) ( | ) .h h h h h hx xP P P PL L

l

L
l l1 1

2

1H =
=

-%  (10)

By fully capturing the joint probability distribution of input 
data and latent variables, the DRBN can accurately capture 
three types of dependencies among different variables: depen-
dencies among input variables, dependencies among hidden 
variables, and interactions between hidden and input variables. 
Because of its explicit capture of these dependencies, com-
pared with DBNs and DBMs, DRBNs can better capture the 
data distribution. Compared with the GANs, DRBNs explicitly 
capture the underlying probabilistic data distribution and can 
perform both data modeling and prediction tasks.

Comparison with deep neural networks
Compared with deep neural networks (DNNs), DRBNs consist 
of layers of RBNs. Each hidden layer of the BN hence captures 
the distribution of the input data at different levels. In contrast, 
DNNs consist of layers of perceptions and each hidden layer 
summarizes the sufficient statistics (such as the mean) of the 
input at different levels. Therefore, the main difference between 
DRBNs and DNNs is that the DRBN captures the probabilistic 
distribution of the data, while the DNN captures mean statis-
tics of the data. Based on this understanding, DRBNs repre-
sent a generalization to the DNN, and the DRBN becomes a 
DNN if the conditional variance for each latent node becomes 
zero. The DRBN is therefore more powerful 
in data representation, in particular in rep-
resenting the uncertainties in the data. On 
the other hand, the power in representation 
also leads to challenges in DRBN learning 
and inference and in its ability to scale up. 
DNNs are much better than DRBNs in effi-
cient inference and learning, and in scaling up to a large model. 
This explains why, so far, DNNs remain the dominant deep 
model architecture. But the promise of DRBNs in data repre-
sentation deserves further research to address its challenges.

DRBN learning

Unsupervised learning
We first discuss the unsupervised RBN learning and then 
extend it to DRBN learning. The goal of unsupervised param-
eter learning for an RBN is to estimate the parameters H  given 
a set of data samples .{ }xD m

m
M

1= =  To maximally preserve 
the dependencies among the latent variables,it would be better 
to directly maximize the marginal log-likelihood instead of its 
surrogate (such as its lower bound), i.e.,
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( , | ) .
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argmax log x

P

P h

D*

hm

m

H H

H

=

=

H

H
/ /  

(11)

Maximizing the marginal likelihood has two computational 
challenges: 1) computing the posterior probability ( | )h xP  is 

intractable even for one configuration h due to the dependen-
cies among elements of h and 2) there are exponential number 
of terms in the summation over .h  To address these two chal-
lenges, H  can be estimated by replacing the max-sum opera-
tion in (11) with the max-max operation in (12), i.e.,

 

( | )

( , | ) .

logargmax

argmax log max x h

P

P

D*

hm

m.

H H

H

=
H

H
/  

(12)

The rational for replacing the max-sum with max-max 
operation is based on the empirical observation that the distri-
bution of ( | )h xP m  is very sparse, with its energy concentrated 
on a few configurations of h near its maximum. The max-
max operation may be achieved iteratively in two steps. First, 
for each training sample ,xm  we obtain h*m  that maximizes 
( , | ),h xP m

t 1H -  given current parameters ,t 1H -  i.e.,

 ( , | ) .h hargmax xP*

h

m m
t 1H= -  (13)

Second, given ,h*m  tH  can be estimated by maximizing 
( , | ),log x hP *

m m tH/  i.e.,

 ( , | ) .hargmax log xP* *
t

m

m m
tH H=

H
/  (14)

The two steps iterate until convergence. Equation (13) can 
be solved through the AugCA method to be discussed in the 
section  “MAP Inference.” Equation (14) can be solved in 

closed form solution for continuous input 
or through stochastic gradient ascent for 
binary input.

Learning a DRBN with multiple latent 
layers consists of two steps: layer-wise 
pretraining and global fine-tuning. Layer-
wise pretraining is a bottom-up procedure. 

When learning the parameters lH  for the lth layer, the param-
eters below are frozen, and the input to the lth layer is ,H* l  
which is obtained though ( | , ) .H H Hargmax P*

H
l l l l1 1l H= - -  

Given its input, lH  can be learned the same way using the 
RBN learning method. The layer-wise learning does not con-
sider the interactions among the layers. A global fine-tuning 
can then be performed. Initialized by the parameters learned 
by layer-wise learning, the global fine-tuning procedure 
simultaneously refines the parameters at different layers such 
that parameters in the higher layers can influence those in 
the lower layers. Specifically, global fine-tuning updates the 
parameters H  in all layers by maximizing the marginal likeli-
hood of the data, i.e.,

( | )

( , , | ) .h h

arg max log

arg max log max

x

x

P

P

*

, ,h h

m

m

m

m L1
L1

f.

H H

H

=

f

H

H

/

/

Equation (15) can be solved through two step iteration as 
for (12).

The promise of DrBNs 
in data representation 
deserves further research 
to address its challenges.
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Supervised learning
For applications where labels ym  are given for each sample xm  
as shown in Figure 1, supervised learning can be performed. 
For classification tasks,discriminative supervised learning can 
be performed. The objective function is modified to maximize 
the log posterior probability of the labels,

 

( | , )

( | , )

( , | , ) .h

argmax log

argmax log

argmax log

x

x
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(15)

We encounter the same computational challenges in solving 
(15). This challenge can be alleviated by replacing the max-
sum operation with the max-max operation (16), i.e., which can 
be solved similarly through the two-step iteration process

 ( , | , ) .h xargmax log max P y*

hm

m mH H=
H
/  (16)

Like unsupervised learning, (16) can be applied to both 
layer-wise and global DRBN learning. To achieve a good ini-
tialization of parameters, the generative model is first trained 
in an unsupervised manner. The objective function is then 
changed to the supervised one, and parameters are tuned in a 
supervised manner.

DRBN inference
Given a DRBN with known parameters, there are three types 
of inferences: posterior probability inference, MAP inference, 
and likelihood inference. In this section, we discuss efficient 
methods for these three types of inferences.

Posterior probability inference
The posterior inference is to compute the posterior probabil-
ity of the latent variables given the input data, i.e., to compute 
( | ) .h xP  Because of the dependencies among ,h  directly 

computing ( | , )h xP H  is computationally intractable when the 
dimension of h is high. The pseudo-likelihood method offers 
an efficient solution to this problem by replacing the condi-
tional likelihood with a more tractable objective. The pseudo-
likelihood method considers the following approximation:

 ( | , ) ( | , , ),h hx xP P h
j

j j.H H-%  (17)

where { , , , , , }.h h h h hj j j n1 1 1 hf f=- - +  In this approximation, 
conditioning is added over additional variables. The condi-
tional pseudo-likelihood can be factorized into local condi-
tional probabilities, which can be computed in parallel. The 
pseudo-likelihood approximation, however, requires an ini-
tialization of .h

MAP inference
MAP inference is to estimate the most likely hidden layer con-
figuration ,h*  given an input ,x  i.e., ( | ) .h hargmax xP*

h=  
Directly performing MAP inference is computationally 

intractable as we need enumerate all possible hidden layer 
configurations. The CA method was introduced to overcome 
this challenge, by iteratively maximizing one latent variable 
at a time. From an initial state of the latent vector ,h( )0  the CA 
method updates one latent variable by fixing all other vari-
ables iteratively,

 | , .hargmax xh P h( ) ( )

h
j
t

j j
t1

j

=
+

-^ h  (18)

This iterative updating rule guarantees that the posterior 
probability ( | )h xP  will only increase until convergence due 
to the inequality: ( , | ) ( | ) .h hx xP h Pj

t
j

t t1 $+
-  As a greedy 

approach, the CA method may get stuck in a local optimum. 
Thus, the initialization for (18) is crucial to ensure a configu-
ration with high quality. To address this issue, the variational 
inference approach may be employed to learn an inference 
network [21] from the DRBN. The inference result from the 
inference network is used as initialization for the CA, yielding 
the AugCA method.

The inference network method [21] approximates the pos-
terior using only one set of parameters for all data samples by 
defining a feed-forward network for ( | , ) .h xQ z  The inference 
network also assumes independencies among latent variables 
given input data

 ( | , ) ( | , ) .h x xQ q h
j

j jz z=%  (19)

Each individual probability is defined using a sigmoid function,

 ( | , ) sigm .x xq h v sj j ij
i

i jz = +c m/  (20)

The parameters { , }v sz =  are learned by minimizing the 
average KL divergence ( ( | , ) | | ( | , ))h hx xKL Q Pz H  over all 
of the training samples. Similarly, the optimization is through 
the expected log-likelihood due to the intractable ( | , ),h xP H

 ( | , )
( | , )
( , | )

.h x h x
h x

argmax logQ
Q
P*

hx
z z

z

H
=

z
//  (21)

The CA method requires the computation of (P h jt = 
| , )x h1 j

t 1
-
-  for each .j  Naive computation can become prohibi-

tive, given a large number of hidden variables. Taking discrete 
input data as illustration, according to (4), the computation of 
joint probability requires N Nh d+  times of multiplication of 
the exponential terms. This can become very expensive when 
Nd  and Nd  are large, since each time, only one element of 
h  is changed and the probabilities for other elements re -
main the same. An efficient procedure to recursively compute 
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where the probability ratio can be further written as
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The first two terms in (23) are constant for a given .x  
They need be computed only once. For the last term, either 
the numerator or denominator can be retrieved from the last 
iteration, depending on the last value of .h jt 1-  This means we 
only need compute either the numerator or denominator in 
each iteration. This cuts the computational time by half com-
pared to the naive computation. Furthermore, the term within 
the exponential term can be retrieved and updated from last 
iteration by one addition or subtraction. Then the probability 
ratio in (23) can be obtained by nd  times of multiplication. As 
a result, computation time for each iteration is constant, involv-
ing one addition or subtraction and nd  times of multiplication. 
The overall complexity of the CA method is ( ),O n n nd h i  which 
is linear in the size of the input data, the number of latent vari-
ables ,nh  and the number of iterations .ni

Likelihood inference
The likelihood inference is to compute the marginal probabil-
ity of the visible variables, i.e., ( ) .xP  Since

 ( ) ( | ) ( ) .hx x xP P P
h

=/  (24)

By replacing the sum operation with the max operation, 
we have

 ( ) ( | ) ( ) ( , ) .h hmax maxx x x xP P P P
h h

. =  (25)

It again can be computed by f i rst computing h* =

( | )hargmax xPh  using the AugCA method. This can then be 
followed by easily computing ( , ) .hxP *  

Algorithm evaluation
As discussed in the section “Related Work,” the DRBN’s 
learning method is different from variational methods, 
which use a factorized variational distribution to approxi-
mate the true posterior probability inference. In contrast, 
the DRBN directly maximizes the marginal log-likelihood 
through a max-max operation To demonstrate the advantage 
of such a learning algorithm, we performed experiments to 
compare three learning methods: max-max learning, varia-
tional learning [21], and the exact learning method in terms 
of their ability in data representation under different number 
of latent nodes.

For this experiment, we trained the RBN networks on 
60,000 training samples of MNIST data set [17] (binarized 
according to [23]). During learning, we respectively use the 
max-max operation, the variational method [21], and the exact 

method (only for a small network) to approximate the mar-
ginal log-likelihood. For a fair comparison, the hyperparam-
eters for each method are optimally tuned.

After learning, the mean log-likelihood of all training 
samples for RBNs learned with the three methods are sum-
marized in Table 1. It is clear from Table 1 that the max-max 
method produces an average log-likelihood very close to the 
exact method and is much better than the variational method. 
This demonstrates the improved accuracy of the max-max 
method in data representation over the variational methods 
for a small network.

We further evaluate these methods for larger networks. 
For a network with a large number of hidden nodes, the 
exact method cannot be completed as the summation over h 
becomes computationally intractable. Hence, we only give the 
mean data log-likelihood in Figure 3 for the max-max method 
and the variational method under a different number of hid-
den nodes. The estimate mean data log-likelihood is com-
puted the same way as in Table 1. We also include the mean 
log-likelihood of the exact learning method for small RBNs 
with five and ten hidden nodes. From the curves in Figure 3, 
we can see that the data log-likelihood evaluated on RBN 
learned with the max-max method is consistently higher than 
the variational method, especially when the network is small. 
This not only demonstrates further the advantage of the max-
max learning method over the variational learning method 
but also proves the validity of replacing max-sum operation 
by the max-max operation.

Table 1. A comparison of training data log-likelihood  
(a small network with five hidden nodes).

Variational [21] Max-Max Exact 
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out learning, blue line: variational learning, and green line: exact learning.
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Applications
To demonstrate the effectiveness of the DRBN models, we will 
apply the DRBN to different computer vision tasks to dem-
onstrate its capability for both data representation and feature 
learning for classification.

Data representation
First, we quantitatively compare the DRBN with other genera-
tive models in terms of peak signal-to-noise ratio (PSNR) in 
several image restoration and denoising tasks. Then, we evalu-
ate the generative representation power of different models in 
terms of generating synthetic data.

The first task is image restoration, which is to restore an 
image from its corrupted version. It is shown that a higher like-
lihood of patches leads to better denoising on whole images 
[40]. Therefore, we train a DRBN model on the 8 × 8 patches 
from the Berkeley data set [19], which contains 200 training 
and 100 testing images. One million training and 50,000 test-
ing patches are randomly sampled from 200 training and 100 
test images, respectively. A DRBN with two latent layers is 
used, with each layer containing 50 latent variables respective-
ly. The total training epochs are 100. With a learned DRBN as 
a prior model, we use the expected patch log likelihood (EPLL) 
[40] framework to perform image restoration. The EPLL of an 
image x  is defined as

 ( ) ( ),x ylogPEPLLP
i

i=/  (26)

where { }yi  represents all the overlapping patches in the image. 
Given a corrupted image ,x+  the cost we use to reconstruct the 
image with patch prior P  is

 ( | ) | | | | ( ) .x x xx xf
2

EPLLP P
2m= - -

+ +  (27)

It is difficult to directly optimize the complicated cost 
function. We employ the half-quadratic slitting method [7] 
with m  set to ,106  following the settings in [40]. To perform 
image inpainting, we superimposed some sentences on the 
clean image as the noise. During optimization, both the CA 
and AugCA methods were used to perform MAP inference for 
each patch. Typically the CA and AugCA converge after three 
iterations, and initialization affects the final configuration of 
latent variables but not posterior likelihood. We compared 
DRBN to three state-of-the-art approaches with generic priors: 
field of experts (FoE) [28], KSVDG [5], and the GMM [40] 
with full covariance matrix. The quantitative results on the 100 
test images are given in Table 2. The DRBN outperforms all 
other approaches in terms of PSNR values.

An example is given in Figure 4, where (a) represents an 
original image, (b) a corrupted image, (c) a restored image 
using the GMM as a prior model, and (d) a restored image 
using the DRBN as a prior model. The PSNR values for 
(c) and (d) are 26.31 and 29.80, respectively. It can be seen 
that using the GMM prior, some parts of the letters in the 
corrupted image remain in the restored image, especially 
if the background color is white. The DRBN model com-
pletely removes the letters, and the PSNR values show sig-
nificant improvement.

The second task for image representation is face restora-
tion, where we use DRBN to restore a given cropped image. 
For this task, we put two kinds of noise on the face images 
from the Multi-PIE data set: random noise and block occlu-
sion, where 40% of the pixels are corrupted by random noise 
with a standard deviation of 0.4, following the same procedure 
as [35]. For the latter, 12 × 12 blocks are superimposed on a 
random part of the 32 × 32 faces with Gaussian random noise, 
following the same procedure as [35]. The same MAP infer-
ence methods—CA and AugCA—are applied. Also, results 
from the inference network (IN) [21] is compared with CA and 
AugCA. The baseline methods include the robust Boltzmann 
machine (RoBM) [35], GRBM [12], and robust PCA (RPCA) 
[38]. PSNR is employed to quantitatively evaluate different 
methods. The result is given in Table 3. The AugCA method 
outperforms all other methods in terms of PSNR values. In 
the cross-subject setting, the RBN generalizes well to unseen 
subjects. Some examples of the reconstructed faces are given 
in Figure 5.

Next we demonstrate the DRBN’s image reconstruction abil-
ity. In the image restoration task presented in Figure 5, images 
are restored using trained DRBN models from given corrupted 
images. Unlike the image reconstruction task, given an image ,x  
we first perform MAP inference to obtain the most likely latent 

Table 2. PSNRs for different image inpainting methods  
on Berkeley data set.

Method PSNR

KSVD [5] 24.13 

FoE [28] 24.79 

GMM [40] 25.71 

DRBN (CA) 29.42 

DRBN (AugCA) 33.46 

(a) (b)

(c) (d)

Figure 4. An example of the image inpainting experiment, (a) original image, 
(b) corrupted image, (c) restored image using the GMM, and (d) restored 
image using the DRBN. (Images used with permission from [19].)  
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representation h*  and then obtain the reconstructed image xt  
via | .x x hargmax p *

x=t tt ^ h  
Figure 6 presents some examples. For the Multi-PIE data 

set [9], we trained the RBN with 200 latent variables; all face 
images are cropped and resized to 32 × 32 pixels. Similarly, 
we trained different RBNs on MNIST [17], UnityEye [4], and 
CAS-PEAL [3] data sets, respectively. When training the RBN 
on the MNIST data set, the number of hidden nodes is 50 for 
one hidden layer with the learning rate set to 0.01. For both 
the UnityEye and CAS-PEAL data sets, total hidden nodes are 
200, image size is 60 × 36 and 30 × 30 accordingly. From the 
images in Figure 6, we can see that the DRBN is able to 
effectively capture data distribution and can produce good 
image reconstruction.

The last task for assessing the DRBN’s data representation 
capability is through image generation. For this task, we use 
a pretrained DRBN model in the image reconstruction task. 

To generate realistic and meaningful images, we sample the 
latent variables from its prior probabilities. Given the values of 
the hidden nodes, images can be generated from sampling the 
conditional probability of visible nodes given latent variables. 
Examples of generated images from the Multi-PIE and CAS-
PEAL data sets are shown in Figure 7.

(a)

(b)

(c)

(d)

Figure 6. Examples of the image reconstruction for (a) Multi-PIE, (b) 
CAS-PEAL, (c) MNIST, (and d) UnityEye.

(a)

(b)

Figure 5. Examples of face restoration from (a) random noise and (b) 
block occlusion. Top rows: original images; middle rows: corrupted 
images; and bottom rows: reconstructed images. (Images used with 
permission from [9].)

Table 3. PSNRs for different denoising methods on Multi-PIE data set.

Method Random Noise Block Occlusion

RPCA 22.53 20.14

GRBM 23.18 21.45 

RoBM 27.15 24.32

RBN (CA) 28.60 27.21 

RBN (IN) [21] 27.89 26.21 

RBN (AugCA) 29.23 27.45 

Figure 7. An example of the image generation experiment. Generated 
images from (a) Multi-PIE and (b) CAS-PEAL.

(a)

(b)
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Feature learning for regression
In this section, we applied the discriminative supervised learn-
ing for feature learning using the DRBN. Given the learned 
DRBN model, features in the top layer can be extracted via 
MAP inference. The extracted features will then be used for 
regression tasks. We study head-pose estimation (HPE) and 
eye-gaze estimation task with regression, respectively.

The HPE task is to predict three head-pose angles (roll, 
pitch, and yaw) through a regression function. The Boston Uni-
versity head-pose data set is used; the cropped faces are resized 
to 15 × 15 pixels. Two latent layers are used, with 50 latent vari-
ables each. The MAP configuration of the top layer is obtained 
through the IN, CA, and AugCA methods and is used as the 
features for a linear regression model. We compare the DRBN 
to three state-of-art model-based algorithms 1) three-dimen-
sional (3-D) deformable HPE (3D-Deform) [37], 2) deformable 
model fitting (DMF) [30], and 3) monocular HPE (MHPE) 
[22] and one learning-based algorithm, distance vector field 
with CNNs (DVF+CNNs) [1], with the mean absolute errors 
(MAEs) reported in Table 4. The DRBN achieves comparable 
performance comparing to these competing algorithms. Note 
that the resolution of the face image used in the DRBN is much 
smaller (15 × 15 pixels) than other models (typically 320 × 
240 pixels), and no 3-D information is used. This indicates 
the potential of using the DRBN for HPE in extremely low-
resolution images.

For the task of eye-gaze estimation, we choose the MPII data 
set [39] because it covers a wide range of recording locations and 
times, illuminations, and eye appearances. The data set contains 

213,659 images from 15 subjects. The goal of our experiment is 
to map the eye images to the pitch and yaw eye-gaze angles. The 
size of the cropped eye image is 36 × 60, yielding a 2,160-dimen-
sion vector. The DRBN has a 2160-200-200 structure. To evaluate 
different models, we use the “within-data set leave-one-subject-
out evaluation,” in which the eye images from one subject are 
used for testing and all the other images are used for training. The 
regression accuracies of different inference algorithms for each 
angle are given in Table 5. As competing algorithms, we include 
the CNN [39], k-nearest neighbor (kNN) [33], adaptive linear 
regression (ALR) [18], and support vector regression (SVR) [32]. 
The DRBN achieves comparable performance in terms of the 
mean average errors, demonstrating its effectiveness to capture 
the inherent patterns in the eye images. The experiment results 
show that DRBNs are able to learn high-quality features for 
regression tasks. Experimental results in the sections “Data Rep-
resentation” and “Feature Learning for Regression” show that 
the DRBN can perform both generative and discriminative tasks, 
even though its discriminative performance may not match state-
of-the-art CNN models.

Summary
In this article, we review different structures of deep directed 
generative models and their learning and inference algorithms. 
We focus on a specific version of deep generative models—the 
DRBN. Compared to other deep-learning models, the DRBN can 
better capture the data distribution because of its ability to explic-
itly capture the dependencies among the latent variables Various 
algorithms are reviewed and compared, including the efficient 
inference and learning methods of replacing the max-sum opera-
tion with the max-max operation and the augmented CA method 
for MAP inference. Extensive experiments on benchmark data 
sets for both data generation and classification tasks are present-
ed, including image restoration, face reconstruction, HPE, and 
eye-gaze estimation. These experiments demonstrate the com-
petitive performance of DRBNs for both data representation and 
feature-learning tasks.
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